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ON NONADAPTIVE SEARCH PROBLEM

Emil Kolev

Communicated by V. Drensky

Abstract. We consider nonadaptive search problem for an unknown ele-
ment x from the set A = {1, 2, 3, . . . , 2n}, n ≥ 3. For fixed integer S the
questions are of the form: Does x belong to a subset B of A, where the sum
of the elements of B is equal to S? We wish to find all integers S for which
nonadaptive search with n questions finds x. We continue our investigation
from [4] and solve the last remaining case n = 2k, k ≥ 2.

1. Introduction. We start with the general description of a search
problem. Given a set A and let x ∈ A be an unknown element. We want to
find x by asking questions whether x belongs to a subset B of A, such that
B satisfies given conditions. By imposing different restrictions on B we obtain
different search problems. Also, if every question is stated after the answer of
the previous one we say that this is an adaptive search [5], [6]. In this case one
can make use of the information given by the answers so far. If all questions are
asked simultaneously we say that this is a nonadaptive search [1], [2], [7].

2000 Mathematics Subject Classification: 91A46, 91A35.
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Consider the following nonadaptive search for the unknown element x in
the set A = {1, 2, 3, . . . , 2n}, n ≥ 3. For a given natural number S we are allowed
to ask whether x belongs to a subset B of A if the sum of the elements of B equals
S (see [3]). In this case we say that B is a question set of weight S or, when S is
clear from the context, just a question set. Since |A| = 2n, the minimum number
of question sets of weight S, needed to find the unknown element, is greater or
equal to n.

Call a natural number S good if for some m there exists a collection
B1, B2, . . . , Bm of question sets of weight S which determines x. If m = n, i.e. x

can be found by n question sets of weight S, then S is called proper . It has been
shown in [4] that S is good if and only if

S ∈ [2n − 1; 22n−1 − 2n−1 + 1]

and, when n 6= 2k, then S is proper if and only if

S ∈

[

22n−2 + 2n−2 −
1

2

(

2n − 1

n − 1

)

; 22n−2 + 2n−2 +
1

2

(

2n − 1

n − 1

)]

.

In this paper we consider the nonadaptive search problem for question sets of
weight S and find all proper numbers S for the case left n = 2k, k ≥ 2. For ob-
taining our results we use combined approach including knowledge from Algebra,
Combinatorics and Coding Theory.

2. Preliminary results. We start with some notations (see [4]). We
say that a vector (v1, v2, . . . , v2n) is a characteristic vector for a subset B of A

if vi = 1 when i ∈ B and vi = 0 otherwise. It is clear that
∑

y∈B

y =
2n
∑

i=1

i.vi.

The Hamming weight of the vector V = (v1, v2, . . . , vn) is defined by wt(V ) =
|{i|vi 6= 0}|. A n × 2n matrix G is called characteristic matrix for a collec-
tion B1, B2, . . . , Bn of subsets if the rows of G are the characteristic vectors of
B1, B2, . . . , Bn. The weight of a characteristic matrix G with vector columns
V1, V2, . . . , V2n is defined by

wt(G) =
1

n

2n

∑

i=1

i.wt(Vi).

Consider a collection B1, B2, . . . , Bn of question sets of weight S. By asking
whether x belongs to Bi for i = 1, 2, . . . , n we obtain as answers a sequence of
”yes” and ”no” of length n. In order to find x, every element from A should get
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a unique sequence of ”yes” and ”no”. Note also that if the vector Vi is the i-th
column of the characteristic matrix for this collection, then the element i gets as
answer the transpose of Vi (1 meaning ”yes” and 0 meaning ”no”). Therefore,
if the unknown element can be found by the collection B1, B2, . . . , Bn then the
columns of the corresponding characteristic matrix are all binary vectors of length
n. Thus, our problem is equivalent to finding a binary n × 2n matrix G having
as columns all binary vectors of length n and the scalar product of every row of
G with (1, 2, 3, . . . , 2n) equals S. Call such a matrix proper . It is clear that if a
matrix G with vector columns V1, V2, . . . , V2n is proper then wt(G) = S.

