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ABSTRACT. The Fisher information matrix for three generalized beta dis-
tributions are derived.

1. Introduction. Beta distributions are very versatile and a variety
of uncertainties can be usefully modeled by them. Many of the finite range
distributions encountered in practice can be easily transformed into the standard
distribution. In reliability and life testing experiments, many times the data are
modeled by finite range distributions, see for example [1].

The standard beta distribution is defined by the pdf

B xafl(l . x)bfl

@) =

for0 <z <1,a>0andb> 0. Three popular generalizations of this distribution
are given by the pdfs:

" 0 = = ame <2:§>a_1 (1‘2:§>b_1
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for ¢ < x < d,

pl,ap—l (qp _ l,p)bfl

qp(aerfl)B(a’ b)

(2) flz) =

for 0 <z < ¢, and
)\al,afl(l . l,)bfl
B(a,b) {1 — (1 — Az}

for 0 <z <1, wherea >0,b>0, —0o<c<d<oo,p>0¢g>0and
A > 0. We refer to (1) as the translated beta distribution. The generalizations
(2) and (3) are due to McDonald [8] and Libby and Novick [7], respectively;
and, so we refer to them as the McDonald’s beta and Libby and Novick’s beta,
respectively. The aim of this note is to calculate the Fisher information matrix
corresponding to each of the pdfs given by (1)—(3). For a given observation z,
the Fisher information matrix is defined by

" (L) = {E (alogé(o)alogeiw))}

forj=1,2,...,pandk =1,2,...,p, where L(f) = log f(x) and § = (01,0, ...,6,)
are the parameters of the pdf f. It has the meaning “information about the pa-
rameters 6 contained in the observation z.” The information matrix plays a
significant role in statistical inference in connection with estimation, sufficiency
and properties of variances of estimators. It is related to the covariance matrix
of the estimate of 6 (being its inverse under certain conditions). See Cox and
Hinkley [2] for details.

The exact forms of the information matrix are derived in Sections 2, 3 and
4. Some technical results required for the derivations are noted in the Appendix
(Section 5). The calculations use the beta function and the Gauss hypergeometric
function defined by

3) f(x)

1
Bla,b) — /t“l(l—t)bldt,
0
and

o

) — (@) (b)y 2"
2F1 (a,b;cw) = Z (0, R
k=0

respectively, where (¢)r = c¢(c+1)--- (c+k — 1) denotes the ascending factorial.
The properties of these special functions can be found in Gradshteyn and Ryzhik

[4].
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2. Information matrix for translated beta. As implied by the
name, the translated beta distribution given by (1) is a translated version of the
standard beta distribution. One can see ¢ and d as location parameters and d — ¢
as a scale parameter. This distribution has been applied as widely as the standard
beta distribution — see Gupta and Nadarajah [5] for illustrations of some of the
application areas.

If = is a single observation from (1) then the log-likelihood function can
be written as

log L(a,b,¢,d) = (a—1) log(z—c)+(b—1) log(d—x)—log B(a, b)—(a+b—1) log(d—c).

The first-order derivatives are:

Olog L IM(a) T'(a+b)
= 1 —o) — —log(d —
da 8= = Ty T Tagp 8l
dlog L "b)  T'(a+Db)
— log(d — ) — “log(d —
ab og(d —x) T  T(a+b) og(d —c),
dlog L l—-a a+b-1
Oc  x—c d—c ’
and

OlogL b—l_a—i—b—l

od - d—=x d—c

The second-order derivatives are:
PlogL  T(a+bI"(a+b)— {T"(a+ B} T(a)I(a) - {T'(a)}?
da? B I'%(a +b) I‘Q(a) ’
PlogL  T(a+d)IM(a+b)—{T"(a+ b)}2
dadb I'?(a +b) ’
OlogL 1 L
dade  c—xz d—¢
0% log L B 1
dadd —  c—d’
92 log L D(a+bI"(a+b) = {T'a+b)}* TG - {'®)}

o I(a +b) F2(b) ’
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0?log L B 1
obdc  d-c’
PlogL 1 1
obod — d—x d—c’
0?log L  1-a
dc?  (z—0o)?’
0?log L _ l—a-b
dcod  (d—c)?’
and
0?log L B a+b—1+ 1-b
o> (d—c)?  (d—ax)?

