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Abstract. Cyclic binary codes C of block length n = 2m−1 and generator
polynomial g(x) = m1(x)m2s+1(x), (s, m) = 1, are considered. The cardi-
nalities of the sets of minimal codewords of weights 10 and 11 in codes C
and of weight 12 in their extended codes Ĉ are determined.

The weight distributions of minimal codewords in the binary Reed-Muller
codes RM(3, 6) and RM(3, 7) are determined. The applied method enables
codes with larger parameters to be attacked.

1. Introduction. Let C be a linear code over the field of q elements

F = GF (q), i.e. a subspace of the n-dimensional vector space F
n. As usual,

the parameters n, k and d denote length, dimension and minimum distance,

respectively, and we will refer a code C with these parameters as an [n, k, d]

code. We also use the notation [n] := {1, 2, . . . , n} for the set of code coordinates.

A support of a vector c is defined as supp(c) = {i ∈ [n] : ci 6= 0}. If supp(c′) ⊂

supp(c) (respectively, ⊆), we also write c′ ≺ c (respectively, �).
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Definition. Let C be a q−ary linear code. A nonzero codeword c ∈ C is

called minimal if its support does not contain the support of any other nonzero

codeword as a proper subset.

For the first time the sets of minimal codewords in linear codes were con-

sidered in connection with a decoding algorithm (Tai-Yang Hwang [11]). A more

detailed description of the role of minimal codewords in the so called “gradient-

like decoding algorithm” can be found in [2] and [3, Ch. 7]. Additional interest to

minimal codewords was sparked by the work of J. Massey [17], where it was shown

that they describe minimal access structures in secret-sharing schemes based on

linear codes. For definitions of a secret-sharing scheme and access structure de-

termined by a linear code we refer the reader to [18]. Minimal codewords were

also addressed in [1] for the Euclidean space.

It seems to be quite difficult to describe the set of minimal codewords for

an arbitrary linear code even in the binary case. The problem has been completely

solved only for q-ary Hamming code and for the second order binary Reed-Muller

code RM(2,m) [2]. In the same paper [2] Ashikhmin and Barg also determine

the average number of minimal codewords of the ensemble over a random linear

code and analyze the asymptotic behavior of the structure of minimal codewords

in long codes. For the general case of the rth order binary Reed-Muller codes and

for the other types of codes only partial results have been obtained till now.

In the binary case the weights of interest are values w:

2d ≤ w ≤ n − k + 1,

since for them both minimal and non-minimal codewords can exist according to

(iii) and (iv) of Proposition given in the next section.

In [7] Borissov, Manev and Nikova obtain the number of non-minimal

codewords of weight 2dmin and some other results about minimal/non-minimal

codewords in the rth order binary Reed-Muller code RM(r,m). BCH codes are

discussed in [6].

In this paper we present some results about minimal codewords in a class

of cyclic codes and in third order binary Reed-Muller codes R(3,m). What

consolidates these two cases is the algebraic approach to studying them.

The paper is organized as follows: in the next section we give the necessary

definitions and results which we will use.

In Section 3 we determine the cardinalities of the sets of minimal (non-

minimal) codewords of weights 10 and 11 in the considered cyclic code C as well

as of weight 12 in its extended code Ĉ. The interest in weights 10 and 12 is due
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to the fact that they are the first weights of C and Ĉ, respectively, for which both

minimal and non-minimal codewords exist.

In Section 4 we study minimal codewords in binary Reed-Muller codes

but we apply an algebraic approach to the problem in contrast to the geometrical

one used in [7]. We explore the classical algebraic idea: instead of direct studying

of an algebraic structure, studying its sub- and quotient structures.

2. Some general remarks and necessary results. Herein we only

recall the definitions of the codes which are studied in the next two sections and

refer the reader to [16] for details.

The code C over the finite field with q elements F = GF (q) is called cyclic

if any cyclic shift of a codeword is also a codeword, i.e. whenever (c0, c1, . . . , cn−1)

∈ C, then also (c1, . . . , cn−1, c0) ∈ C. By mapping

c = (c0, c1, . . . , cn−1) −→ c(x) = c0 + c1x + · · · + cn−1x
n−1

we identify any cyclic code C with an ideal of the algebra Fn = F[x]/(xn − 1)

of polynomials over F modulo xn − 1. The polynomial g(x) generating the ideal

corresponding to C is referred as a generator polynomial of C. Let α be a primitive

element of the field GF (qm). As usual we denote the minimal polynomial of αk

over F by mk(x). The powers of α which are zeros of g(x) are called zeros of the

cyclic code C and the generator polynomial g(x) is a product of their minimal

polynomials over F.

Let Pm be the set of Boolean polynomials of m variables x1, . . . , xm and

f ∈ Pm. The binary vector f = (f(0, . . . , 0), . . . , f(1, . . . , 1)) of length 2m is

referred to be the binary vector associated with (or corresponding to) the Boolean

polynomial f(x).

For any m and r, 0 ≤ r ≤ m, the binary rth order Reed-Muller code

RM(r,m) is defined as the set of all binary codewords f of length n = 2m asso-

ciated with Boolean polynomials f(x1, x2, . . . , xm) of degree at most r.