Denote by G the matrix obtained from G by interchanging 0 and 1. It is

easy to see that G is proper matrix and wt
(

G
)

= 22n−1 + 2n−1 − wt(G).

To make this paper self-contained recall a theorem from [4].

Theorem 1. If a natural number S is proper then

S ∈

[

22n−2 + 2n−2 −
1

2

(

2n − 1

n − 1

)

; 22n−2 + 2n−2 +
1

2

(

2n − 1

n − 1

)]

.

P r o o f. Let S be a proper number and G be a proper matrix of weight

wt(G) = S. We show first that S ≥ 22n−2 + 2n−2 −
1

2

(

2n − 1

n − 1

)

. Label the

columns of G by 1, 2, . . . , 2n and denote by Si, i = 0, 1, . . . , n the sum of the labels

of the vector columns of G having weight i. Note that n.S = n.wt(G) =
n
∑

i=0

i.Si.

Further, since there are

(

n

i

)

vector columns of weight i we obtain

Sn ≥ 1, Sn + Sn−1 ≥ 1 + 2 + · · · +

((

n

n

)

+

(

n

n − 1

))

,

Sn + Sn−1 + Sn−2 ≥ 1 + 2 + · · · +

((

n

n

)

+

(

n

n − 1

)

+

(

n

n − 2

))

and so on, up to

Sn + Sn−1 + · · · + S1 ≥ 1 + 2 + · · · +

((

n

n

)

+

(

n

n − 1

)

+ · · · +

(

n

1

))

.
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Adding the above inequalities gives

n
∑

i=0

i.Si ≥ 1 +

(

(

n
n

)

+
(

n
n−1

)

) (

(

n
n

)

+
(

n
n−1

)

+ 1
)

2

+

(

(

n
n

)

+
(

n
n−1

)

+
(

n
n−2

)

)(

(

n
n

)

+
(

n
n−1

)

+
(

n
n−2

)

+ 1
)

2

+ · · · +

(

(

n
n

)

+
(

n
n−1

)

+ · · · +
(

n
1

)

) (

(

n
n

)

+
(

n
n−1

)

+ · · · +
(

n
1

)

+ 1
)

2
.

Simple calculations show that the latter inequality is equivalent to

wt(G) ≥ 22n−2 + 2n−2 −
1

2

(

2n − 1

n − 1

)

.

Since wt(G) = S we get our assertion. To prove the inequality S ≤ 22n−2 +

2n−2 +
1

2

(

2n − 1

n − 1

)

recall that wt(G) = 22n−1 + 2n−1 − wt
(

G
)

and use that

wt
(

G
)

≥ 22n−2 + 2n−2 −
1

2

(

2n − 1

n − 1

)

. �

Remark 1. It is not difficult to prove that the term
1

2

(

2n − 1

n − 1

)

is an

integer if and only if n is not a power of 2.

We continue with the notation concerning our results. Let V =
(v1, v2, . . . , vn)t be a binary vector column of length n. Denote by π the cyclic
shift of V by one position, i.e. π(V ) = (v2, v3, . . . , vn, v1)

t. It is well known
that π partitions the set of all binary vectors of length n into orbits and the
length of each orbit is a divisor of n. Also, the elements in the same orbit have
equal weights. If the length of the orbit containing V where wt(V ) = w equals l

then call the matrix with columns V, π(V ), π2(V ), . . . , πl−1(V ) an orbit matrix of

weight w and length l. Denote such a matrix by Cw,l. It is easy to be seen that n

divides lw and there are
lw

n
ones in every row of Cw,l. Note also that Cw,l is an

orbit matrix of weight n − w. If there are more than one orbit matrix of given
weight w and length l we label them as C1

w,l, C
2
w,l, . . . and so on.

Example 1. Let n = 4. There is a single orbit matrix for every weight
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w = 4, 3, 1 and 0, namely

C4,1 =









1
1
1
1









, C3,4 =













0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0













, C1,4 =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













, and C0,1 =













0

0

0

0













.

