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COHOMOLOGY OF THE

G-HILBERT SCHEME FOR
1

r
(1, 1, r − 1)
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Abstract. In this note we attempt to generalize a few statements drawn
from the 3-dimensional McKay correspondence to the case of a cyclic group
not in SL(3, C). We construct a smooth, discrepant resolution of the cyclic,

terminal quotient singularity of type
1

r
(1, 1, r−1), which turns out to be iso-

morphic to Nakamura’s G-Hilbert scheme. Moreover we explicitly describe
tautological bundles and use them to construct a dual basis to the integral
cohomology on the resolution.

1. Introduction. In the case of a finite, abelian group G ⊂ SL(3, C),
Craw and Reid [2] construct explicitly a smooth, crepant toric resolution of
the quotient singularity C3/G. Moreover in [1] Craw shows that the integral
cohomology of the resolution has rank equal to the order of the group G and
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constructs a dual basis using tautological bundles. For finite G in GL(2, C)
the cohomology of the minimal resolution has rank smaller than the order of
G (compare [7]). Craw and Reid calculated G-Hilb for G = 1

r
(1, a, r−a), and for

most values of a it is very discrepant and still singular, with ordinary double points
xy = zt. We show that in the case of a cyclic, terminal, quotient singularity of
type 1

r
(1, 1, r−1) the G-Hilbert scheme is a smooth, discrepant resolution and its

integral cohomology has rank 2r−1. The dual basis to cohomology is constructed
using tautological bundles introduced by Gonzalez–Sprinberg and Verdier. We
assume that the reader is familiar with basic toric geometry ([4], [9]).
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2. Toric resolution. Let us fix an integer r ≥ 2 and the group G

generated by the element diag(ε, ε, εr−1), where ε = e
2πi

r . The group G has r
characters which may be identified with 1, ε, ε2, . . . , εr−1. To use toric geometry
methods introduce the lattice

N = Z3 +
1

r
(1, 1, r − 1)Z,

and its dual M = HomZ(N, Z). Consider the cone σ = R≥0e1 + R≥0e2 + R≥0e3

generated by non–negative combinations of the standard basis vectors of Z3 in
N ⊗Z R and define X = C3/G. Then it is easy to see that

X = Spec C[x, y, z]G ≃ Spec C[σ∨ ∩ M ],

where

σ∨ = {u ∈ M : 〈u, v〉 ≥ 0 for all v ∈ σ},

and the functions x, y, z are identified with the dual elements e∗1, e
∗
2, e

∗
3 (see [4] p.

3–8 for more details). This identification will be used in the rest of the paper.

Definition 2.1. Let pi = 1
r
(r− i, r− i, i) for i = 1, 2, . . . , r be the points

in the lattice N (note that pr = e3). Define Y as the toric variety given by the
fan ∆ obtained from the cone σ by the sequence of successive star subdivisions
along the rays R≥0pr−1, . . . , R≥0p1. Denote by f : Y −→ X the resulting proper,
birational toric morphism given by the identity map on the lattice N , and let
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Ex(f) be the exceptional set of f (see [4] p. 48 and picture below showing the fan
∆ intersected with the hyperplane e∗1 + e∗2 + 2e∗3 = 2).

Lemma 2.1. Y is a smooth toric variety.

P r o o f. Since the fan ∆ is simplicial it is enough to check that the
primitive vectors along generating rays for every 3-dimensional cone in ∆ form a
Z-basis for the lattice N . This follows easily as

det[e1, e2, p1] = det[ej , pi, pi+1] =
1

r

for j = 1, 2, i = 1, . . . , r − 1. �

Denote by τi = R≥0pi the ray through pi for i = 1, . . . , r − 1. The
irreducible components of exceptional set Ex(f) are in one-to-one correspondence
with the rays τi. Each component is a compact toric surface defined by the fan
Star(τi) in the quotient lattice N(τi) (details [4] p. 52). It is also useful to have
dual coordinates for every 3–dimensional cone in the fan ∆. They are:

σ∨
e1,e2,p1

= σe∗
1
+(1−r)e∗

3
,e∗

2
+(1−r)e∗

3
,re∗

3
,

σ∨
e1,pi,pi+1

= σe∗
1
−e∗

2
,ie∗

2
+(i−r)e∗

3
,(i+1)e∗

2
+(i+1−r)e∗

3
,

σ∨
e2,pi,pi+1

= σ−e∗
1
+e∗

2
,ie∗

1
+(i−r)e∗

3
,(i+1)e∗

1
+(i+1−r)e∗

3
.
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for i = 1, . . . , r − 1, where for example σe1,e2,p1
denotes the cone generated by

R≥0e1, R≥0
e2 and τ1.

Definition 2.2. Let Si be the i-th irreducible divisor in Ex(f) defined by
the fan Star(τi), that is

Si = V(τi).

