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A SMOOTH FOUR-DIMENSIONAL G-HILBERT SCHEME
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Abstract. When the cyclic group G of order 15 acts with some specific
weights on affine four-dimensional space, the G-Hilbert scheme is a crepant
resolution of the quotient A4/G. We give an explicit description of this
resolution using G-graphs.

1. Introduction. Let G be a finite group acting faithfully on a quasi-
projective smooth scheme X. Consider the quotient X/G, the space of orbits,
which is in general a singular scheme. We use a variant of the quotient, to
resolve the singularities: we consider not only the set of orbits, but also a whole
collection of zero-dimensional G-invariant subsets of X with the associated ring
of global sections of the structure sheaf, isomorphic to the regular representation
ring of the group G. This is formalized in the notion of a G-Hilbert scheme,
introduced in [9]. Apart from the symplectic case treated in [1], the G-Hilbert
scheme of a quasi-projective variety X is, in general, a “very” singular variety,
especially in higher dimensions. The known cases of smooth G-Hilbert schemes
are the minimal resolutions of Klein singularities and the crepant resolutions
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of the quotient C3/G, with G being a finite subgroup of SL3(C). The three-
dimensional case is due to Craw, Ito, Markouchevitch and Roan by a case-by-case
analysis, and to Bridgeland-King-Reid as a consequence of a more general result
(see [2]). Unfortunately, none of the current methods gives an answer to the
following question: which finite subgroups of GLn(C), n ≥ 4, admit G-HilbAn as
a crepant resolution of the quotient An/G? The only attempt is given in [6], and
it is reduced to the two-dimensional case.

In order to give some positive answer to the above question, one needs a
better description of the G-Hilbert scheme. Suppose – from now on – that G is
a finite abelian subgroup of GLn(C), consisting of diagonal matrices. Then there
is a toric approach to the question given by Nakamura (see [10]).

We now introduce some notation needed in the present paper. We recall
that the affine space An is a toric variety associated to the lattice L := Zn and
the cone γ := 〈e1, . . . , en〉, where e1, . . . , en is the standard basis of Rn (cf. [8],
§2). Suppose that G acts faithfully on An. Let r denote the order of G. We write

each (diagonal) matrix g of G in the form g = diag(εa1 , . . . , εan), with ε := e
2πi
r

— a fixed rth primitive root of unity. We associate to such a matrix g a vector

vg :=
1

r
(a1, . . . , an) ∈ Qn, and define the lattice:

N := L +
∑

g∈G

Zvg.

We denote by N∨ = HomZ(N, Z) its dual. Then, the quotient An/G is a toric
variety with lattice N and fan reduced to the cone γ. We denote by {f1, . . . , fn}
the dual basis of {e1, . . . , en} and by M0 the additive semi-group generated by 0
and the fi’s. We define a semi-group homomorphism from M0 to the semi-group
M of all monomials in n variables (endowed with multiplication), by sending fi

to Xi. In this way, we identify a vector with n non-negative integer coordinates
with a monomial. For a monomial p of C[X1, . . . ,Xn] (or “Laurent monomial” p
of C[X1, . . . ,Xn][X−1

1 , . . . ,X−1
n ]), we denote by v(p) the associated vector. Let

G∨ be the set of all irreducible characters of the group G. We introduce the
following definition:

Definition 1.1. Given χ ∈ G∨ and p = Xi1
1 . . . Xin

n a monomial of
C[X1, . . . ,Xn] (or a Laurent monomial), we say that p and χ are associated if
we have:

g · p = χ(g)p, ∀g ∈ G .
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Definition 1.2. A subset Γ of M is called a G−graph (cf. [10], Def.
1.4) if the following conditions hold:

(1) it contains the constant monomial 1;

(2) if p is in Γ and a monomial q divides p, then q is also in Γ;

(3) the map wt : Γ → G∨ sending a monomial to its associated character (as
in Definition 1.1), is a bijection.