There are two orbit matrices of weight 2, namely

C2,2 =













0 1

1 0

0 1

1 0













, and C2,4 =













0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0













For our further considerations it is appropriate to consider the matrix

C2 =













0 1 0 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 0 1 0 1 0













.

Note that C2 is obtained by arranging in special order all vector columns of weight
2. The interval from Theorem 1 for n = 22 is [50.5; 85.5]. It turns out that for
all S ∈ [51; 85] there exists a proper matrix of weight S. Moreover, to construct
a proper matrix of certain weight we make use of the matrices C4,1, C3,4, C2,
C1,4 and C0,1. For example, consider the matrix G = (C4,1C3,4C2C1,4C0,1). It is
a characteristic matrix for the collection of subsets B1 = {1, 3, 4, 5, 7, 9, 10, 12},
B2 = {1, 2, 4, 5, 7, 8, 11, 13}, B3 = {1, 2, 3, 5, 6, 9, 11, 14} and B4 = {1, 2, 3, 4, 6, 8,
10, 15}. Note that

∑

y∈B1

y =
∑

y∈B2

y =
∑

y∈B3

y = 51 and
∑

y∈B4

y = 49

Applying the transposition (10, 12) over the columns of G we obtain a proper
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matrix of weight 51, namely













1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0

1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0

1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0

1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0













.

One can find in similar manner proper matrices of weight S for any S ∈ [51; 85].
It turns out that this is the case for any n = 2k, k ≥ 2, i.e. by manipulating
the orbit matrices one can find a matrix having special property (as G above)
and after single transposition of two columns of this matrix one can find a proper
matrix of weight S for any S in the interval from Theorem 1.

In what follows n = 2k for k ≥ 3.

Definition 1. A matrix G is called special of type S if it is the character-

istic matrix for a collection B1, B2, . . . , Bn and
∑

y∈Bi

y = S for i = 1, 2, . . . , n − 1

and
∑

y∈Bn

y = S − 2k−1. Equivalently, the scalar product of all but the last rows

of G with the vector (1, 2, . . . , 2n) equals S and the scalar product of the last row

with the same vector equals S − 2k−1. For a special matrix G of type S we write

t(G) = S.

The connection between special and proper matrices is revealed in the
following lemma.

Lemma 1. If in a special matrix G of type S there exist two vector

columns Vi = (v1, v2, . . . , vn−1, 1) and Vj = (v1, v2, . . . , vn−1, 0) such that j − i =
2k−1, then there exists a proper matrix of weight S.

P r o o f. It suffices to interchange i-th and j-th columns of G. �

Let H1 be submatrix of a matrix G. If H2 is a matrix having the same
dimensions as H1 then denote by G(H1 → H2) the matrix obtained from G by
replacing H1 by H2. The next lemmas show how, given a special matrix one can
obtain new special matrices by transformations of the type H1 → H2.

Lemma 2. Consider a special matrix G and vector columns V and W .

If A = V V and B = WW are submatrices of G then, changing the places of A

and B, we obtain a special matrix of the same type.

P r o o f. Let (a1, a2) and (b1, b2) be the intersection pairs of A and B with
i-th row of G. Since (a1, a2), (b1, b2) ∈ {(0, 1), (1, 0)} we have that (a1, a2) =
(b1, b2) or (a1, a2) = (b1, b2). It is easy to see that when changing the places
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of A and B then the scalar product of i-th row with (1, 2, 3, . . . , 2n) does not
change. �

The following lemma is fairly obvious.

Lemma 3. Let G be a special matrix and V be a vector column. Denote

by Cn,1 the vector column of weight n. Then:

a) G
(

V V Cn,1 → Cn,1V V
)

is a special matrix of type t(G) + 1;

b) G
(

Cn,1V V → V V Cn,1

)

is a special matrix of type t(G) + 1;

c) G
(

Cn,1Cn,1 → Cn,1Cn,1

)

is a special matrix of type t(G) + 1.