RM(r,m) has block length n = 2m, dimension k = 1 +
(
m
1

)
+ · · · +

(
m
r

)
,

and minimum distance d = 2m−r. The full automorphism group of RM(r,m) for

r ≤ m − 2 is the general affine group GA(m, 2).

Also the codewords of minimum weight in RM(r,m) are precisely the

incidence vectors of the (m−r)-dimensional affine subspaces (called also (m−r)-

flats) of the affine geometry AG(m, 2) and they span RM(r,m). Therefore, one

can use both algebraic and geometric language to study Reed–Muller codes, and

each of them has its advantages.
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Now, let return to the main goal of our study - minimal codewords. Their

basic properties are listed in Proposition. Some of them are direct consequence

from the definitions but the proof of all properties can be found in [2].

Proposition ([2]). Let C be a q-nary [n, k, d] linear code.

(i) c ∈ C is minimal if and only if (iff) c � c′, 0 6= c′ ∈ C, implies c′ = αc for

a nonzero element α ∈ F
∗.

(ii) Let H be a parity check matrix of C. The subset S ⊂ [n] is a support of a

minimal codeword if and only if rank(H(S)) = |S| − 1, where H(S) is the

matrix formed by the columns of H indexed by S.

(iii) If c is a minimal codeword in C, then wt(c) ≤ n − k + 1

(iv) Every support of size ≤ d

(
1 +

1

q − 1

)
is minimal with respect to C.

(v) Any codeword c ∈ C is linear combination of all minimal codewords that it

covers (in sense of inclusion of supports).

(vi) Multiplication of a codeword by an element of F and permutation of its

coordinate positions are transformations which preserve the property of the

codeword to be minimal.

(vii) Let C be a binary code. If c is a non-minimal codeword in C, there is a pair

of nonzero codewords c1 ≺ c and c2 ≺ c with disjoint supports, such that

c = c1 + c2.

We end this section with the following lemma. We include it here since

it concerns basic properties of minimal codewords in binary linear codes, never-

theless we shall use it in Section 3.

Recall that the extended code of a q-ary [n, k, d] code C is called the

[n + 1, k, d1] code

Ĉ = {ĉ = (c1, . . . , cn|c∞) | (c1, . . . , cn) ∈ C, c∞ = c1 + · · · + cn}.

In the binary case the minimum distance d1 = d + 1, if d is odd, and d1 = d, if d

is even. It is said also that Ĉ is obtained by adding general parity check.

Lemma 1. Let C be a binary linear code of length n, C0 be its subcode of

codewords of even weight and Ĉ be its extended code. Denote Mw, M0
w and M̂w
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the number of minimal codewords of weight w in codes C, C0 and Ĉ, respectively.

Then

M̂2j = M2j−1 + M0
2j .

If Ĉ has a transitive group of automorphisms then

M2j−1 =
2j

n + 1
M̂2j ; M0

2j =

(
1 −

2j

n + 1

)
M̂2j .

P r o o f. If c ∈ C is of weight 2j − 1 then ĉ = (c|c∞), c ∈ C, c∞ = 1 is

a minimal codeword of weight 2j in Ĉ iff c is minimal in C. When c ∈ C with

wt(c) = 2j is minimal, ĉ = (c|0) is a minimal codeword in Ĉ, too. But it is

possible that ĉ = (c|0) of weight 2j to be minimal codeword of Ĉ (i.e. c to be

minimal in C0) while c is a non-minimal codeword of C – when it covers codewords

of C of odd weight. Therefore M0
2j ≥ M2j and

M̂2j = M2j−1 + M0
2j .

In the case when the automorphism group of Ĉ is transitive we can proceed

as in Theorem 14 of [16, Ch.8] to obtain the statement of the lemma. �

3. Cyclic codes of block length n = 2m
− 1 and a generator

polynomial g(x) = m1(x)m2s+1(x). Consider cyclic binary codes of block

length n = 2m−1 with a generator polynomial g(x) = m1(x)m2s+1(x), i.e. cyclic

codes with zeros α and α2s+1, where α is a primitive element of the field GF (2m).

As usual a codeword c = (c0, c1, . . . , cn−1) is identified by the polynomial c(x) =

c0 + c1x + · · · + cn−1x
n−1 when c ∈ C iff c(α) = c(α2s+1) = 0. For (s,m) = 1

these codes are quasi-perfect codes with minimum distance 5 [9]. It is interesting

that the considered class of codes contains the primitive BCH codes (the case

s = 1) and all its codes have the same weight enumerator [16, Ch. 15]. But the

codes with s 6= 1 are not isomorphic to the BCH codes [4].

Our goal is to determine the cardinalities of the sets of minimal (non-

minimal) codewords of weights 10 and 11 in C as well as such codewords of

weight 12 in its extended code Ĉ.

As usual Trδ : GF (2m) → GF (2δ), δ|m, denotes the trace function

defined by

Trδ(x) = x + x2δ

+ x22δ

+ · · · + x2m−δ

.
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Also, we will write only Tr(x) instead of Tr1(x).

To prove our results we need the following lemmas. The first one is Lemma

2 which is a consequence of Welch’s theorem cited in [5, 16.46] for a = 1. It is

also a partial case (e = 1) of Theorem 11.11 in [15].

