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EQUIMULTIPLE LOCUS

OF EMBEDDED ALGEBROID SURFACES
AND BLOWING–UP IN CHARACTERISTIC ZERO

R. Piedra-Sánchez∗ and J. M. Tornero∗∗

Communicated by V. Br̂ınzănescu

Abstract. The smooth equimultiple locus of embedded algebroid surfaces
appears naturally in many resolution processes, both classical and modern.
In this paper we explore how it changes by blowing–up.

1. Introduction. During all this paper, we will consider K an al-
gebraically closed field of characteristic 0 and S = Spec(K[[X,Y,Z]]/(F )) an
embedded algebroid surface which, with no loss of generality, is considered to be
defined by a Weierstrass equation

F (Z) = Zn +
n−1
∑

k=0

ak(X,Y )Zk,
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where n is the multiplicity of S, that is ord(ak) ≥ n− k for all k = 0, . . . , n − 1.
After the well–known Tchirnhausen transformation Z 7−→ Z − an−1/n we can
get a Weierstrass equation of the form

F (Z) = Zn +

n−2
∑

k=0

ak(X,Y )Zk.

From now on, by a Weierstrass equation we will mean an equation like
this. Observe that, if we denote the initial form of F by F , the affine variety
defined by F (that is, the tangent cone of S) is a plane if and only if it is the
plane Z = 0.

In this situation the equimultiple locus of S is

E(S) =
{

P ∈ Spec(K[[X,Y,Z]]) | F ∈ P (n)
}

,

which is never empty, as M = (X,Y,Z) always lies in E(S). Note that Z ∈ P for
all P ∈ E(S).

Geometrically speaking, the equimultiple locus represents points at where
the multiplicity is the same as in the origin; hence they are the “closest” points
to the origin in (coarse) terms of singularity complexity. We will denote by E0(S)
the subset of smooth elements of E(S).

Our aim is studying the set E(S) and, specifically, how its elements change
by blowing–up, in order to have a better understanding of the evolution of E0(S)
through a resolution process. In this environment, our main result explains how
can we deduce “geometrically” E0

(

S(1)
)

from E0(S), where S(1) is the result of
blowing–up S with center in an element of E0(S).

The interest of this relies in the fact that the equimultiple locus con-
tains important information for desingularization purposes. For instance, if S
has normal crossing singularities, blowing–up centers lying in E0(S) of maximal
dimension resolves the singularity at the origin. This is the famous Levi–Zariski
theorem on the resolution of surface singularities, stated by Levi ([3]) and proved
by Zariski ([11]).

Concerning the extension of the results of this paper to the arbitrary
characteristic case, we must say that, no matter which the characteristic is, the
equimultiple locus has some very interesting properties, some of which we state
below:

(a) It is hyperplanar, that is, there exists a regular parameter which lies
in every element of E(S). This was proved by Mulay ([4]) after some previous
work of Abhyankar ([2]) and Narasimhan ([5]).

(b) As proved by Abhyankar ([1]), the Levi–Zariski theorem remains true
in positive characteristic.
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However, the techniques used cannot be applied to the general case, as
it is not straightforward (actually, it is not known) that the same regular para-
meter can define the tangent cone and a hyperplane containing the equimultiple
locus. In particular, Mulay’s proof of the hyperplanarity is not constructive, so
a different approach may be needed to handle with characteristic p > 0 (see [7]
for some instances).

As for the extension of our result to higher dimensions is concerned, we
cannot be very optimistic. First of all, there is the additional difficulty that,
in positive characteristic, the equimultiple locus is not hyperplanar anymore,
as shown by Narasimhan ([6]). Secondly, the Levi–Zariski resolution process
as stated does not work, as proved by Spivakovski ([9]), which, in any case,
makes results on this line less interesting. However, a less coarse version of the
Levi–Zariski theorem for a more general type of varieties will surely mean a
great achievement and it will need results of this sort towards a more thorough
understanding of the evolution of the equimultiple locus by sucessive blowing–ups.

2. Notation and technical results. For the sake of completeness,
we recall here basic facts and technical results related to quadratic and monoidal
transformations that will be of some help in the sequel.