Lemma 4. Let G be a special matrix. If a vector column V and an orbit

matrix Cw,l are such that V V Cw,l is a submatrix of G then G
(

V V Cw,l → Cw,lV V
)

is a special matrix of type t(G) + (2w − n)
l

n
.

P r o o f. For every row the transformation means that
(n − w)l

n
ones (re-

call that there are
(n − w)l

n
ones in every row of Cw,l) are moved two positions

backwards and one pair (0, 1) (or (1, 0)) is moved l positions forward. There-
fore the change in the scalar product of i-th row for i = 1, 2, . . . , n of G with
(1, 2, 3, . . . , 2n) is equal to

−
2(n − w)l

n
+ l = (2w − n)

l

n
. �

Lemma 5. Consider an orbit matrix of weight w and length l Cw,l =
(

V π(V )π2(V ) . . . πl−1(V )
)

, where V is a vector-column of weight w. Also, set

Tw =
(

V V π
(

V
)

π
(

V
)

. . . πl−1
(

V
)

πl−1
(

V
))

and Tn−w = Tw.

a) If G is a special matrix having Cw,lCw,l as a submarix then

G
(

Cw,lCw,l → Tw

)

is a special matrix of type t(G) + (2w − n)
l(l − 1)

2n
;

b) If G is a special matrix having Tw as a submatrix then G (Tw → Tn−w)

is a special matrix of type t(G) + (2w − n)
l

n
.
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P r o o f. a) Without loss of generality we may assume that the first column

of Cw,l coincides wih the first column of G. Then the contribution of Cw,lCw,l
to

the scalar product of the i-th row of G with (1, 2, 3, . . . , 2n) is
l(l + 1)

2
+

(n − w)l2

n
.

Further, let (α1, β1, α2, β2, . . . αl, βl) be a row of Tw. Amongst the pairs

(αk, βk) for k = 1, 2, . . . , l, there are
wl

n
pairs (1, 0) and

(n − w)l

n
pairs (0, 1). If all

pairs were (1, 0), then the scalar product of the i-th row of Tw with (1, 2, 3, . . . , 2l)

would be 1+3+ · · ·+(2l−1). Since we have to change
(n − w)l

n
pairs from (1, 0)

to (0, 1) and each change increases the scalar product by 1, we obtain that the
contribution of Tw to the scalar product of the i-th row of G with (1, 2, 3, . . . , 2n)

is equal to 1 + 3 + · · · + (2l − 1) +
(n − w)l

n
= l2 +

(n − w)l

n
.

Thus, the change of the scalar product for each row equals

l2 +
(n − w)l

n
−

l(l + 1)

2
+

(n − w)l2

n
= (2w − n)

l(l − 1)

2n
.

b) As in a) the contribution of Tw to the scalar product of the i-th row

of G with (1, 2, 3, . . . , 2n) is equal to l2 +
(n − w)l

n
. The same arguments applied

to Tn−w give that the corresponding contribution is equal to l2 +
wl

n
. Thus, the

change is (2w − n)
l

n
. �

Theorem 2. There exists a matrix G with 2k rows and

(

2k

2k−1

)

columns

of the form (V1V1, V2V2, . . . , VtVt) where:

– V1, V1, V2, V2, . . . , Vt, Vt are all binary vectors of length 2k and weight

2k−1 and

– the scalar product of the first 2k−1 rows with

(

1, 2, . . . ,

(

2k

2k−1

))

equals

S =
1

4

((

2k

2k−1

)((

2k

2k−1

)

+ 1

)

+ 2

)

and the scalar product of the last row with

the same vector equals S − 2k−1.

P r o o f. There are

(

2k

2k−1

)

vectors of weight 2k−1 and therefore there are

that many columns in our matrix. Moreover, all such vectors partition into orbits
which lengths divide 2k. Since there is only one orbit of length 2 (consisting
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of (1010 . . . 10)t and π(1010 . . . 10)t) and only one orbit of length 4 (consisting
of (11001100 . . . 1100)t and πl(11001100 . . . 1100)t for l = 1, 2, 3) it follows that
(

2k

2k−1

)

= 8s + 6. Therefore t = 4s + 3 which implies that S = t2 +
t + 1

2
. Since

t + 1

2
= 2s + 2 is even we have that S is odd.