Lemma 2 ([5],[15]). The number of nonzero cubes γ = x3 in the field

GF (22l) with zero trace Tr(γ) = 0 equals

p =
1

3

(
22l−1 − (−1)l.2l − 1

)
.

Lemma 3. If (s,m) = δ the equation

z2s

+ z + γ = 0

has

– exactly 2δ roots in GF (2m), when Trδ(γ) = 0;

– no solutions in GF (2m), when Trδ(γ) 6= 0.

P r o o f. Suppose that θ ∈ GF (2m) is a solution of the equation. Then

the equality Trδ(θ
2s

) = Trδ(θ) yields Trδ(γ) = 0. Therefore, the equation has no

roots in GF (2m) when Trδ(γ) 6= 0.

Now let Trδ(γ) = 0 and let us consider the linear map over GF (2)

ϕ :

∣∣∣∣∣
GF (2m) −→ GF (2m)

z −→ z2s

+ z

Then

ker ϕ = {z ∈ GF (2m) | z2s

+ z = 0} = GF (2m) ∩ GF (2s) = GF (2δ)

and

A = {γ ∈ GF (2m) | Trδ(γ) = 0} ⊇ Imϕ

since Trδ(z
2s

+ z) = 0. But

|A| =
|GF (2m)|

|GF (2δ)|
= 2m−δ

and dim Imϕ = m − dim ker ϕ = m − δ, i.e. |Imϕ| = 2m−δ
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Hence

Imϕ = {γ ∈ GF (2m)|Trδ(γ) = 0}

Therefore, for any γ ∈ GF (2m) with Trδ(γ) = 0 there exist | ker ϕ| = 2δ

values z such that z2s

+ z = γ. �

Remark. The equation z2s

+z+γ = 0 was first considered by Dumer [10]

in order to prove that the class of codes treated in the next lemma are uniformly

packed. He proved that in the case (m, s) = 1 the equation has a solution in

GF (2m) iff Tr(γ) = 0.

Lemma 4. Let C be a binary cyclic code of length n = 2m − 1 and a

generator polynomial g(x) = m1(x)m2s+1(x), where (s,m) = 1.

If m is odd then for any pair {i, j}, 0 ≤ i < j ≤ n − 1, the number of

codewords of weight 5 with nonzero positions i and j is

λ =
n − 7

6
.

If m = 2l then this number

– for np pairs {i, j} is equal to

λ = p − 1 =
1

3
[22l−1 − (−1)l2l − 4],

– for the remaining 2nq = n(2m−1 − 1 − p) pairs {i, j} is equal to

µ = q − 1 =
1

3
[22l−1 + (−1)l2l−1 − 4],

where p is determined in Lemma 2 and q = (2m−1 − 1 − p)/2.

Remark. The values of λ and µ are the same as for the BCH codes

(case s = 1) nevertheless the proof of the lemma is slightly more complicated.

P r o o f. Since C is a cyclic code, without loss of generality (w.l.o.g.) we

may assume that i = 0, i.e. we may consider only pairs {0, j}, 0 < j ≤ n − 1.

Let c(x) ∈ C be a codeword of weight 5 (recall that C is an [n, n− 2m, 5]

code), i.e.

c(x) = 1 + xj + xi1 + xi2 + xi3, 0 < i1 < i2 < i3 ≤ n − 1, j 6= i1, i2, i3.

The equalities c(α) = c(α2s+1) = 0 imply

(1)

∣∣∣∣
y1 + y2 + y3 = 1 + β

y2s+1
1 + y2s+1

2 + y2s+1
3 = 1 + β2s+1,
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where y1 = αi1 , y2 = αi2 , y3 = αi3 , β = αj 6= 0, 1. Obviously y1, y2, y3 should be

different and yν ∈ GF (2m), yν 6= 0, 1, β.

Replacing yν = xν + (1 + β) ν = 1, 2, 3, we get

(2)

∣∣∣∣
x1 + x2 + x3 = 0

x2s+1
1 + x2s+1

2 + x2s+1
3 = β + β2s

,

where xν 6= 0, 1, β and all xν are different.

The number λ of codewords of weight 5 with nonzero coordinates {0, j} co-

incides with the number of unordered triples {x1, x2, x3} of pairwise different ele-

ments xν ∈ GF (2m) satisfying (2) and the additional conditions xν 6= 0, 1, β, β+1.

Replacing x1 = x2 +x3 from the first equation into the second one we get

β + β2s

=
∑

x2s+1
ν = (x2 + x3)

2s

(x2 + x3) + x2s+1
2 + x2s+1

3 = x2s

2 x3 + x2x
2s

3 ,

which after dividing by x2s+1
3 6= 0 gives

(
x2

x3

)2s

+
x2

x3
+

β + β2s

x2s+1
3

= 0.

Therefore

x1 = (1 + z)t, x2 = zt, x3 = t,

where t ∈ GF (2m)∗ = GF (2m) \ {0}, t 6= 1, β, β + 1 and z = z(t) ∈ GF (2m),

z 6= 0, 1, is a solution of

(3) z2s

+ z +
β2s

+ β

t2s+1
= 0.