Lemma 2.2. The exceptional irreducible divisors in Ex(f) are S1 ≃ P2

and Si ≃ Fi for i = 2, . . . , r − 1 where Fi is a Hirzebruch surface (see [4] p. 7).

P r o o f. For the surface Si pick two dual coordinates in an adjacent 3-
dimensional cone in ∆ vanishing on τi. Evaluating them on primitive vectors
along rays generating 2-dimensional cones containing τi gives generators of rays
in the fan Star(τi). That is for the surface S1 choose the cone σe1,e2,p1

and set
X = e∗1 + (1 − r)e∗3 and Y = e∗2 + (1 − r)e∗3. Then

(X(e1), Y (e1)) = (1, 0),

(X(e2), Y (e2)) = (0, 1),

(X(p2), Y (p2)) = (−1,−1),

so S1 ≃ P2. Analogously from σ∨
e2,pi,pi+1

pick X = ie∗1+(i−r)e∗3 and Y = −e∗1+e∗2.
Then

(X(e1), Y (e1)) = (i,−1),

(X(pi−1), Y (pi−1)) = (1, 0),

(X(e2), Y (e2)) = (0, 1),

(X(pi+1), Y (pi+1)) = (−1, 0),

hence the lemma follows. �

From the toric picture it is easy to see that Ex(f) consists of a tower of P2

and Hirzebruch rational scrolls, that is Si ∩Si+1 = P1 for i = 1, . . . . , r− 2, where
P1 corresponds to the cone spanned by τi and τi+1. Using homotopy x −→ tx of
C3 we can contract X to a singular point. The homotopy lifts via f to Y . Since
the exceptional set lies over the singularity on X one sees that Y is homotopic
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to a tubular neighborhood of Ex(f) so that H∗(Y, Z) ≃ H∗(Ex(f), Z). The basis
of H2(Fi, Z) consists of rational curves Li and Mi satisfying the relations L2

i = 0,
LiMi = 1, and M2

i = −i (see [10], Lemma 2.7). By induction on r and using the
Mayer-Vietoris sequence it is clear that the basis of H∗(Ex(f), Z) is given by the
class of a point in degree 0, the classes of the curves Li in degree 2 (L1 stands
for P1 in S1) and by the classes of Si in degree 4.

Definition 2.3 Nakamura. The G-Hilbert scheme G- Hilb C3 is the
moduli space of G-clusters, that is 0-dimensional, G-invariant subschemes Z ⊂ C3

such that H0(Z,OZ) is the regular representation C[G] of the group G.

For working with G- Hilb C3 schemes following Nakamura [8] it is conve-
nient to introduce the notion of a G-set.

Definiton 2.4. A subset Γ of monomials in C[x, y, z] is called a G-set if

(1) it contains the constant monomial 1,

(2) if pq ∈ Γ then p ∈ Γ and q ∈ Γ,

(3) there is a 1–to–1 correspondence between Γ and irreducible representations
of G with respect to the induced action of G on C[x, y, z].

We can identify G- Hilb C3 with a moduli space for ideals I in C[x, y, z]
such that C[x, y, z]/I = C[G]. The monomials in a basis of C[x, y, z]/I give
elements of a G-set.

Lemma 2.3. The only possible G-sets in the case of
1

r
(1, 1, r − 1) are:

Γx
i = {zi, zi−1, . . . , 1, x, x2, . . . , xr−i−1} for i = 0, . . . , r − 2,

Γy
i = {zi, zi−1, . . . , 1, y, y2, . . . , yr−i−1} for i = 0, . . . , r − 2,

Γz = {zr−1, zr−2, . . . , 1}.

P r o o f. If Γ is a G-set, then xz, yz /∈ Γ since 1 already represents trivial
character. Moreover xy /∈ Γ because x and y represent the same character ε, so
Γ contains only monomials in one variable. If zi is the maximal power of z in Γ
then either xr−i−1 or yr−i−1 must be in Γ, and the result follows. �

Lemma 2.4. The morphism f : Y −→ X is a resolution of singularities
and Y ≃ G- Hilb C3.
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P r o o f. After Lemma 2.1 it is enough to compute all G-sets (in the spirit
of [8] or [1], Section 5.1) using dual coordinates for every cone in ∆ and check
if all possible are present. For the cone σe1,e2,p1

the dual coordinates on the

corresponding affine open chart C3 are α =
x

zr−1
, β =

y

zr−1
, γ = zr. They give

generators x − αzr−1, y − βzr−1, zr − γ of the ideal defining a G-cluster. In this
case the corresponding G-set is given by Γz. Similarly for the cone σe1,pi,pi+1

we
get generators x − αy, yi+1 − βzr−i−1, zr−i − γyi and the G-set Γy

r−i−1, and for
the cone σe2,pi,pi+1

generators y − αx, xi+1 − βzr−i−1, zr−i − γxi and the G-set
Γx

r−i−1. �

3. Tautological bundles. Tautological bundles on the resolutions of
Kleinian singularities were defined by Gonzalez–Sprinberg and Verdier [5]. In the
two dimensional case they define a basis of the K–group of the minimal resolution
and have degree 1 on exactly one exceptional curve of the minimal resolution. In
the toric case we adapt an equivalent definition (see [1] Def. 4.7, [11] Section 4
and [5] p. 417 for original treatment).