We prove now that for a given matrix of the form G = (V1V1, V2V2, . . . , VtVt)

the scalar products of the rows with

(

1, 2, . . . ,

(

2k

2k−1

))

have one and the same

parity. Without loss of generality (see Lemma 2) any two rows of this matrix can
be written in the form ABCD where

A =

(

0101 . . . 0101
0101 . . . 0101

)

, B =

(

0101 . . . 0101
1010 . . . 1010

)

,

C =

(

1010 . . . 1010
0101 . . . 0101

)

, D =

(

1010 . . . 1010
1010 . . . 1010

)

.

Denote the number of columns of A, B, C and D by 2a, 2b, 2c and 2d respectively.
It is clear that if b and c have the same parity then the scalar products also have
the same parity. The number of vector columns in G having two fixed entries 01

or 10 equals 2

(

2k − 2

2k−1 − 1

)

. Therefore b + c =

(

2k − 2

2k−1 − 1

)

and since

(

2k − 2

2k−1 − 1

)

is divisible by 2k−1 (recall that k ≥ 2) we obtain that b + c is even. Thus, b and
c have the same parity and we get our assertion.

If b > c then the scalar product of the first row with the vector
(

1, 2, . . . ,

(

2k

2k−1

))

is greater than the scalar product of the second row with the

same vector. We consider all vector columns from G which intersect the first row

of B in 1. There are

(

2k − 2

2k−1 − 1

)

possibilities for such a vector column and since

b >
1

2

(

2k − 2

2k−1 − 1

)

we have that there are two complementary vectors. Therefore

G =





















. . . 0 1 . . . 0 1 . . .

. . . 1 0 . . . 1 0 . . .

. . . v1v1 . . . v1v1 . . .

. . . v2v2 . . . v2v2 . . .

. . . . . . . . . . . . . . .

. . . v2kv2k . . . v2kv2k . . .
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It is clear now that the columns of the matrix

G1 =























. . . 10 . . . 10 . . .

. . . 01 . . . 01 . . .

. . . v1v1 . . . v1v1 . . .

. . . v2v2 . . . v2v2 . . .

. . . . . . . . . . . . . . .

. . . v2kv2k . . . v2kv2k . . .























are all vectors of weight 2k−1, the scalar product of the first row with the vector
(

1, 2, 3, . . . ,

(

2k

2k−1

))

dicreases by 2, the scalar product of the second row with

the same vector increases by 2, and all other scalar products do not change.

Therefore if the scalar product of two rows with

(

1, 2, 3, . . . ,

(

2k

2k−1

))

are S1 and S2, S2 > S1 then we can obtain a matrix of desired form for which
the corresponding scalar products are S1 + 2 and S2 − 2 and all other products
do not change.

Note that, since G = (V1V1, V2V2, . . . , VtVt), each row of G is formed by
pairs v2s−1v2s, where v2s = v2s−1 for s = 1, 2, . . . , t. It is clear that we can
arrange the vector columns of G in a way that all pairs v2s−1v2s in the last row
are such that v2s−1 = 1 and v2s = 0. Then the scalar product of this row with
(

1, 2, 3, . . . ,

(

2k

2k−1

))

equals 1 + 3 + · · · +

((

2k

2k−1

)

− 1

)

= t2. It follows now

that the scalar products of all rows have the parity of S, i.e. they are odd.

Since all vector columns of G are of weight 2k−1 we have that the sum of

the scalar products of all rows of G with
(

1, 2, 3, . . . ,
(

2k

2k−1

)

)

equals

2k−1

( 2
k

2k−1)
∑

i=1

i = 2kS − 2k−1.

Therefore if the the scalar products of the first 2k−1 rows with
(

1, 2, 3, . . . ,
(

2k

2k−1

)

)

is equal to S then the scalar product of the last row is equal to S − 2k−1.