Denote by Graph(G) the set of all G-graphs.
By condition (3) in Definition 1.2, there is a unique monomial of Γ asso-

ciated to any character of G∨. Thus, we define a map wtΓ : M → Γ, by sending
a monomial to the unique element of Γ with the same associated character.

Definition 1.3. Given a monomial p of M , we call the fraction p/wtΓ(p) ∈
C(X1, . . . ,Xn) the ratio of p with respect to Γ.

Finally, we associate to a G-graph Γ, a cone, a semi-group and an ideal
as follows. We denote by 〈, 〉 the scalar product in Rn. We define a cone in Rn

by σ(Γ) := {u ∈ Rn/〈u, v(p/wtΓ(p))〉 ≥ 0,∀p ∈ M}. The dual of a cone σ(Γ)
is given by σ∨(Γ) := {v ∈ Rn/〈u, v〉 ≥ 0,∀u ∈ σ(Γ)}. We denote by S(Γ) the
sub-semi-group of N∨ generated by vectors v(p/wtΓ(p)), where p runs over the
set M . We call I(Γ) the ideal of C[X1, . . . ,Xn] generated by all the monomials
of M that are not in Γ.

µ15-HilbC4 scheme and its properties. This section deals with
an explicit description of the µ15-HilbC4 scheme. In the sequel, we denote by

G = µ15 the cyclic group of order 15, with generator ε := e
2πi
15 . Let this group

act by weights 1, 2, 4 and 8 on the affine space A4. We identify G with the finite
abelian subgroup of SL4(C) with generator g = diag(ε, ε2, ε4, ε8) and the action
of G on A4 with the natural action of multiplication of an element of A4 by a
matrix.

The quotient A4/G is a Gorenstein canonical singularity (cf. [12]) and
has only one isolated singularity at the origin. With the notations of Section
1, it is a toric variety with lattice N = Z4 + 1

15 (1, 2, 4, 8)Z and fan the cone
γ = 〈e1, e2, e3, e4〉. In order to resolve the singularities, we will provide a simplicial
decomposition of γ into sub-cones such that the resulting variety is G-HilbC4. We
prove that G-HilbC4 is smooth and it has the crepancy property. Here, crepancy
means that the canonical sheaf ω

G-HilbC4 and the structure sheaf O
G-HilbC4 are

isomorphic. We remark that the methods of [2] can’t be applied in this case
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— the condition on the fiber product of Theorem 1.1 of the cited paper is not
satisfied. Using Definition 5.2 of [7] and Watanabe’s classification Theorem (see
Theorem 5.3 of the same paper), we see that the group G above doesn’t give rise
to a complete intersection singularity. In particular, the techniques of [6] are not
applicable. We are not in the symplectic case, so [1] does not apply either.

In what follows, we set x = X1, y = X2, z = X3 and t = X4.

Definition 2.1. Given a monomial p = xαyβzγtδ (or a Laurent mono-
mial), the weight of p with respect to the group G above is the unique integer
w(p) ∈ {0, . . . , 14}, that satisfies α + 2β + 4γ + 8δ ≡ w(p) (mod 15).

Remark 2.2. We recall that an irreducible character χi of G, with
i ∈ {0, . . . , 14}, is given by g 7→ εi. So, a monomial p = xαyβzγtδ is associated
to the character χi if and only if its weight is i. Thus, a G-graph is a set of 15
monomials of weights 0 to 14, satisfying (1) and (2) of Definition 1.2.

Definition 2.3. Given S a finite set of monomials in C[x, y, z, t] and s
one of the variables, we set max.p.(s) to be −∞ if S doesn’t contain any mono-
mial in s and max{l ∈ N/sl ∈ S} otherwise. We call it the maximal power

associated to the variable s in the set S.