For all what follows, let S be an embedded algebroid surface of multiplicity
n,

F = Zn +

n−2
∑

k=0





∑

i,j

aijkX
iY j



Zk = Zn +

n−2
∑

k=0

ak(X,Y )Zk

a Weierstrass equation of S. We will denote

N(F ) =
{

(i, j, k) ∈ N3 | aijk 6= 0
}

.

Definition. The elements of E(S) different from M will be called equi-

multiple curves. The elements of E0(S) other than M will be called permitted

curves.

Remark. The notion of permitted curves coincides with the one derived
from normal flatness in the work of Hironaka.

Remark. In particular, note that we can assume P ∈ E0(S) to be, for
instance (Z,X), after a suitable change of variables in K[[X,Y ]]. Plainly, (Z,X)
is permitted if and only if i+ k ≥ n for all (i, j, k) ∈ N(F ).

Under these circumstances, the monoidal transform of S, centered in
(X,Z), in the point corresponding to the direction (α : 0 : γ) (say α 6= 0) of
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the exceptional divisor is the surface S(1) defined by the equation

F (1) =
(

Z1 +
γ

α

)n

+
∑

(i,j,k)∈N(F )

aijkX
i+k−n
1 Y j1

(

Z1 +
γ

α

)k

.

Observe that this only makes sense (that is, gives a non–unit) whenever
F (α, 0, γ) = 0. The homomorphism

πP(α:0:γ) : K[[X,Y,Z]] −→ K[[X1, Y1, Z1]]

X 7−→ X1

Y 7−→ Y1

Z 7−→ X1

(

Z1 +
γ

α

)

will be called the homomorphism associated to the monoidal transformation in
(α : 0 : γ) or, in short, the equations of the monoidal transformation. The overline
is because one must privilege a non-zero coordinate, but all the possibilities define
associated equations.

As for quadratic transforms (that is, blowing–ups with center M) is con-
cerned: the quadratic transform of S in the point corresponding to the direction
(α : β : γ) (say α 6= 0) of the exceptional divisor is the surface S(1) defined by
the equation

F (1) =
(

Z1 +
γ

α

)n

+
∑

(i,j,k)∈N(F )

aijkX
i+j+k−n
1

(

Y1 +
β

α

)j (

Z1 +
γ

α

)k

.

Again this only makes sense whenever F (α, β, γ) = 0. Analogously, the
homomorphism

πM(α:β:γ) : K[[X,Y,Z]] −→ K[[X1, Y1, Z1]]

X 7−→ X1

Y 7−→ X1

(

Y1 +
β

α

)

Z 7−→ X1

(

Z1 +
γ

α

)

will be called the homomorphism associated to the quadratic transformation in
(α : β : γ) or the equations of the quadratic transformation.



Equimultiple locus of embedded algebroid surfaces. . . 199

Remark. In the previous situation, consider a change of variables in
K[[X,Y,Z]] given by







ϕ(X) = a1X
′ + a2Y

′ + a3Z
′ + ϕ1(X

′, Y ′, Z ′)
ϕ(Y ) = b1X

′ + b2Y
′ + b3Z

′ + ϕ2(X
′, Y ′, Z ′)

ϕ(Z) = c1X
′ + c2Y

′ + c3Z
′ + ϕ3(X

′, Y ′, Z ′)
,

with ord (ϕi) ≥ 2.
Assume also that







α = a1α
′ + a2β

′ + a3γ
′

β = b1α
′ + b2β

′ + b3γ
′

γ = c1α
′ + c2β

′ + c3γ
′

with (say) γ′ 6= 0. Then there is a unique change of variables ψ : K[[X1, Y1, Z1]] −→
K[[X ′

1, Y
′
1 , Z

′
1]] such that

ψπM(α:β:γ) = πM
(α′:β′:γ′)

ϕ.

Both this remark and its monoidal counterpart (which will not be used in
this paper) are easy, although rather long, so we skip the proofs. The interested
reader may consult [8] and [10] for the complete details.

Definition. Let Q ∈ E(S), with Q = (Z,G(X,Y )). Then for u ∈
P2(K), the ideal

̟M
u (Q) =

(

Z1,
πMu (G(X,Y ))

X
ord(G)
1

)

is called the quadratic transform of Q in the point corresponding to u.