Consider one of the first
(

2k − 1
)

-st rows of G. The number of pairs

v2s−1v2s = 01 for s = 1, 2, . . . , t is equal to

(

2k − 2

2k−1 − 1

)

. Therefore the scalar
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product of this row is equal to t2 +

(

2k − 2

2k−1 − 1

)

> t2 +
t + 1

2
= S. We can

apply the described procedure to get the scalar product of this row to be equal

to t2 +

(

2k − 2

2k−1 − 1

)

− 2 and the scalar product of the last row equal to t2 + 2.

Continuing this way we obtain a matrix of desired form with the property: the

scalar product of the choosen row is equal to t2 +
t + 1

2
= S, the scalar product

of the last row is equal to t2 +

(

2k − 2

2k−1 − 1

)

−
t + 1

2
and the scalar products of the

remaining rows does not change. Note that the scalar product of the last row
never becomes bigger than S. By repeating the above with the remaining 2k − 2
rows we obtain a matrix with the desired property. �

Denote the matrix from Theorem 2 by C2k−1 .

Lemma 6. The matrix G = C1C2 . . . Cm, where C1, C2, . . . , Cm is a per-

mutation of all orbit matrices of weights 2k, 2k−1, . . . , 2k−1+1, their compliments

and C2k−1 , is special.

P r o o f. An orbit matrix Cw,l and its compliment Cw,l add one and the
same amount to the scalar product of every row with (1, 2, 3, . . . , 2n) (see Lemma
5). Note that the above is true no matter how the vector columns of Cw,l are
ordered. �

Remark 2. Let V , where wt(V ) = w be a vector column and (V ,
π(V ), π2(V ), . . ., πl−1(V )) be the orbit of V . It follows from the proof of Lemma
6 that the columns of the corresponding orbit matrix Cw,l can be taken as any
permutation of the above vectors. It follows also that the simultaneous change
C

p
w,l

↔ C
q
w,l

and C
p
w,l

↔ C
q
w,l

gives special matrix of the same type.

When w is odd then gcd(w, 2k) = 1. Therefore all orbit matrices of odd
weight are of length n = 2k.

Lemma 7. If one of the following conditions is satisfied for a special

matrix G of type S then there exists a proper matrix of weight S.

a) C2k ,1C2k−1,2k is a submatrix of G;

b) There exist two pairs V V and WW such that V = (v1, v2, . . . , vn−1, vn)
and W = (v1, v2, . . . , vn−1, vn) and two arbitrary pairs of complimentary vectors

with difference of their positions equal to 2k−1.

P r o o f. We make use of Lemma 1 and Remark 2. a) By Remark 2 we
may assume that the 2k−1-th (recall that n = 2k) column of C2k−1,2k can be
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chosen as (1, 1, 1, . . . , 1, 0)t. Now Lemma 1 implies that there exists a proper
matrix of weight S.

b) Follows from Lemma 2 and Lemma 1. �

3. Main theorem.

Example 1 (Continued). When n = 4 we construct proper matrices
for all S ∈ [51; 85]. For simplisity write C4 = C4,1, C3 = C3,4, C1 = C1,4 and
C0 = C0,1. Also, if V1 = (0, 0, 1, 1)t, V2 = (0, 1, 0, 1)t and V3 = (1, 0, 0, 1)t , then

C2 = (V1V1
V2V2

V3V3
). The following table gives a list of special matrices of

type S ∈ [51; 61].

special matrix G type

C4C3C2C1C0 51

C4C3C2C0C1 52

C4 C3V1V1
V2V2

C1V3V3
C0 53

C4C3V1V1
V2V2

C1C0V3V3
54

C4C3V1V1
C1V2V2

V3V3
C0 55

C4C3V1V1
C1V2V2

C0V3V3
56

C4C3V1C1V1
V2V2

V3V3
C0 57

C4C3C1V1V1
V2V2

C0V3V3
58

C4C3C1V1V1
C0V2V2

V3V3
59

C4C3C1C0V1V1
V2V2

V3V3
60

C4C3C0C1V1V1
V2V2

V3V3
61

Note that, by Lemma 7, if C4C3 is a submatrix of a special matrix of type S,
then there exists a proper matrix of weight S. Thus, for each S ∈ [51; 61] there
exists a proper matrix of weight S. Since wt(G) = 136−wt(G), there also exists
a proper matrix for S ∈ [75; 85].
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The matrix