Lemma 2.4. The G-graphs for the group G = µ15 are the following:

No. µ15-graph

1 (1, x, y, y2, . . . , y7, xy, xy2, . . . , xy6)

2 (1, x, y, y2, y3, t, xy, xy2, xy3, xt, yt, y2t, y3t, xyt, xy2t)

3 (1, x, y, z, t, xy, xz, xt, yz, yt, zt, xyz, xyt, xzt, yzt)

4 (1, x, y, z, z2, z3, xy, xz, xz2, xz3, yz, yz2, yz3, xyz, xyz2)

5 (1, x, x2, x3, z, t, xz, x2z, x3z, xt, x2t, x3t, zt, xzt, x2zt)

6 (1, x, x2, x3, z, z2, z3, xz, x2z, x3z, xz2, x2z2, x2z3, x3z, x3z2)

7 (1, x, x2, . . . , x7, t, xt, x2t, . . . , x6t)

8 (1, x, x2, . . . , x14)

9 (1, y, y2, . . . , y14)

10 (1, y, y2, y3, t, t2, t3, yt, yt2, yt3, y2t, y2t2, y2t3, y3t, y3t2)

11 (1, y, z, z2, . . . , z7, yz, yz2, . . . , yz6)

12 (1, y, z, t, t2, t3, yz, y2z, y3zyt, yt2, yt3, zt, yzt, y2zt)

13 (1, z, t, t2, . . . , t7, zt, zt2, . . . , zt6)

14 (1, z, z2, . . . , z14)

15 (1, t, t2, . . . , t14)

Table 1. List of G-graphs for G = µ15.
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P r o o f. The idea of the proof is to consider, for a given G-graph, the

possible choices of max.p.(s), where s is one of the variables x, y, z or t. By (1) in

Definition 1.2, the constant monomial 1 is in the G-graph. In particular, for any

variable s we have max.p.(s) ≥ 0. By condition (2) of Definition 1.2 and Remark

2.2, max.p.(s) is also less than 15 for any variable s.

Now, for any G-graph Γ, there are two possible cases: either max.p.(x) =

0 – that is x doesn’t occur in Γ, or max.p.(x) > 0 – meaning that Γ contains at

least one monomial in x.

We discuss now the case where x occurs in a G-graph Γ. We claim that

in this case max.p.(x) cannot be 2, 4, 5, 6, 8, 9, 10, 11, 12, nor 13. To see this,

we argue by contradiction. We suppose that there exists a G-graph Γ such that

we have max.p.(x) = 2. Then, using (2) of Definition 1.2 and Remark 2.2, we see

that y, z4, t2 cannot occur in any monomial of Γ. In particular, max.p.(y) = 0,

max.p.(z) ≤ 3 and max.p.(t) ≤ 1. On the other hand, there has to be a monomial

of weight 3 in Γ and the only possible choice is x2z2t. We use (2) of Definition

1.2 to deduce that x2z2 and x2t should both belong to Γ. But these monomials

both have the same weight, which contradicts Remark 2.2 and thus the definition

of a G-graph. Now, if max.p.(x) were 4, 5 or 6, we see in a similar way that there

is no possible choice of monomial of weight 7. When max.p.(x) is one of 8, 9,

10, 11, 12 or 13, there are no monomials divisible by y, z or t. This is because

the monomials x2, x4 and x8 are already in Γ and they have the same weights as

y, z and t. But then the G-graph Γ contains less then 15 monomials, which is a

contradiction.

We discuss now the case max.p.(x) = 1. With the notations of Definition

2.1, we have w(y8) = w(z4) = w(t2) = 1. We get max.p.(y) ≤ 7,max.p.(z) ≤ 3

and max.p.(t) ≤ 1. A similar discussion as above proves that max.p.(y) equals 1,

3 or 7. Now, if max.p.(y) = 7, we get the G-graph Γ1 of Table 1. If max.p.(y) =

3, there are no monomials in z and we obtain Γ2. For max.p.(y) = 1, either

max.p.(z) = 1 and we get Γ3, or max.p.(z) = 3 and no monomial in t is allowed

– we get Γ4.

For the case max.p.(x) = 3, the G-graph contains no monomial in y and

has max.p.(z) ≤ 3 and max.p.(t) ≤ 1. We obtain the G-graphs Γ5 and Γ6 of

Table 1.