Conversely, any triple {(1 + z)t, zt, t} where z is a solution of (3), z ∈

GF (2m) and t ∈ GF (2m)∗, t 6= 1, β, β + 1 satisfies the system (2). In addition,

since β 6= 0, 1 then z 6= 0, 1 which with t 6= 0 implies xν pairwise different.

Due to the symmetry with respect to x1, x2, x3 any triple {x1, x2, x3} will

be obtained three times – for three values of t: t, zt, (1 + z)t. Besides, for

t = 1 we have (z + β)2
s

= z + β, i.e. z1 = β, z2 = 1 + β which gives the triple

{1 + β, β, 1}. Similarly

t = β ⇒ z1 = β−1, z2 = 1 + β−1 ⇒ {β + 1, 1, β};

t = 1 + β ⇒ z1 = (1 + β)−1, z2 = β/(1 + β) ⇒ {1, β, 1 + β}.

Thus all inadmissible values of t give one and the same triple {1, β, 1 + β}.
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Therefore, the number of codewords of weight 5 with nonzero coordinates

{0, j} for given j 6= 0 (i.e. for given β 6= 0, 1) is equal to

1

3
Rβ − 1,

where Rβ is the number of triples ((1 + z)t, zt, t), t ∈ GF (2m)∗, i.e. the number

of t ∈ GF (2m)∗ for which (3) has a solution in GF (2m). But according to Lemma

3, (3) has roots (exactly 2) in GF (2m) iff

(4) Tr

(
β2s

+ β

t2s+1

)
= 0.

Hence Rβ coincides with the number of t for which (4) holds.

Now, let m be odd. We have to prove that Rβ does not depend on β and

calculate it.

It is easy to see that for (s,m) = 1,

(2s + 1, 2m − 1) =

{
1, m − odd
3, m − even.

Thus, in the case of m being odd, t2
s+1 runs through all nonzero elements of

GF (2m) when t runs through GF (2m)∗. Hence for any fixed β 6= 0, 1 (β2s

+

β)/t2
s+1 runs through all elements of GF (2m)∗. (β2s

+β 6= 0, for β ∈ GF (2m), β 6=

0, 1)

Therefore exactly 2m/2 − 1 = 2m−1 − 1 of (β2s

+ β)/t2
s+1 will be with a

zero trace, i.e. Rβ = 2m−1 − 1 = (n− 1)/2. Hence the number λ of codewords of

weight 5 with nonzero coordinates {0, j} is equal to

λ =
1

3

n − 1

2
− 1 =

n − 7

6
.

In the case of m = 2l, (2s + 1, 2m − 1) = 3. Thus t2
s+1 = u3 and

will take only (2m − 1)/3 values (the cubes) when t runs through GF (2m)∗.

Then (β2s

+ β)/t2
s+1 has the same form α3k, α3k+1, or α3k+2 as β2s

+ β, thus,

(β2s

+ β)/t2
s+1 takes any value α3k, respectively α3k+1 or α3k+2, when t runs

through GF (2m)∗. In addition, since (α3k+1)2 = α3r+2 and vice versa, and

Tr(γ) = Tr(γ2), the number of elements of the form α3k+1 with zero trace equals

the number of elements of the form α3k+2 with zero trace, too. According to

Lemma 2 the number of cubes with zero trace is

p =
1

3

(
22l−1 − (−1)l.2l − 1

)
.
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Hence the number of elements of the type γ = α3k+1 with Tr(γ) = 0, respectively

one of the form α3k+2, is

q =
2m−1 − 1 − p

2
=

1

3

(
22l−1 + (−1)l.2l−1 − 1

)
.

Therefore Rβ in the even case depends on β. Let β be such an element

that γ = β2s

+β is a cube. Then (β2s

+β)/t2
s+1 takes any nonzero cubes 3 times

when t runs through GF (2m)∗. According to Lemma 2 the number of cubes with

zero trace is p. Hence, for any fixed β, i.e. the pair {0, j}, such that γ = β2s

+ β

is a cube, we have

Rβ = 3p.

Therefore the number of codewords of weight 5 and nonzero positions 0 and j

corresponding to such a β is

λ = p − 1 =
1

3

(
22l−1 − (−1)l.2l − 4

)
.

Similarly, let β be such an element that γ = β2s

+ β is of the type α3k+1

(respectively α3k+2). Then (β2s

+β)/t2
s+1 takes any nonzero elements of the type

α3k+1 (respectively α3k+2) 3 times when t runs through GF (2m)∗. But exactly q

of them have zero trace and hence for so chosen β we have Rβ = 3q. Therefore the

number of codewords with weight 5 and nonzero positions 0 and j corresponding

to so chosen β is

µ = q − 1 =
1

3

(
22l−1 + (−1)l.2l−1 − 4

)
.

To complete the proof we should calculate the number of β (i.e. the

number of j) for which γ = β2s

+ β is a cube and the one for which γ is of the

type α3k+1, respectively α3k+2. Since Tr(γ) = Tr(β) + Tr(β) = 0 the number of

cubes is given again by Lemma 2. But γ is obtained for exactly two values of β

according to Lemma 3. Thus γ is a cube for 2p values of β, i.e. for 2p values of j.