Obviously, this definition makes sense only if the quadratic transform in
the direction u does. There is a natural version of monoidal transform of Q with
center P , for all P ∈ E0(S).

Notation. We will denote by ν the natural isomorphism

ν : K[[X,Y,Z]] −→ K [[X1, Y1, Z1]]

sending X to X1, Y to Y1 and Z to Z1.

3. The theorem. As our result is inspired by the resolution process, we
will restrict ourselves to the case which is interesting for desingularization issues:
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that where S and S(1) have the same multiplicity. In particular, this avoids some
possibilities.

Lemma. If the tangent cone of S is not a plane, the multiplicity of any

monoidal transform of S is strictly less than n.

P r o o f. If the tangent cone is not a plane, mind there is only one possible
element in E0(S). After a suitable change of variables on K[[X,Y ]], let this curve
be (Z,X). Then F cannot depend on Y ,

F = Zn +
∑

i+k=n

ai0kX
iZk =

n
∏

l=1

(Z − αlX).

That is, the directions of the exceptional divisor are (1 : 0 : αl) for
l = 1, . . . , n; not all of them equal. Then, the equation for one of these monoidal
transforms is

F (1) = (Z1 + αl0)
n +

∑

aijkX
i+k−n
1 Y j

1 (Z1 + αl0)
k

where we find the monomial




∏

αl0
6=αl

(αl0 − αl)



Zm,

with m = #{l | αl0 = αl}. This monomial cannot cancel in any case. So there is
a monomial in F (1) of order strictly smaller than n and we are done. �

Theorem. Let S be an algebroid surface and S(1) a quadratic or monoidal

transform of S with the same multiplicity.

(a) If S(1) is the monoidal transform of S with center P ∈ E0(S), then, either

E0

(

S(1)
)

= ν (E0(S)) or E0

(

S(1)
)

= ν (E0(S) \ {P}).

(b) Let S(1) be the quadratic transform of S in the point corresponding to u.
Then:

(b.1) If the tangent cone is not a plane then E0

(

S(1)
)

= ν (E0(S)).

(b.2) If the tangent cone is a plane, then in E0

(

S(1)
)

we can find three

types of curves:

(i) The exceptional divisor of the transform.

(ii) Primes ̟M
u (Q), with Q ∈ E(S) \ E0(S), which are tangent to the

exceptional divisor.

(iii) Primes ̟M
u (Q), with Q ∈ E0(S), where both ν(Q) and ̟M

u (Q) are

transversal to the exceptional divisor.



Equimultiple locus of embedded algebroid surfaces. . . 201

Moreover, if there is any prime of type (ii), it also appears the type (i)
prime.

P r o o f. We will do the proof case by case, although some arguments are
common to various instances. In what follows let F be, as usual, a Weierstrass
equation of S.

Case (a)

From the previous lemma, we can assume that the tangent cone is the
plane Z = 0. The basic tool for this situation is the following:

Remark. A monoidal transformation which does not imply a descent
of the multiplicity cannot create new permitted curves.

This can be proved easily as follows: under the hypothesis of case (a), let
(Z,G) be a permitted curve. Then S(1), the monoidal transform of S with center
at (Z,G), is given by

F (1) = Zn1 +
n−2
∑

k=0

ak(X1, Y1)

G(X1, Y1)n−k
Zk1 .

This consists simply on taking (Z,G) to (Z,X) by a change of variables
(say ϕ) on K[[X,Y ]], applying the transform (the only point in the exceptional
divisor in this case is the point corresponding to the direction (1 : 0 : 0)) and
taking ϕ−1 on K[[X1, Y1]]. The result follows directly.

This remark clearly implies case (a) of the theorem.

Case (b.2)

Some arguments in this case will be used for the other, so we will begin
for it. Let us start for the direction (1 : 0 : 0) (the direction (0 : 1 : 0) is obviously
symmetric). If

F = Zn +
∑

(i,j,k)∈N(F )

aijkX
iY jZk,

then
F (1) = Zn1 +

∑

(i,j,k)∈N(F )

aijkX
i+j+k−n
1 Y j

1 Z
k
1 .

Note that, as F is a Weierstrass equation and the multiplicity does not
change, F (1) is a Weierstrass equation for S(1), hence all the elements of E

(

S(1)
)

are contained in Z1 = 0, therefore all permitted curves in E
(

S(1)
)

can be assumed
to be of the form P = (Z1, γX1 + δY1 +G(X1, Y1)), with ord(G) ≥ 2.