The case max.p.(x) = 7 gives max.p.(y) = 0, max.p.(z) = 0, and max.p.(t)

≤ 1. The only possible G-graph is Γ7, a “planar” G-graph in x and t.

For the last case, i.e. max.p.(x) = 14, we get a “linear” G-graph contain-

ing only monomials in the variable x – this is the G-graph Γ8.
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Now, if x does not occur in the G-graph, we prove, by a similar argument,

that max.p.(y) is one of 1, 3 or 14. We obtain the G-graphs Γ9, Γ10, Γ11, Γ12. If

neither x, nor y occur, then we get again a “planar” G-graph in z and t — this

is Γ13 and two “linear” graphs – Γ14 only in z and Γ15 only in t. �

Let Γ be a G-graph as in Table 1. We associate to it a finite set, denoted

E(Γ), as follows. If the variable x occurs in Γ, let the vector vg associated to the

matrix g be in E(Γ), otherwise include in E(Γ) the vector e1 of the canonical

base. Similarly, if y is in Γ we take the vector associated to the matrix g8 in

E(Γ) and otherwise include the vector e2. For the variable z, we take either the

vector associated to the matrix g4 or the vector e3. Finally, if t is in Γ let the

vector associated to the matrix g2 be in E(Γ), otherwise include the vector e4.

For example, the set E(Γ8) is

{

1

15
(1, 2, 4, 8), e2 , e3, e4

}

.

Lemma 2.5. With the notations at the end of section 1, the cones σ(Γ)

are generated by the sets E(Γ).

P r o o f. We want to prove that any vector u of a cone σ(Γ) is a linear

combination with positive coefficients of elements of the associated E(Γ). Equiv-

alently, the system:

(2.1)
∑

v∈E(Γ)

xv · v = u,

has to admit a solution with xv positive for any v in E(Γ). For this, we note

that each xv is nothing but the scalar product of u and the vector associated

to the ratio of a monomial generator of I(Γ) (see section 1 for definitions and

notations). We use the definition of σ(Γ) to conclude. �

Example 2.6. For a more explicit approach, let us actually see what

happens for the G-graph Γ8. The set E(Γ8) is given by the vectors e2, e3, e4

and the vector associated to the matrix g – this is vg =
1

15
(1, 2, 4, 8). Let u =

(u1, u2, u3, u4) be a vector of σ(Γ8). The solutions of the system (2.1) are:

xvg
= 〈u, 15e1〉,

xe2
= 15〈u, e2 − 2e1〉,(2.2)

xe3
= 15〈u, e3 − 4e1〉,

xe4
= 15〈u, e4 − 8e1〉.
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The monomial generators of I(Γ8) are x15, y, z, t. The vectors associated to the

ratios of those monomial generators are 15e1, e2 − 2e1, e3 − 4e1 and e4 − 8e1.

By definition of σ(Γ8), the numbers 〈u, 15e1〉, 〈u, e2 − 2e1〉, 〈u, e3 − 4e1〉 and

〈u, e4 − 8e1〉 are positive. Thus the solutions given by (2.2) are also positive

numbers, as wanted. �

Corollary 2.7. The toric variety obtained by gluing together all the affine

pieces Spec[σ∨(Γ) ∩ N∨], where Γ runs over Graph(G), is a smooth variety.

P r o o f. It is enough to see that every such affine piece is a copy of C4.

For this, we use the “smoothness criterion” of [11], Theorem 1.10, page 10. Now

the result follows because each cone σ(Γ) is generated by the sets E(Γ) of the

Lemma 2.5 which are a [part of a] basis for the lattice N . �

Lemma 2.8. With the notations of Corollary 2.7, for any G-graph, we

have S(Γ) = σ∨(Γ) ∩ N∨.

P r o o f. By definitions of σ(Γ) and S(Γ), the inclusion S(Γ) ⊂ σ∨(Γ)∩N∨

follows immediately. Now, for the reverse inclusion, it is enough to prove that

σ∨(Γ)∩N∨ is generated by a set of vectors contained in S(Γ). For this, we proceed

as follows. We call a monomial pure if it involves only one of the variables x, y, z or

t. We denote by vΓ(s) the vectors associated to the ratios of the pure monomials

s that generate I(Γ).