T1 =













1 0 0 1 0 1 0 1

0 1 1 0 0 1 0 1

0 1 0 1 1 0 0 1

0 1 0 1 0 1 1 0













=
(

W1W1W2W2W3W3W4W4

)

is obtained by the transformations C3C1 −→ T3 −→ T1. The following table
gives a list of special matrices of type S ∈ [62; 68].

special matrix G type

C4T1C2C0 62

C4T1V1V1
V2V2

C0V3V3
63

C4T1V1V1
C0V2V2

V3V3
64

C4T1C0C2 65

C4W1W1
W2W2

C0W3W3
C2 66

C4W1W1
C0W2W2

W3W3
C2 67

C4C0T1C2 68

Note that any of the above matrices consisits of two vector columns (C4 and C0)
and 7 pairs of complementary vectors (4 pairs from T1 and 3 pairs from C2).
Moreover, there always exist two consecutive pairs of complementary vectors.
Without loss of generality we may assume (see Lemma 2) that if WWV V are
two consecutive pairs then V = (1, 0, 0, 0)t and W = (1, 0, 0, 1)t. Lemma 1
now implies that there exists a proper matrix of weight S ∈ [62; 68]. Since
wt(G) = 136 − wt(G), there exists a proper matrix for S ∈ [69; 74] as well.

The following theorem is the main result of our paper.

Theorem 3. Let n = 2k, k ≥ 3. Then S is proper if and only if

S ∈

[

22n−2 + 2n−2 −
1

2

((

2n − 1

n − 1

)

− 1

)

; 22n−2 + 2n−2 +
1

2

((

2n − 1

n − 1

)

− 1

)]

.

P r o o f. Since

(

2n − 1

n − 1

)

is odd, Theorem 1 gives that all proper integers
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belong to the interval given in the theorem. We have to show that if

S ∈

[

22n−2 + 2n−2 −
1

2

((

2n − 1

n − 1

)

− 1

)

; 22n−2 + 2n−2 +
1

2

((

2n − 1

n − 1

)

− 1

)]

then S is proper. The proof follows the steps from Example 1. We show that for
any S in the given interval there exists a special matrix of weight S for which one
of the conditions of Lemma 7 is satysfied. Note also that since wt(G) + wt(G) =
2n−1(2n + 1) it sufices to prove the result for the first half of the given interval,
i.e. up to 22n−2 + 2n−2.

It is clear that there is a single orbit matrix for each w = 2k, 2k − 1.
Denote by C2k ,1 the only orbit matrix of weight 2k and by C2k−1,2k the only orbit

matrix of weight 2k − 1. Also, let C2k−1 be the matrix with columns all vectors
of weight 2k−1 having the property given in Theorem 2.

Consider a special matrix G of type S. Call a transformation H1 −→ H2

admissible if for each S ∈ [t(G); t(G(H1 −→ H2))] there exists a special matrix
of type S for which one of the conditions of Lemma 7 is satysfied. If G and
G1 = G(H1 −→ H2) are special matrices and w = t(G1) − t(G) then we write
t+(H1 −→ H2) = w.

Consider the following matrix:

G1 = C2k ,1C2k−1,2kC1

2k−2,l1
. . . C

p

2k−1+1,2k
C2k−1C

p

2k−1+1,2k
C1

2k−2,l1
. . . C2k−1,2kC2k,1.

This matrix is obtained by ordering the orbit matrices Cw,l in decreasing order
of their weights. Also, any two matrices symmetric with respect to C2k−1 are
complimentary to each other. By Lemma 6 the matrix G1 is special. It follows
from the proof of Theorem 1 and from Lemma 7 (the matrix C2k ,1C2k−1,2k is
a sumbmatrix of G1) that there exists a proper matrix of weight S = 22n−2 +

2n−2 − 1

2

(

(

2n−1

n−1

)

− 1
)

.