Let us prove now that, if a permitted curve transversal to the exceptional
divisor appears in E0

(

S(1)
)

, it comes from a permitted curve in E0(S) which was
also transversal to the exceptional divisor (up to the action of ν).
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Suppose we have such a curve (that is, a prime as above with δ 6=
0). Then, applying the Weierstrass Preparation Theorem, we may write P as
(Z1, Y1 +H(X1)). We have the diagram

K[[X,Y,Z]] K[[X ′, Y ′, Z ′]]

K[[X1, Y1, Z1]] K[[X ′
1, Y

′
1 , Z

′
1]]

-

-

? ?

ϕ

ψ

πM

(1:0:0)
πM

(1:0:0)

with changes of variables






ϕ(X) = X ′

ϕ(Y ) = Y ′ −X ′H(X ′)
ϕ(Z) = Z ′

,







ψ(X1) = X ′
1

ψ(Y1) = Y ′
1 −H(X ′

1)
ψ(Z1) = Z ′

1

So, looking at the right vertical arrow, we have found a quadratic trans-
form on the direction (1 : 0 : 0) which gives rise to the permitted curve (Z ′

1, Y
′
1).

This clearly implies that (Z ′, Y ′) was permitted in S. This proves the assertion.
Another way of seeing this is saying that, if there were no permitted curves

which were transversal to the exceptional divisor, all permitted curves after the
blowing–up must be tangent to it.

Let us prove now that, if (Z1,X1 +Y s1 v(Y1)) with s > 1, appears, so does
(Z1,X1). Write

F (1) = Zn1 +

n−2
∑

k=0

a
(1)
k (X1, Y1)Z

k
1 ,

where it must hold a
(1)
k = (X1 + Y s

1 v(Y1))
n−kb

(1)
k (X1, Y1).

Fix then k0 ∈ {0, . . . , n − 2} and choose from all monomials in b
(1)
k0

the

minimal one for the lexicographic ordering, say Xi0
1 Y

j0
1 . Then all monomials

appearing in a
(1)
k0

have exponent in X1 greater or equal than i0 and, besides, the

monomial Xi0
1 Y

j0+s(n−k0)
1 actually appears in a

(1)
k0

, as it cannot be cancelled.

Now it is plain that (i, j, k) ∈ N
(

F (1)
)

if and only if (i− j− k+n, j, k) ∈
N(F ), so

i0 ≥ s (n− k0) + k0 − n ≥ n− k0.

Hence (Z1,X1) ∈ E
(

S(1)
)

.
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Let us prove then the existence, in this case, of the curve Q on E(S)
announced in the theorem. As previously, we will consider α = 0. Note G(Y1) =
Y 2

1 v (Y1). We will prove that there exists a power series H(X,Y ) verifying:

(1) ord(H) = ord(G) = λ > 1.

(2) H is regular on Y of order λ.

(3) There is a unit u(X1, Y1) such that

1

Xλ
1

H(X1,X1Y1) = u(X1, Y1)(X1 +G(Y1)).

This implies (quite straightforwardly) that F ∈ Q(n) and (Z1,X1 +G (Y1))
= πM(1:0:0)(Q), with Q = (Z,H(X,Y )). The second part is trivial and, for the first

part it is enough proving

(X1 +G(Y1))
n−k |a

(1)
k (X1, Y1) =⇒ H(X,Y )n−k|ak(X,Y ),

for k = 0, . . . , n − 2. Assume it is not so; then by the Weierstrass Preparation
Theorem and being H regular with respect to Y , we can write

ak(X,Y ) = q(X,Y )H(X,Y )n−k +

(n−k)λ−1
∑

j=0

σj(X)Y j .

Now we apply πM(1:0:0) and we obtain

Xa
1a

(1)
k (X1, Y1)

n−k =

= Xb
1q

′ (X1, Y1) (X1 +G(Y1))
n−k +

(n−k)λ−1
∑

j=0

(

σj(X1)X
j
1

)

Y j
1 .