Similarly, for 2q values of β, γ is of the type α3k+1 and for 2q values is

of the type α3k+2.

Therefore, for

• 2p pairs {0, j} the number of codewords of weight 5 with nonzero 0th

and jth positions is

λ = p − 1 =
1

3

(
22l−1 − (−1)l.2l − 4

)
.
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• 4q pairs {0, j} the number of codewords of weight 5 with nonzero 0th

and jth positions is

µ = q − 1 =
1

3

(
22l−1 + (−1)l.2l−1 − 4

)
.

Since any pair {i, j} will be counted two times as a pair {0, h} we get

• for np = n.2p/2 pairs {i, j}

λ = p − 1 =
1

3

(
22l−1 − (−1)l.2l − 4

)
.

• for 2nq = n.4q/2 pairs {i, j}

µ = q − 1 =
1

3

(
22l−1 + (−1)l.2l−1 − 4

)
. �

Since in any codeword of weight 5 there are

(
5

2

)
= 10 pairs of nonzero

coordinates, then

10A5 =

(
n

2

)
λ, respectively, 10A5 = np.λ + 2nq.µ

which yields, in particular, the value (well known, [16, Ch.15]) of A5 :

A5 =






n(n − 1)(n − 7)

120
, m = 2l + 1

n(n − 3)2

120
, m = 2l.

Note: Lemma 4 gives that when m is odd the number of codewords of

weight 3 in any coset of C with a leader of weight 2 is constant λ, i.e. the code C

is “uniformly packed” (proved by Dumer). In the case of BCH codes (s = 1), λ

was calculated by J. Goethals and H. van Tilborg [12]

Theorem 1. Let C be a binary cyclic code of length n = 2m − 1 and a

generator polynomial g(x) = m1(x)m2s+1(x), where (s,m) = 1.

If m = 2l + 1, then the number of minimal codewords of weight 10 is

M10 = A10 −
n(n − 1)(n − 7)(n − 17)(n2 − 16n + 135)

2.1202
.
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If m = 2l, then the number of minimal codewords of weight 10 is

M10 = A10 −
n

144

[
(n − 5)(n4 − 32n3 + 394n2 − 2008n + 4861)

200
− (−1)l23l+1

]
.

Theorem 2. Let Ĉ be the extended [2m, 2m − 2m − 1, 6] code of the

binary cyclic code of length n = 2m − 1 and a generator polynomial g(x) =

m1(x)m2s+1(x), where (s,m) = 1.

In the case m = 2l + 1, the number of minimal codewords of weight 12

equals

M̂12 = Â12 −
λ

4

(
n + 1

3

)[
λ

(n2 − 35n + 450)(n − 1)

1200
− 1 −

1

3
(λ − 1)(λ + 4)

]
,

where λ = (n − 7)/6.

In the case m = 2l,

M̂12 = Â12 −
n(n + 1)

6

{
(n − 3)2

240

[
(n2 − 35n + 450)(n − 3)2

720
− 10

]

−

[
(λ + 4)

(
λ + 1

3

)
+ 2(µ + 4)

(
µ + 1

3

)]}
,

where λ, µ are given by Lemma 4, Â12 is the number of codewords of weight 12.

The values λ and µ given in Lemma 4 do not depend on the value of s

and coincide with the ones for s = 1. Hence, not only the statements of Theorem

1 and Theorem 2 but also their proofs are very similar to the case of BCH codes.

Also, there are several common and similar steps in the proofs of both theorems.

That is why, herein we omit detailed calculations (referring the reader to our

paper [6]) and present only the idea and the main points of these proofs.

P r o o f o f T h e o r em 1 an d T h e o r em 2. Since the minimum

distance of C (resp. Ĉ) is 5 (resp. 6), a codeword of weight 10 (resp. 12) is

non-minimal iff it is a sum of two nonintersecting codewords of weight 5 (resp.

6). Since two codewords of weight 5 can intersect each other in 2 coordinates at

the most, any non-minimal codeword of weight 10 can be uniquely split into a

sum of two codewords c1, c2 ∈ C of weight 5. Thus the number of non-minimal

codewords of weight 10 in C coincides with the number N0 of pairs of codewords
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of weight 5 with disjoint supports. (Respectively, N̂0 denotes the number of pairs

of codewords of weight 6 in Ĉ with disjoint supports.) But in the case of the

extended code the expression of ĉ ∈ Ĉ of weight 12 as a sum of two codewords

of weight 6 is not always unique, which makes the proof of Theorem 2 more

complicated. In this case the number of non-minimal codewords of weight 12 is

N̂0−2Y , where Y is the number of codewords ĉ ∈ Ĉ of weight 12 that admit more

than one (exactly three) expression as a sum of two words of weight 6. Indeed

since the supports of two codewords of Ĉ intersect each other in three elements

at the most, then ĉ = u1 + u2 = v1 + v2 gives wt(ui ∗ vj) = 3. Hence the 12

nonzero positions of ĉ are divided into four triples, each two of which form a

codeword of weight 6, and ĉ has exactly three representations as a sum of words

of weight 6. If X is the number of non-minimal codewords of weight 12, then

X + 3Y = N̂0. Therefore, the number of non-minimal codewords of weight 12 is

equal to X + Y = N̂0 − 2Y .