Now, we can compute the elements of the Fisher information matrix. It is clear
that

E<_82logL> _ T@rM(a) — {I'(@}" Ta+bI(a+b) —{a+b)}
da? B I'(a) I(a+b) ’
S PlogL) T+ bM(a+b) —{I"(a+b)}’
< 5‘16%) a I'?(a +b) ’
0?log L B 1
E<_ dadd ) - d-c
g PlosL _ T (b) = {I'®)}°  Tla+bI"(a+b) — {I'(a+b)}’
( ob2 > B I2(b) I(a+b) ’
0%log L B 1
E<_ dbdc ) - c—d’
and
0?log L _a+b-—1
E<_ dcdd > T (d-o?

By application of Lemma 1,

P(-Toat) = anae
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0?%log L B a
E(‘ abad> T o (e—d)(b-1)
?logL\  (a+b—1)(a+b—2)
E(‘ a2 ) T a2
and
d*logL\  ala+b-1)
E(‘ o2 ) T b-2d-op

provided that a > 2 and b > 2.

3. Information matrix for McDonald’s beta. This distribution
given by (2) is described from a probabilistic point of view in McDonald [8]. It
has been used as a successful model in finance, reliability and queueing processes.

If z is a single observation from (2) then the log-likelihood function can
be written as

P
log L(a,b,p,q) = (ap—1)log x+(b—1) log {1 — <E> }—i—logp—ap log g—log B(a,b).
q
The first-order derivatives are:

dlog L r
= plogx —plogqg — +
Oa a

dlogL 1Og{1_ <z>p} (), D(a+D)

0b q )  T(a+b)’
Olog L zPlog(x/q) 1
B = alogaz—k(l—b)w—%;—alogq,
and
Olog L _ (b—1)pa? ap
9q q(q"—a) q’
The second-order derivatives are:
PlogL  T(a+d)IM(a+b)—{T"(a+ b)}2 ~ I(a)I(a) - {r’(a)}2
a2 I'?(a + b) I'?(a) ’
0logL.  T(a+b)I"(a+b)—{I'(a+b)}’

dadb I'?(a +b) 7
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0?log L I
dadp & q)’

0?log L P
dadq q’
Plogl _ Tla+h"(a+b) —{T'a+h)} TOE) - {r'G)}’
o I'?(a+b) r2(b) ’
O?logL  aPlog(z/q)
obdp AP g’
d?logL pa?
Mg q(¢f —aP)’
0*logL _ (1-b)¢"z" {log(z/q)}° 1
o> (¢" —aP)? p*
olog L (b—1)aP . (b—1)pg" 'aPlog(z/q) @
Opdq q(g¥ — 2P) (¢ — aP)? q’
and
9%log L ap o —2p+2), p ~(2p+2) 0 _ —(0H2) ~(p+2)
e ?Jr(b—l)pw (q x? —2pq a’ —q —pq )

Now, we can compute the elements of the Fisher information matrix. It is clear
that

E( a2logL) D@0 = {(@)}" Ta+b"a+b) - {Ma+b)}’
a2 B r2(a) I%(a+b) ’
< 8210gL> T+ bI(a+b) —{I'(a+0b)}’

~ Dadb - I'?(a +b) ’
_8210gL P
E< dadq ) q
and
g PlosL _ T (b) = {I'®)}°  Tla+bI"(a+b) — {I'(a+b)}’
( ob? > - I'2(b) I'?(a+b) '
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By application of Lemma 2,

B (_ 0? logL) B ap
dpdq (b—1)q
and
< 0% log L> alb—1)p(l—p) ala+1)b—1p(p—-1) ap
E(- - _®
0q? (a+ b)q2 (a + b)qp+2 q>

By application of Lemma 3,
s _PlogL\ 1 (IM(a+b) T'(a)
0adp ~ plT(a+b) T(a) ][’

E(‘%E)L) - p(ba—1){rr,((5i11))_rfl((§i£))}

provided that b > 1. By application of Lemma 4,

and

PlogL\ 1  ab-1) [Tla+DIMa+1) - {I'a+1)}°
E<_ op? ) - z?+p2(a+b) I(a+1)
T(a+b+ DM (a+b+1)—{T(a+b+1)}°
- I%(a+0b+1)

Ma+1) T'(a+b+1))>
+{I‘(a+1) F(a—l—b—l—l)} ]

By application of both Lemmas 2 and 3,

E (_8210gL> __apla+b-1)
Opdq q(b - 2)

provided that b > 2.