Definiton 3.1. If ρi : G −→ GL(Vi) is an irreducible representation, let

Ri = HomC[G](Vi, C[x, y, z])

be the OX -module generated by monomials in the εi-character space. Define tau-
tological bundle Ri as

Ri = f∗Ri/ TorsOY

i.e. pullback modulo torsion.

Each Ri is generated by the monomials xi, yi, zr−i ∈ C[x, y, z] as an
OX -module. Multiplying by zi we see that it is isomorphic to the ideal sheaf
(xizi, yizi, zr) ⊂ OX . We claim that Ri is an invertible sheaf. Indeed on the
toric picture it is represented as a Cartier divisor by the piecewise linear func-
tion on the fan ∆ given by ie∗1 + ie∗3 on the cone σe2,e3,pi

, ie∗2 + ie∗3 on the cone
σe1,e3,pi

and by re∗3 on σpi,e1,e2
(see [11] p. 5–8 and [2] Example 4.8). We note

that this Cartier divisor is equivalent to the Q-Cartier divisor corresponding to
(xi, yi, zr−i) and it is more convenient to expand it in terms of linear equivalence
classes of exceptional surfaces:
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R1 = −
r − 1

r
S1 −

r − 2

r
S2 − · · · −

2

r
Sr−2 −

1

r
Sr−1,

R2 = −
r − 2

r
S1 −

2(r − 2)

r
S2 −

2(r − 3)

r
S3 − · · · −

2 · 2

r
Sr−2 −

2

r
Sr−1,

...

Ri = −
r − i

r
S1 −

2(r − i)

r
S2 − · · · −

i(r − i)

r
Si −

i(r − i − 1)

r
Si+1 − · · ·

· · · −
2i

r
Sr−2 −

i

r
Sr−1,

...

Rr−1 = −
1

r
S1 −

2

r
S2 − · · · −

r − 2

r
Sr−2 −

r − 1

r
Sr−1.

Observe that as a Q-Cartier divisor R1 is the discrepancy divisor for f (see [12]
p. 373–374), that is f∗(KX) = KY + R1 and the Cartier divisor rR1 is linearly
equivalent to −rKY (the equivalence is given by linear function re∗1 + re∗2 + re∗3).
In fact rKX is linearly trivial.

4. Main result.

Definition 4.1. Define virtual sheaves

Vi = (R1 ⊕Ri) ⊖ ((R1 ⊗Ri) ⊕OY ).

These virtual sheaves will be used to construct the dual basis to cohomol-
ogy. For any bundles F ,G define

c(F ⊖ G) =
c(F)

c(G)
.

Theorem 4.1. The tautological bundles Ri form the dual basis of H2(Y, Z),
that is c1(Ri) ·Lj = δij and the virtual sheaves Vi form the dual basis of H4(Y, Z),
that is c2(Vi) · Sj = δij .
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P r o o f. The divisor Ri has degree 1 on the fiber Li of rational scroll Fi

which corresponds to the line joining e1 with pi in the toric picture. It has also
degree 0 on Lj for i 6= j. This proves the first part of the theorem. The second
part is proven by inspecting the following table of first Chern classes computed
on every compact surface:

c1(R1) c1(R2) c1(R3) . . . c1(Rr−1)

P2 L1 0 0 . . . 0

F2 L2 M2 + 2L2 0 . . . 0

F3 L3 2L3 M3 + 3L3 . . . 0

F4 L4 2L4 3L4 . . . 0
...

...
...

...
. . .

...

Fr−1 Lr−1 2Lr−1 3Lr−1 . . . Mr−1 + (r − 1)Lr−1

and by the equation c2(F ⊕F ′) = c1(F)c1(F ′), which holds for any line bundles
F ,F ′. The restriction of the bundle Ri to the surface Sj is computed by choosing
from the piecewise function for Ri a linear function on one of the 3-dimensional
cones containing τj and subtracting it from the functions on all the other cones.
Evaluating the resulting functions on primitive vectors in rays generating 2–
dimensional cones containing τj gives minus coefficients for the desired torus
invariant Cartier divisor on the fan Star(τj) (see [9] for more details). Observe
also that c1(Vi) = 0, so the second Chern class of Vi is integral.

This result computes also

rank H∗(Y, Z) = 2r − 1

(r − 1 for the second and fourth cohomology and 1 for the zeroth). It would be
also interesting to obtain similar results in the general case of 1

r
(1, a, r − a) for

the ‘economic’, smooth resolution (see [12], Section 5). We note also that this
‘economic’ resolution is isomorphic to the G-Hilbert scheme only for a = 1. �
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