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ABSTRACT. We establish direct and converse theorems for generalized pa-
rameter dependent Bernstein-type operators. The direct estimate is given
using a K-functional and the inverse result is a strong converse inequality
of type A, in the terminology of [2].

1. Introduction. The following operator was introduced by T. N. T.
Goodman and A. Sharma in [4]:

(Unf)(z) = Un(f,2) =
1
= f(O) pn,O(x)'i_f(l) pn,n($)+z pn,k(x) /0 (n_ 1) pn—?,k—l(t) f(t) dt,

where p,, ;(x) = ( Z ) 21 —2)"* k=0,n.
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It was studied for this operator by P. E. Parvanov and B. D. Popov [5]
the relation between the rate of approximation of U, f and the K-functional

1 1
k(s D) =x(nticon wz@) = e fir-al+ 2120},

where W2 () consists of all functions g : [0,1] — R such that ¢’ is absolutely
continuous on [0,1] and ||¢?¢”| is finite. Here p(x) = \/z(1 — ), = € [0,1] and
|| - || is the uniform norm on C|0, 1]. Originally, in the expression of K(f,1/n)
was considered L [0, 1] instead of C[0,1]. They have proved a direct inequality
and a strong converse inequality of type A, in the terminology of [2], that is for
every f € C[0,1] were established

m 3000 = £ < K (£3) < (64V8)- [0S - 1]

The Bernstein-type operator discussed in this paper will be given by
Up:C[0,1] = C0,1], Ugf)(z) = Ug(f,z) =

n—1 1
= f(O)wn’o(.I‘, Oé) + f(l)wn,n(maa) + an,k(xa « / n— 1 pn 2, k— 1(t)f(t) dt
k=1 0

(see also [3]), where

( )_<n) Hf;ol (x +ia) H?:_é"_l (1-—z+ja)
Uk =) A+ +2a)...(1+ (n—1a)

k =0,n and o > 0 is a parameter which may depend only on the natural number
n. In the case a = 0, U? is the Goodman-Sharma operator defined above. The

purpose of this paper is to establish for U} direct inequality and strong converse
inequality of type A.

2. Direct theorem. The theorem in question can be stated as follows:

Theorem 1. Let o > 0 and

2 1 2
= inf _ . A2 A
(f’ 1+« <n—i—1 +a>) 96‘}[%0(4,0){Hf gH—I_l—i-a <n—i—1 —i—oz) I H}

Then for every f € C[0,1] we have

©) s =11 < 2K (fopa (27 +a)
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Proof. By [6, p. 1180, Lemma 3.1] we have for & > 0 and = € (0,1) the
following identity

n)'B(a:a_l—i-k,(l—x)a_l—kn—k:)

wn,k(x>a) = ( k B (xozfl, (1 — Jf)ail) ’

where B( -, -) denotes the Beta function. Consequently, U5 f can be represented
by means of the Goodman-Sharma operator, as follows

B(’a

QI8

1
U f)(@) = ;_) JE AT G an
0

Hence, by simple computations and [5, p. 166, (2.1)—(2.4)] we obtain that US is
linear and positive,

3) U (u—2,x) =0,
g U (o) = (g o) T
and

(5) U fI < ISl

for every f € C[0,1]. Now, the proof is standard (cf. [1, Chapter 9]): using
Taylor’s formula

for g € W2 (), and (3), [1, p. 141, (9.6.1)] and (4), we obtain

IN

)

[(Un 9)(z) = g(=)] o

o “lu—w
Us (\ / L ow)? 19 w)] do
A0
2 1 2 1
< . .
< <n+1+a> 5o le7dll
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Hence, by (5), we have
(Up (@) = f@)] < [UZ(f —9)(x) = (f —9)(@)]+ |(UFg)(z) — g(x)]

2
< 2 — + | — + .

. 2.1
TTa lo°g” |

Taking infimum over all g € W2 (), we obtain (2). O

3. Direct and converse theorems. In order to prove our results,
we need two lemmas:

Lemma 1. We have

2 U. " . _
(6) sup ”90 ( nf) H :{ 0, Zf n=1
fecio, Unf — fll con, if n>2
f#linear

where 1/2 < ¢y < 4+ 3v/2.

Proof. Using [5, p. 175, Lemma 5.2] and the estimate given in the proof
of [5, p. 177, Theorem 5] we obtain

> (Wnf)' < N3 Unf = Und))'| + 107U 1)
< V2n-(|f —Unfll+ (4+2V2) n- |Unf - f|
= (44+3v2)n |Unf - f]
So

2 "
12201 _
recion) |Unf = fll

f#linear

(4 +3V2)n.

On the other hand, for

fl(x):%~:1:2+x+1, x € 1[0,1],

where ¢; > 0 is a given constant, we have f; € W2 (¢){0,1} (see [5, p. 171]) and,
in view of [5, p. 171, Lemma 4.2], we get

p(@)*(Unf1)" () = (Un(@®f))(@) = 1 Un(u(l —u) , )

- <1_n—2i—1> ooy
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Thus

2 " C1 2
s =5 (1- 727)

Moreover, by [5, p. 173, (4.6)] and [5, p. 171, Lemma 4.2] we obtain

@) = @) = 3 e (U @)

k=n+1

= Z ﬁ : Uk(¢2f{/a$)

Il
[]e
=
™
| —
[S—
N~—
o
A%,
7N
-
|
™
+ [ >
[—
N~
8
—~~
—
|
8
S~—

Therefore

c ©0 1 2 cg 1 1
Y - (1) =2 2 (1
1Unf1 — fill 1 k;ﬂ k(k—1) < k;+1> 4 n( n+1>

Hence

2
ugg?(Unfl)”ll _tmem s >
_ 1 1
Wafi= Al 1 (1= 4)
for n > 2. Thus
2 U "
N T ) o
fec(o,1] HUnf_ f“ 2
f#linear