In both proofs we use the inclusion-exclusion principle. Let Ni (resp. N̂i)

be the number of pairs {c1, c2} of weight 5 (resp. 6) with wt(c1 ∗ c2) ≥ i, i. e.

the codewords have 1’s at least on i common positions. Then

(5) N0 = N − N1 + N2 − N3 + N4 − N5 + N6,

where N =

(
A5

2

) (
resp. N̂ =

(
Â6

2

))
is the number of pairs of codewords. Let

us note that Ni = 0, for i ≥ 3, respectively for i ≥ 4 in Theorem 2.

The automorphism groups of both considered codes are transitive: C is

cyclic, and Ĉ is invariant under the affine group of permutations (Kasami et al.

[14]). Therefore:

– We may assume w.l.o.g. that one of the common nonzero coordinate

position is ∞. Thus

N̂1 = 2mN, N̂2 =
2m

2
N1 N̂3 =

2m

3
N2.

– The number r of c ∈ C of weight 5 with common nonzero ith coordinate

is one and the same for any i and obviously r = 5A5/n. Hence

N1 = n

(
r

2

)
, n = 2m − 1.

According to Lemma 4 the value N2 depends on the parity of m, namely,
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– if m = 2l + 1, then

N2 =

(
n

2

)(
λ

2

)
,

where λ = (n − 7)/6 is determined in Lemma 4;

– if m = 2l, then

N2 = n

[
p

(
λ

2

)
+ 2q

(
µ

2

)]
,

where λ and µ are given in Lemma 4.

Now replacing values of Ni and N̂i in (5) and in the corresponding formula

for Ĉ, after simple computations we obtain N0 (hence, M10) and N̂0.

Let us calculate Y .

Y =
2m

3

1

4
Z,

where Z is the number of triples of codewords of weight 6 with nonzero coordi-

nates {i, j,∞}. Then applying again Lemma 4 we get

– if m = 2l + 1, then

Y =
n + 1

12

(
n

2

)(
λ

3

)
, λ =

n − 7

6
;

– if m = 2l, then

Y =
n + 1

12

[
np

(
λ

3

)
+ 2nq

(
µ

3

)]
.

Now we can calculate N̂0−2Y which gives the statement of Theorem 2. �

As a consequence of Lemma 1 and Theorem 2 we obtain

Theorem 3. The number of minimal codewords of weight 11 in the

double-error correcting [2m − 1, 2m − 2m − 1, 5] binary code C with generator

polynomial g(x) = m1(x)m2s+1(x), where (s,m) = 1, is

M11 =
3

2m−2
.M̂12,

where M̂12 is the number of minimal codewords of weight 12 in the extended

code Ĉ.
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4. Minimal codewords in the 3rd order binary Reed-Muller
codes. A well-known and widely used approach to studying algebraic objects

(groups, rings, etc.) is the considering of their sub-objects and quotient objects.

Since linear codes are linear spaces this approach is applicable to them and it is

often used in algebraic coding theory.

Let C be a linear code over the finite field F = GF (q) and G be a group of

its automorphisms. If A is a G−invariant subcode (i.e. ϕ(A) ⊆ A for any ϕ ∈ G)

then G naturally induces an action on the quotient space C/A consisting of all

cosets c+A, c ∈ C. If ϕ ∈ G preserves a given property and ϕ : c1+A −→ c2+A,

then both c1 +A and c2 +A possess (or do not possess) this property. Therefore,

knowing the partition of C/A into G−orbits, one can restrict oneself only to the

representatives of the orbits when studying the codewords with this property.

The described idea has been applied to solving weight distribution prob-

lems in [8] and [19] as well as by Hou (see [13]). Our study is based on the

following results from the aforesaid papers:

Let Q(r,m)
def
= RM(r,m)/RM(r−1,m) be the quotient space of RM(r,m)

by the subcode RM(r−1,m). On Q(r,m) the action of GA(m, 2) is reduced to the

action of the general linear group GL(m, 2), since the transformation x → x + a

leaves every element of Q(r,m) fixed for any a ∈ GF (2)m.

Xiang-dong Hou has calculated the number of GL(m, 2)−orbits and has

determined explicitly the representatives of the cosets h + RM(2,m) for r = 3

and m ≤ 8.

Theorem 4 ([13]). Let s(r,m) denote the number of GL(m, 2)−orbits in

Q(r,m). Then

a) s(3, 6) = 6 and Ci = fi + RM(2, 6), 1 ≤ i ≤ 6, are representatives of the

GL(m, 2)−orbits in Q(3, 6),

b) s(3, 7) = 12 and Cj = fj + RM(2, 7), 1 ≤ j ≤ 12, are representatives of the

GL(7, 2)−orbits in Q(3, 7),

where the Boolean polynomials fi(x) are given by

f1 = 0,

f2 = x1x2x3,

f3 = x1x2x3 + x2x4x5,

f4 = x1x2x3 + x4x5x6,
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f5 = x1x2x3 + x2x4x5 + x3x4x6,

f6 = x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6 + x4x5x6,

f7 = x1x2x7 + x3x4x7 + x5x6x7,

f8 = x1x2x3 + x4x5x6 + x1x4x7,

f9 = x1x2x3 + x2x4x5 + x3x4x6 + x1x4x7,

f10 = x1x2x3 + x4x5x6 + x1x4x7 + x2x5x7,

f11 = x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6 + x4x5x6 + x1x6x7,

f12 = x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6 + x4x5x6 + x1x6x7 + x2x4x7.