Now, as (X1 +G(Y1))
n−k divides a

(1)
k (X1, Y1) it also must divide

Xa
1a

(1)
k (X1, Y1), hence the uniqueness of quotient and remainder in the Weier-

strass Preparation Theorem imply

σj (X1)X
j
1 = 0, for all j = 0, . . . , (n − k)λ− 1,

and subsequently H(X,Y )n−k|ak(X,Y ).
So let us prove the existence of H and u. Write up X1 +G(Y1) as

X1 +G(Y1) = X1 +
∑

i≥λ

αiY
i
1 ,
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and the power series we look for as

H(X1, Y1) =
∑

i+j=k≥λ

βijX
i
1Y

j
1 , u(X1, Y1) =

∑

i+j=k≥0

γijX
i
1Y

j
1 .

It must hold

∑

i+j=k≥λ

βijX
k−λ
1 Y j

1 =





∑

i+j=k

γijX
i
1Y

j
1







X1 +
∑

i≥λ

αiY
i
1



 ,

which, for order 0, amounts to

βλ,0 = γ0,00 = 0.

On the other hand, for order 1 we have

βλ+1,0X1 + βλ−1,1Y1 = γ0,0X1;

that is, βλ−1,1 = 0 and βλ+1,0 = γ0,0, whose value can be taken to be 1.
As for order 2,

βλ+2,0X
2
1 + βλ,1X1Y1 + βλ−2,2Y

2
1 = γ0,0α2Y

2
1 + γ1,0X

2
1 + γ0,1X1Y1,

which forces βλ−2,2 = α2 and let us freedom for fixing βλ+2,0 = γ1,0, and βλ,1 =
γ0,1.

Observe then the following facts:

• Each βij appears only for order i+ 2j − λ.

• In order k, all γij with i + j < k appear, but they never have relations
among them, only those of the type

βab =
∑

γcdαe.

Therefore it is clear that we can choose arbitrarily the γij , and this choice
determines the βij . Therefore both H and u exist.

It only remains proving that H can be chosen such that H(0, Y ) has order
λ. But this is direct from the formula for order λ;

β0,λY
λ
1 = γ0,0αλY

λ
1 6= 0,

so β0,λ 6= 0.
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For the results at points (1 : α : 0) it suffices considering the (commuta-
tive) diagram

K[[X,Y,Z]] K[[X ′, Y ′, Z ′]]

K[[X1, Y1, Z1]] K[[X ′
1, Y

′
1 , Z

′
1]]

-

-

? ?

ϕ

ψ

πM

(1:α:0)
πM

(1:0:0)

with ϕ given by






ϕ(X) = X ′

ϕ(Y ) = Y ′ − αX ′

ϕ(Z) = Z ′

Remark. This case (b.2), in geometrical terms, may be expressed as
follows:

• Permitted curves transversal to the exceptional divisor cannot be created
nor erased.

• Permitted curves tangent to the exceptional divisor are erased.

• Permitted curves tangent to the exceptional divisor can be created from
desingularization of equimultiple (singular) curves. In this case, one of
them must be the exceptional divisor itself.

Case (b.1)

Remark. In the conditions of (b.1), let P = (α : β : γ) a point
in the tangent cone with multiplicity r. Then, the quadratic transform of S
on (α : β : γ) has, at most, multiplicity r. This is straightforward, using, for
instance, the Taylor expansion of F .

So we only need to be concerned about points of multiplicity n on the
tangent cone. Changing the variables if needed we may consider that the point
is (0 : 1 : 0) and, subsequently, F does not depend on Y .

We will first prove that the quadratic transform cannot have permitted
curves. Note that, in (b.2), we have showed that, if a new permitted curve
appears, so does the exceptional divisor (and we did not use the fact that F = Zn

for proving this). But (Z, Y ) cannot be a permitted curve, F (1) having monomials
in K[X,Z] other than Zn.
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Now we explain why the quadratic transform does not erase permitted
curves either. In fact if there is a permitted curve (only one is possible), we may
take it to be (Z,X), after the customary change of variables. Then it is plain
that, after a quadratic transform on the direction (0 : 1 : 0), (Z1,X1) remains
permitted, simply looking at the characterization given in the previous section.

This finishes the proof of the theorem.
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