In conclusion, for n > 2 we get (6) with ¢g € [1/2, 44 3v/2].
For n = 1 we have (U, f)(z) = f(0)(1—x)+f(1)z. Therefore ||¢*(U,f)"| =
0, which implies the conclusion. O

Lemma 2. We have

. w087 sl
recoa [|9?(Unf)"| 1+a’

F#linear
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where 1/2 < ap <1 and n > 2.
Proof. By Taylor’s formula

t
(8)  (Unf)(t) = Unf)(@) + (t — 2)(Unf) () + / (t— )

and
1

() / B — ) dt =0,
0

we obtain

(U ) (@) = (Unf)(@)| =

1
- B(zll—_x)'\/ (1= (U -
a’ « 0
1 1
= B 1‘—3”)'\/#1 (-
a’ « 0

IA

xT

t

1
. P =
- x 19” u(l —u)
0

Using again [1, p. 141, (9.6.1)] and
1
(10) / tat(1—t) o (t—2)2dt =

0

ar(l —x)
1+«

Uf//

(Unf)(2)] dt

du‘dt

(2557,
(67 (67
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we have

[(UR ) (@) = (Unf)(2)] <

1
2(ULf)" z_ 1z _
oy [ E o

a 2 "
- . U,
Ut
Hence
o o
(11) [Usf = Unfll < —— - ll&*(Unf)"|

1+«

and therefore

|Usf = Unfll o
sup 2 " <
recion || 2(Un f)"] 1+«

r#linear

On the other hand, for fi(x) = (¢1/2) - 2% + z + 1 (see Lemma 1) we have, as
above

2 " C1 2
— . (1=

and

(U f1) () = e <1 _ L)

n+1
Hence, by (8), (9) and (10), replacing f with fi, we obtain
Uz f)(@) = (Unfi)(z) =
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o cl 2
— N . ca(1 —
l+a 2 ( n+1> #(1—2)

So
« c1 2
Ut —U — (1=
U fr = Un il l+a 8 ( n+1)
and
Upfi—Unfall 1
[e2Unf)"] 2 1+«
Hence
wp WSS =Unfll S 1 _a
recioq) [[Q2(U)"l — 2 14«
f#linear

In conclusion we get (7) with o € [1/2, 1]. O
Now we can prove the following result:

Theorem 2. If a = a(n) and ¢g ap - (n a)/(1 +a) < a1 < 1 for
n=1,2,... then for every f € C[0,1] we have

(12) (o) WS~ < WS~ fI < (1) 0]
and

1- 1 . 1
13 2oLk (f) < losr- gl < 20 & (£1)

Proof. By (7) and (6) we have

«
1+«

o no
IURf = Unfl = a0 A Unf)' Il < o a0 7o - 1UF = £l

1+

< - [Unf = £

Hence

[Unf = fIl < MU = Unfll +1URS = fl < o [Unf = FII+ IURf = [l
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or
(I —a) [Unf = fII < [UZf = Fll
and
U f = fIl < U =Unfll +1Unf = fIl < (A +a1) [[Unf = £,

respectively. So we obtain (12). For the second statement we use (1) and (12)
obtaining (13), which completes the proof. O

Furthermore, we have the following property:

Theorem 3. If a = a(n) and (n?a)/(1 +a) < as <1 forn =1,2,...
then for every f € C[0,1] we have

(14) (1 = a2) [Unf = Unr fI| S NUZf = Un—1fIl < (A + a2) [|[Unf — Un—1f]|

Proof. By (11) and [5, p. 169, Lemma 4.1 | we obtain

HUgf - Uan < ' n(n - 1) : ||Unf - Un—lf” < Qg - HUnf - Un—lf”

1+«

Then we have

[Unf =Unif|l < NUZF = Unafl + UGS = Unfll

IN

HUSf - UnflfH + - ||Unf - UnflfH

or

(1 —a2) [[Unf = Unif| < UZf = Unaf]

and
WU = Unafll < USf = Unfll + |Unf = Un-1f|l
< (T4 a) [|Unf = Un-1 fl,

respectively. Thus we have proved (14). O



42

Zoltan Finta

REFERENCES

Z. DiTzIAN, V. TOTIK. Moduli of Smoothness. Springer-Verlag, New York
Berlin Heidelberg London, 1987.

Z. DitziaN, K. G. IVANOV. Strong converse inequalities. J. Anal. Math.
61 (1993), 61-111.

Z. FINTA. Quantitative estimates for some linear and positive operators.
Stud. Univ. Babes-Bolyai, Ser. Mathematica 47, 3 (2002), 71-84.

T. N. T. GOODMAN, A. SHARMA. A Bernstein-type Operator on the Sim-
plex. Math. Balkanica 5, 2 (1991), 129-145.

P. E. PArvaNOv, B. D. Porov. The limit case of Bernstein’s operators
with Jacobi-weights. Math. Balkanica 8, 2-3 (1994), 165-177.

D. D. StaNCU. Approximation of functions by a new class of linear polyno-
mial operators. Rev. Roumaine Math. Pures Appl. 13, 8 (1968), 1173-1194.

Babeg-Bolyai University

Department of Mathematics and Computer Science

1, M. Kogalniceanu st.

3400 Cluj, Romania

e-mail: fzoltan@math.ubbcluj.ro Received July 21, 2003