Remark. Note that Ci = fi + RM(2,m), 1 ≤ i ≤ 6, are representatives

of the GL(m, 2)−orbits for m ≥ 6, Ci, 7 ≤ i ≤ 12, for m ≥ 7, and so on.

Following the notations in [19], for a given f ∈ Pm, let m(f) denote the

minimal integer n for which there is such a transformation T ∈ GL(m, 2) and a

polynomial g ∈ Pn that T (f) ≡ g (mod RM(r − 1,m)). For f ∈ RM(r,m), let

ν(r,m, f) denote the number of cosets in the GL(m, 2)−orbit of f+RM(r−1,m).

Theorem 5 gives a recursion for ν(r,m, f).

Theorem 5 ([19]).

ν(r,m, f) = ν(r,m(f), f)

m(f)−1∏

i=0

(2m−i − 1)/(2m(f)−i − 1).

For f ∈ Pm, deg f = 3 and a ∈ GF (2)m let fa be the Boolean polynomial

obtained from f(x + a) − f(x) by deleting all linear terms. Obviously, fa is a

homogenous polynomial of degree 2. The next theorem is Lemma 2 from [8]

slightly modified for our goals.

Theorem 6 ([8]).

(a) ∆f = {fa | a ∈ GF (2)m} is a linear subcode of RM(2,m).

(b) Let the subspace δf of RM(2,m) be defined by RM(2,m) = ∆f ⊕ δf (direct

sum). δf is invariant under the transformation x → x + a for any a ∈

GF (2)m.

(c) The weight enumerator of minimal codewords of the coset f + RM(2,m)

is given by 2dim∆fWf+δf (z), where Wf+δf (z) is the weight enumerator of

minimal codewords of the coset f + δf .
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Herein we determine the weight distribution of minimal codewords in

Reed-Muller codes RM(3, 6) and RM(3, 7). These codes have parameters [64, 42, 8]

and [128, 64, 16], respectively. It is obvious that a search for minimal codewords

based on (iv) of Proposition requires too much computer resource even for such

small parameters. Therefore we will apply the method described above.

Let Mw and M
(i)
w denote the number of minimal codewords of weight w

in RM(3,m) and in the coset Ci, respectively. Hence

(6) Mw =
∑

i

ν(3,m, fi)M
(i)
w .

Below we will refer several times to the following simple property of

Boolean polynomials. Its proof is straightforward and we omit it.

Lemma 5. Let f ∈ Pm be such that (xi + a)f(x) ≡ 0 for a given

variable xi, where a = 0 or 1. Then either f(x) ≡ 0, or f = (xi + a +

1)h(x1, . . . , xi−1, xi+1, . . . , xm), where h is a polynomial of m − 1 variables and

deg h = deg f − 1.

Theorem 7. The numbers of minimal codewords of weight w in Ci for

i = 1, 2, 3, 7 are

M (1)
w = 0; M (2)

w =

{
8 , w = 2m−3

0 , otherwise.
;
∑

w

M (3)
w ≤ 2m+1

∑

w

M (7)
w ≤ 2m+1.

P r o o f. Let S(f) = supp(f) denote the support of the binary vector f

associated with a Boolean polynomial f(x).

When f ∈ C1, i.e. f ∈ RM(2,m), we have xif ∈ RM(3,m) and S(xif) ⊆

S(f) for any i. If f remains minimal as a codeword of RM(3,m) then xif(x) ≡ 0

or xif(x) ≡ f(x), i.e. (xi + 1)f(x) ≡ 0. (Note that a codeword of RM(2,m) can

be minimal in RM(2,m) but non-minimal as a codeword of RM(3,m).) Now ap-

plying Lemma 5, we conclude that f(x) = (x1+a1)(x2+a2)(x3+a3)f
′(x4, . . . , xm)

for some ai = 0 or 1. That is in contradiction to the choice of f . Therefore, C1

does not contain minimal codewords of RM(3,m).

Let f ∈ C2, i.e. f(x) = x1x2x3 + g(x), where g ∈ RM(2,m). In this

case xif ∈ RM(3,m) only for i = 1, 2, 3. Similarly to the previous case we

can conclude that the assumption f is minimal in RM(3,m) implies f(x) =

(x1 + a1)(x2 + a2)(x3 + a3), ai = 0, 1. The eight codewords f corresponding

to these polynomials have weight 2m−3. But this is the minimum weight of
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RM(3,m) and, thus, they are minimal codewords. Therefore, there are exactly

8 minimal codewords all of weight 2m−3 which belong to the coset C2.