4. Information matric for Libby and Novick’s beta. This beta
distribution was first used by Libby and Novick [7] for utility function fitting and
by Chen and Novick (1984) as a prior in some binomial sampling model. Two
other applications are to the problem of Bayesian estimation of the ratio of two
variances (Gelfand, [3]) and to model the proportion of time devoted to a specific
work function in Bayesian work sampling (Pham-Gia, [9]).
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If z is a single observation from (3) then the log-likelihood function can
be written as

log L(a,b,\) = (a —1)logz + (b —1)log(1l — x)—
—(a+b)log{l — (1 - Xz} +alog\ —log B(a,b).

The first-order derivatives are:

dlogL IM(a) T'(a+0b)
90 loga:—log{l—(l—)\)a:}—i—log/\—F(a)+F(a+b),
dlogL I'(b) T'(a+b)
9% = log(l—x)—log{l—(l—/\)x}—F(b) +I’(a+b)’
and
Olog L a  (atb
o X 1-(1-Nz’
The second-order derivatives are:
0logl.  T(a+0)I"(a+b) —{T'(a+b)}* T@I(a)—{I'(a)}’
a2 I'?(a + b) I‘Q(a) ’
0logL.  T(a+b)I"(a+b)—{I'(a+b)}’
dadb I'2(a +b) ’
0?log L 1 T
dad\ A 1—(1=Nz’
PlogL  Ta+bMa+b)—{a+b)} TEHG) - {T'0)}
o I(a +b) F2(b) ’
0?log L L x
oboX 11— (1=Nz’
and
dlogL (a+b)z? _a
N {1-(1-Nz}> A

Now, we can compute the elements of the Fisher information matrix. It is clear
that

p(_PlogL\ _ T(@I(a —{"(@)}* Ta+bI"(a+b)—{I'(a+b)}’
( da? > B F2(a) T?(a +b) ’
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( 8210gL> T+ bI(a+b) —{I'(a+0b)}’
0adb B I'?(a+b) ’
and
E(_a2logL> _TOM0) - {T'®)} Ta+b"a+b) = {Ma+b)}’
ob? B I'2(b) I(a+b) '
By application of Lemma 5,
0?log L aX® 1
E(- = F b+1 1; b+1;1—-X) ——
( 8@@/\) P 1(a+b+1la+La+b+1; ) R
0?log L aX®
E|- = F; 1 1; 1;1 —
( ET\ > g 2filatbtlatliatb+11-2),
and
0?log L a a(a+1)
El——— ) =—=— F b+ 2 2; b+2;1— X
( 2 ) X arbathr) 1(a+b+2,a+2;a+b+2; )
which, upon using special properties of the Gauss hypergeometric function, reduce
to
> _82logL b
0ao\ — (a+bd)N
> _8210gL _ a
0bOA  (a+bN
and
B _8210gL _ el a+1
ON? 2 (a+b)(a+b+1)f’
respectively.

5. Appendix. We need the following technical lemmas to calculate the
elements of the Fisher information matrix.

Lemma 1. For a random variable X with the pdf (1),

1 ~ B(a—m,b—n)
(X —o)™d-X)"| — (d—¢)"""B(a,b)

form < a and n < b.

() E
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Proof. The required expectation can be written as

B(a—m,b—n)I
(d—¢c)"""B(a,b)’

where I denotes the integral

a—m—1 b—n—1
(:L‘ — c> (1 T — c)
d _ g
o / d—c d—c d.
C

(d—c)B(a—m,b—n)

The integrand of I precisely takes the form of (1) andso I =1. O

Lemma 2. For a random variable X with the pdf (2),

(6)

XPpe _ qp(o‘*mB(a—Fa,b—B)
(¢ — XP)P B (a,b)

fora+a >0 andb> .

Proof. The required expectation can be written as

pl
7 A n
(7) @9 B(a,b)

where I denotes the integral

q py b—p-1
(8) I = /aﬂ’(a*a)l{l—(f)} dz.
0 q

By setting y = 2/q, (8) can be rewritten as

1
) I = ap(a+°‘)/ yrlata)=l gy pyb=0=1 g,
0

Using equation (3.251.1) in Gradshteyn and Ryzhik (2000), the integral on the
right of (9) can be calculated as

1
(10) Z—)B(a—i—a,b—ﬂ).

The result in (6) follows by combining (7), (9) and (10). O
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Lemma 3. For a random variable X with the pdf (2),

B [Xp“ log (X/Q)]
(¢ — x7)°
(11)

_ " PBa+ab-p) [ata) a+bta-p)
N B (a,b) {

fora+a >0 andb> .