Starting from G1, move one by one all pairs of complementary columns
from C2k−1 by skipping one by one the matrices Ct

w,l for 2k−1 + 1 ≤ w ≤ 2k to

the left of C
2k ,1

. By Lemma 4 we have t+(C2k−1,2kC2k,1 −→ C2k,1C2k−1,2k) = 1,

t+(V V Cw,l −→ Cw,lV V ) = (2w − 2k) l
2k (in particular t+(V V C2k−1+1,2k −→

C2k−1+1,2kV V ) = 2). Recall that C2k−1 consists of 1

2

(

2k

2k−1

)

pairs of the form V V .
Also, the matrix C2k,1C2k−1,2k is a sumbmatrix of G1.

It is not difficult to be seen that all such transformations are admissible.
We obtain the matrix

G2 = C2k ,1C2k−1,2kC1

2k−2,l1
. . . Cs

2k−1+1,2kCs
2k−1+1,2k

C1

2k−2,l1
C2k−1,2kC2k−1C2k,1.
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Lemma 5a) applied for w = 2k−1+1 and l = 2k gives that t+(Cs
2k−1+1,2kCs

2k−1+1,2k

→ T s
2k−1+1

) = 2k − 1 and Lemma 3a) shows that t+(V V C2k,1 → C2k ,1V V ) = 1.

Thus, since there are
1

2

(

2k

2k−1

)

pairs of the form V V in C2k−1 and
1

2

(

2k

2k−1

)

>

2k −1 we have that Cs
2k−1+1,2kCs

2k−1+1,2k
→ T s

2k−1+1
is admissible transformation.

Next, move one by one the pairs of complements from T s
2k−1+1

by skipping one

by one the matrices Ct
w,l for 2k−1 + 1 ≤ w ≤ 2k − 1 to the left of C2k−1 . Repeat

the above for all pairs Ct
2k−1+1,n

Ct
2k−1+1

for t = s − 1, s − 2, . . . , 1. Denote the
resulting matrix by G3.

G3 = C2k ,1C2k−1,2kC1

2k−2,l1
. . . Cs

2k−2,ls
Cs

2k−2,ls
C1

2k−2,l1
C2k−1,2kT 1

2k−1+1
. . .

T s
2k−1+1

C2k−1C
2k ,1

.

It is easy to see that the above transformations are admissible. Note that if
T s

2k−1+1
C2k−1 is a submatrix of a special matrix of type S then by Lemma 7b)

there exists a proper matrix of weight S. Therefore, continuing this way we
obtain by sequence of admissible transformations the following matrix

G4 = C2k,1T2k−1T
1

2k−2
. . . T 1

2k−1+1
. . . T s

2k−1+1
C2k−1C

2k,1
.

It is clear now that by admissible transformations of the type Tw → Tn−w (which

is equivalent to Tw → Tw), V V C
2k,1

→ C
2k,1

V V and C2k,1V V → V V C2k,1 one
can obtain

G5 = C2k,1T2k−1T
1

2k−2
. . . T 1

2k−1+1
. . . T s

2k−1+1
C2k−1C2k,1.

Let (v1, v2, . . . vn) be the first row of G5 (note that v1 = 0 and vn = 1). Each
pair v2sv2s+1 for s = 1, 2, . . . , 2n−1 − 1 is such that v2s + v2s+1 = 1. Therefore
the minimal possible value of the scalar product of such row with (1, 2, . . . , 2n) is
achieved when v2s = 1 for all s = 1, 2, . . . , 2n−1 − 1. Since the scalar product of
(0, 1, 0, 1, 0, . . . , 1, 0, 1, 0, 1) with (1, 2, . . . , 2n) is equal to 2 + 4 + 6 + · · · + 2n =
22n−2 + 2n−1 we have that t(G5) > 22n−2 + 2n−2. This completes the proof. �
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