Let f ∈ C3, i.e. f(x) = x2(x1x3+x4x5)+g(x), where g ∈ RM(2,m). Then

x2f = x2(x1x3+x4x5)+x2g(x) belongs to RM(3,m) and the assumption that f is

a minimal codeword of RM(3,m) again implies x2f(x) ≡ 0 or (x2 + 1)f(x) ≡ 0.

But x2f(x) = x2(x1x3 + x4x5 + g(x)). Hence, x2(x1x3 + x4x5 + g(x)) ≡ 0

and Lemma 5 give g(x) = x1x3 + x4x5 + (x2 + 1)g′(x1, x3, . . . , xm), where g′

is a linear Boolean polynomial. Therefore there are only 2m such polynomials

f(x). The second case implies (x2 + 1)g(x)) ≡ 0 and Lemma 5 gives g(x) =

x2g
′(x1, x3, . . . , xm), where g′ is a linear Boolean polynomial. Therefore, the

total number of minimal codewords in C3 is at most 2 · 2m = 2m+1. (|Ci| =

|RM(2,m)| = 21+m+(m

2
)!)

The case C7 is treated in the similar way and the same result holds for

it. �

Theorem 8. The distribution of minimal codewords of weight w in

RM(3, 6) is given in Table 2.

P r o o f. For RM(3, 6) the possible weights for which both minimal and

non-minimal codewords can exist are 16,18,20 and 22. Since there are no code-

words of weight 10 in RM(3, 6) then all codewords of weight 18 are minimal.

Based on the above-mentioned, we have to test for minimality only the code-

words in C4, C5, C6 and 128 codewords in C3. For fi, i = 4, 5, 6, we determine

∆fi and δfi. According to Theorem 4 our search is restricted only to fi + δfi.

This reduces computational complexity by a factor 2dim ∆fi . In our case based on

the definition, it is not difficult to check that dim ∆fi = 6, i = 4, 5, 6, and to find

a basis of δfi. Then we determine the values of M
(i)
w , i = 3, 4, 5, 6, by computer

search.

i ν(3, 6, fi) i ν(3, 7, fi) i ν(3, 7, fi)

1 1 1 1 7 1 763 776

2 1 395 2 11 811 8 2 222 357 760

3 54 684 3 2 314 956 9 238 109 760

4 357 120 4 45 354 240 10 17 778 862 080

5 468 720 5 59 527 440 11 444 471 552

6 166 656 6 21 165 312 12 13 545 799 680

Table 1. Lengths of the orbits with representatives Ci in RM(3, 6) and

RM(3, 7).
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Knowing M
(i)
w we can obtain the weight distribution of minimal codewords

in RM(3, 6) by (6). The required values ν(3, 6, fi) have been determined by Hou

[13]. Using ν(3, 6, fi), Theorem 4 and ν(3, 8, fi) given in [19, Table 1] the values

of ν(3, 7, fi) can be calculated, too. All values are given in Table 1. The results

for M
(i)
w are summarized in Table 2. The symbol “∗” means that all codewords

of this weight are minimal. �

w Mw

*8 11 160

*12 1 749 888

*14 22 855 680

16 213 486 336

*18 1 717 223 424

20 6 719 569 920

22 14 581 066 112

Table 2. The weight distribution of minimal codewords in RM(3, 6).

Theorem 9. The distribution of minimal codewords of weight w in

RM(3, 7) is given in Table 3.

RM(3, 7) is treated in a similar manner. Interesting weights are 32, 36, 40,

44, 48, 52, 56, 60 and 64. Since there are no codewords of weight 20 in RM(3, 7)

then all of weight 36 are minimal. In C3 and C7 only 256 codewords have to be

tested (see the aforesaid). For any of the rest eight cosets we determine ∆fi and

δfi and restrict the computer search only to fi+δfi, where dim ∆fi = 6, i = 4, 5, 6,

and dim ∆fi = 7 for i ≥ 8. The obtained results are given in Table 3. �

w Mw w Mw

*16 94 488 44 9 482 818 340 782 080

*24 74 078 592 48 87 824 734 057 267 200

*28 3 128 434 688 52 538 097 941 223 571 456

32 311 574 557 952 56 1 752 914 038 641 131 520

*36 18 125 860 315 136 60 2 787 780 190 808 309 760

40 551 965 599 940 608 64 517 329 044 342 046 720

Table 3. The weight distribution of minimal codewords in RM(3, 7).

In conclusion we would like to note that during the process of computer

searching we obtain the representative of the orbits of minimal codewords. Hence,
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nevertheless, only the number of minimal codewords is given herein, we can list

all minimal codewords.
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Appendix. Now we shall describe a way of constructing secret-sharing

scheme by a binary linear code. Let C be a binary linear [n, k]-code, whose first

coordinate is not always 0. Let the secret s be a binary vector with length l.

To any coordinate sj of s, 0 ≤ j ≤ l, we add selected at random k−1 bits,

which together with sj (as a first coordinate) we use as set of information bits to

compute the corresponding codeword of the code C. Thus we obtain l codewords
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and form by them an l × n matrix, the first column of which is the secret. The

others are the n − 1 shares in the secret-sharing scheme.

Obviously the access structure of this scheme is characterized by the set

of minimal words with 1 as a first coordinate in the code C⊥.
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