We claim that any vector v in σ∨(Γ)∩N∨ is a linear combination with non-

negative integer coefficients of the vectors vΓ(s) above. A case-by-case analysis

of each I(Γ) shows that this is equivalent to resolving a 4× 4 system. The proof

is very similar to that of Lemma 2.5 and the calculations made in the subsequent

Example 2.6, so we omit it. �

Theorem 2.9. Let the cyclic group of order 15 act by weights 1, 2, 4,

8 on the affine four dimensional space. Then, the µ15-Hilbert scheme of A4 is

a smooth variety and it provides a crepant resolution of the Gorenstein quotient

singularity A4/µ15.

P r o o f. We use (iii) of Theorem 2.11 of [10] to see that µ15-HilbA4 is

the variety obtained by gluing together all the SpecC[S(Γ)], when Γ runs over

Graph(µ15). By Lemma 2.8, this is the same as the toric variety whose fan is

given by the cones σ(Γ),Γ ∈ Graph(µ15). We apply Corollary 2.7 to conclude

that µ15-HilbA4 is smooth. In particular, the µ15-Hilbert scheme of A4 provides

a toric resolution of the quotient A4/µ15, by subdivision of the cone γ into the

sub-cones σ(Γ),Γ ∈ Graph(µ15).
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Now, for crepancy, we use the equivalence stated in [3], page 656. For

this, we see that the Euler number of µ15-HilbA4 is given by the number of three-

dimensional cones of the associated fan. In this case, this is #Graph(µ15) =

#G = 15. Together with smoothness, this gives crepancy. �

Remark 2.10. Equivalently, we could use Theorem 4.1 of [7] to prove

the crepancy of the desingularization defined by µ15-HilbA4. This is because the

first skeleton of any cone σ(Γ), for Γ a µ15-graph, is formed only by elements in

the simplex ∆4 := {(u1, u2, u3, u4) ∈ R4/u1 + u2 + u3 + u4 = 1}, as proved in

Lemma 2.5.

3. Miscellaneous remarks.

Remark 3.1. The H-Hilbert scheme of A4 for H the cyclic group of

order 40 acting by weights 1, 3, 9, 27 on A4 fails to provide a smooth crepant

resolution for the quotient singularity A4/H. This is mainly because the number

of H-graphs in this case is not equal to the cardinal of the group.

Remark 3.2. It is interesting to note that in the situation described in

Section 2, the McKay correspondence as stated by Reid holds (see [4] page x for

a statement of the conjecture). The Betti numbers bl of a crepant resolution (in

this case µ15-HilbA4) are the cardinalities of the conjugacy classes of elements of

same “age” l in the group µ15.

Remark 3.3. (cf. with [10] “deformation” and [5] “ratio”). We can

recover all the µ15-graphs from a given one, by using ratios of the generating

monomials of the associated ideal, as follows. We take for example the µ15-graph

Γ3 in Table 1. The associated ideal is generated by the monomials x2, y2, z2, t2,

xyzt. The corresponding ratios are x2/y, y2/z, z2/t, t2/x, xyzt/1. Let us take

one of those, say z2/t.

By repeatedly replacing every occurrence of t in Γ3 by z2, we recover the

µ15-graph Γ4. We do the same with the other ratios (note that the ratio xyzt/1

provides no µ15-graph), to recover Γ2, Γ5 and Γ12. By repeating the procedure,

we get all remaining µ15-graphs of Table 1. The result is given in the figure below.

In the Figure 1, the direction of the arrows can be reverted, as follows.

We take for example the “bottom” µ15-graph Γ9. The pure monomial x of I(Γ9)

has as associated ratio the fraction x/y8. Replacing in Γ9 the monomial y8 and

all its occurrences by x, we obtain the µ15-graph Γ1.
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Figure 1. Deforming G-graphs for G = µ15.
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