Proof. The required expectation can be written as

pl

12 S
(12) @9 B(a,b)

where I denotes the integral

q py b—B-1
(13) I = / gplate)—l {1 - <£) } log <£) dx.
0 q q

By setting y = x/q, (13) can be rewritten as

1
(14) I = ap(a-l—a)/ yp(a—l—a)—l {1 B yp}b—ﬁfl log ydy.
0

Using equation (4.253.1) in [4], the integral on the right of (14) can be calculated

as

IM(a+ ) F/(a—l—b—l—a—ﬁ)}'

1
(15) FB(G"i'O"b_ﬂ){I‘(a—i-Oé)_F(a+b+a_ﬁ)

The result in (11) follows by combining (12), (14) and (15). O
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Lemmd 4. For a random variable X with the pdf (2),

- [Xpa {log <X/q>}2]
(¢" — X7)°

T(a+a)"(a+a) - {T"(a+a)}?

_ ¢ PBa+ab-p)
B IM(a+ a)

p*B(a,b)

Na+b+a—ﬂﬁﬂa+b+a—ﬂy—ﬂ%a+b+a—ﬂﬁ2
IMa+b+a—p)

(16)

IMa+a) T(a+b+a-—pB))>
+{I‘(a+a) _I‘(a—l—b—i—oz—ﬁ)}]

fora+a>0andb> g.
Proof. The required expectation can be written as

pl

17 BT
(17) P B(a,b)

where I denotes the integral

w e [ () () e

By setting y = z/q, (18) can be rewritten as
1

(19) I = ap@+a)j/ P 1 — P} (log y)” dy.
0

Using equation (4.261.21) in Gradshteyn and Ryzhik (2000), the integral on the
right of (19) can be calculated as

F'la+a)lM(a+a)— {F'(a + a)}2
IM(a+ a)
Na+b+a—ﬂﬁﬂa+b+a—ﬁy—ﬂ%a+b+a—ﬂﬁ2
Ma+b+a—p)
Ma+a) F/(a—i—b—l—a—ﬁ)}Q
IlNa+a) Tla+b+a—7) ’
The result in (16) follows by combining (17), (19) and (20). O

1
FB(a—Fa,b—ﬂ)

(20) +{
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Lemma 5. For a random variable X with the pdf (3),

xm \B (a + m, b)
P —x Blap)  clilatbimatmiatbtmil=A)

fora+m >0 and b > 0.

Proof. The required expectation can be written as
AT

(22) Bla.b)’

where I denotes the integral
1 a+m—1 1 o b—1
(23 re [
0 {1—(1—=XNaz}*™™"

Using equation (3.197.3) in Gradshteyn and Ryzhik (2000), (23) can be calculated
as

(24) I = B(a+m,b) 2Fi(a+b+n,a+m;a+b+m;1—N\).
The result in (21) follows by combining (22) and (24). O

Acknowledgments. The authors would like to thank the referee for
carefully reading the paper and for his help in improving the paper.

REFERENCES

[1] R. E. BArRLOW, F. PROSCHAN. Statistical Theory of Reliability and Life
Testing: Probability Models. New York, Holt, Rinehart and Winston, 1975.

[2] D. R. Cox, D. V. HINKLEY. Theoretical Statistics. London, Chapman
and Hall, 1974.

[3] A. GELFAND. Estimation of a restricted variance ratio. In: Proceedings of
the 2nd International Tampere Conference in Statistics, Tampere, Finland
(Eds T. Pukkila and S. Puntanen), 1987, 457-466.

[4] I. S. GRADSHTEYN, I. M. RyzHIK. Table of Integrals, Series, and Products
(sixth edition). San Diego, Academic Press, 2000.

5] A. K. GuptA, S. NADARAJAH. Handbook of Beta Distribution and Its
Applications. New York, Marcel Dekker, 2004.



526 Gokarna Aryal and Saralees Nadarajah

[6] N. L. JounsoNn, S. Korz, N. BALAKRISHNAN. Continuous Univariate
Distributions, volume 2 (second edition). New York, John Wiley and Sons,
1995.

[7] D. L. LiBBY, M. R. Novick. Multivariate generalized beta distributions

with applications to utility assessment. J. Educational Statistics T (1982),
271-294.

[8] J. B. McDONALD. Some generalized functions for the size distribution of
income. Econometrica 52 (1984), 647-664.

[9] T. PuaAM-GIA. WorkSamp (software section). Math. and Computer Mod-
elling, 12 (1989), 1.

Department of Mathematics
University of South Florida
Tampa, Florida 33620, USA Received April 5, 2004
e-mail: snadaraj@math.iupui.edu Revised April 23, 2004



