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ABSTRACT. For the Hermite interpolation polynomial, H,,(x) we prove for
any function f € C(?9([-1,1]) and any s = 0,1,2,...,¢q, where ¢ is a fixed
integer that

1 logn
(s) p(s) _ — £(29)
|Hm (if) f ({E)| - O(l)w(ma f e )an‘—QS .
Here m is defined by m = 3n — 1.
If f € C9([~1,1]), then
|H®) — ) (z)] = O(l)w(i f(q))loi
mn m’ (1 — 22)1/2

for x € (—1,1).
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1. Introduction. Suppose we have the triangular matrix

(1.1) AT : {mip}  n=1,2,3,....
where
% —1
(1.2) mm:msg r, 1<i<n; n=1,23,...,
n

are the roots of Tchebysheff polynomial

(1.3) T,.(z) = cos(n arccos x), n=123,....
Corresponding to the matrix (1.1), suppose we have the matrices
(1.4) M ={min},

where m; ,, = 3 and

(1.5) Y:{ﬁiyl, s=0,1,2.

Here f(x) is a real function defined on [—1, 1] and fi(;) = ) (2in).

From theory of interpolation [4], we know that for given function f(x)
there exists an interpolation polynomial Hs,_1(z,Y, A) of explicit form such that
1.6 HSY) (2, Y, A) = £
( ' ) 3n71(1‘l7 ) ) fz
for s = 0,1,2 and ¢ = 0,1,2,...n. In the last equation we have dropped the

second index n and will be dropped in further equations. The explicit form of
Hs,—1(x,Y, A) is given by the following formula

(L.7), Hop1(2,Y,A) =Y firs(x) + Y flai(z) + Y f{'zi(x)
i=1 i=1 i=1

where




(1.10)

and

(1.11)
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i) = {0 = 00 = 520 = i | ),

) T, (x)
) = )~z

89

The interpolation process of the form given by (1.7)—(1.11) was not in-

vestigated before. In this paper we prove the convergence of the interpolation
process to the function together with the derivatives up to order q. Also we give

an estimate for the error. The convergence is given in the following

Theorem 1.1.

x € [-1,1],

logn

s 1
(1.12) me—Hxlumﬂﬂzoaw<;ﬂw>ﬁww

i.e

Let f be an arbitrary real function defined on [—1,1].
Suppose that f € CCD([—1,1]). Then the following inequalities hold true for all

., q

H?EQ) (z,Y,A) — f9D(z)(n — 00) uniformly if w (%,f(q)> = o(1)[logn] L.

n—1

If f € C\9([—1,1]), then

(1.13)

for |z| < 1.

w (ljf@)
1@ (@) — HY | (2,Y, 4)| = 0(1)—"——Z logn

n—1
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2. Preliminaries. In this section we briefly introduce the most impor-
tant formulas and definitions needed for our proofs. It is obvious from (1.3) , and
(1.10) that

(2.1) T () =(-1)"——, 1<i<n;n=123,...
and

(2.2) Z 12(x)] < 2

for |z| <1, ie,
(2.3) li(x)] <V2, i=1,2,3,...n, |z <1.

For the Lebesgue function [5] we have

logn
2.4 < Li( < —l
(2.4) N E%Z\ z)| < Zlogn.

We shall use the well known S. Bernstein’s [1] and Markov’s [5] inequalities which
are given as follows (see respectively [2, 5]).
For any polynomial gi(x) with real coefficients and degree k, we have

q k4
(2.5) 9 @) = O 7 777 max (o))
(2.6) 9" ()] = 0K max gy ().

For our proofs, we need the following

Theorem 2.1 (I. E. Gopengous [3]). Let f(z) € C9([-1,1]) be a real
valued function. Then there exists a polynomial G, (x, f) of degree at most m
(m > 4q +5), such that the inequality
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m

(2.7) 1fO(z) = GW (=, f)| = O(1)w ( V- ) :

holds true for i =0,...,q and for all x € [~1,1]. Here w(é, f9) is the modulus
of continuity of f(@(x).

3. Proof of the Theorem 1.1. Let G(z) be the Gopengaus polyno-
mial of degree at most 3n — 1. From theory of interpolation [5] we have

(3.1) G(z) = H3p—1(z,Yy, A)
where
(3.2) Yy = {GO@)be, (s=0,1,2)

Using Markov’s inequality (2.6) we obtain

(33) 16 @)~ HL (.Y, A)] = 010 max|G(w) = Hynoa (s, Y, A),
fors=0,1,2,...,q.

Hence from (1.2), (1.3), (1.6)—(1.11), (2.7) together with (3.1) we get for
fectI([-1,1))

Ol <3n1—1

n24

;f(2¢1)>
(3.4) |G(x) — H3p—1(z,y, A)| {1 + Ja + J3},

- li(x)]
35 B=Y0(—ad)d )+ 2
(3.5) > Z( >{ ()] - 1%2}
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and
n
Ty =) (L—a})|li(2)].
i=1
Using (2.2)-(2.4) and (1.2) into (3.3) we get
J1=0(1)logn
(3.6) Jo = 0(1)
J3=0(1)logn
Thus (3.6) when substituted in (3.4) and the result into (3.3) we get
1 logn
B 169~ HEL YA = 0 (5, 720 ) BT

for all n > [8—3@[} +2and s =0,1,2,...,q.
Using the triangular inequality, (2.7) and (3.7) we come to

£ (@) — HS) |(2,Y, 4)] <

n—1

(3.8) <O (@) — GO ()| + |G () — HE) |(2,Y, A)| =
1 logn
_ L 2(29) g
— O(l)w <’I’L’f e ) n2q*25

for all n > 8—;} +2and s =0,1,2,...,q.

Using S. Bernstein’s inequality (2.5) and (3.1) we get

G (2) — HY_ | (2,Y, A)| =

n—1
(3.9) nd

If f e C9([—1,1]), then from (1.6)-(1.9), (2.7) and (3.1) we obtain for
all n > [4;} + 2,

1

n

wl( =, f9
(3.10) ‘G(l‘) — H3n_1(.1‘, A, Y)| = O(l)#{jl =+ 72 =+ 73}
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where
611 To=3 0 —a22 ] )+ 2Ol ey b
i=1 n Z/1— 1‘22
(3.12) Jo = zn:(l —22)4/2  12(z) + _a@l
i=1 ny/1 — x?
and
(313) Ty =501 — a2)or2i(a)]|.

=1

It is obvious from (2.1)—(2.4) and (3.11)—(3.13) that

(3.14) J1+To+T3=0(1)logn

Thus from the triangular inequality, together with (3.9)—(3.10), (3.14)
and (2.7) one can easily obtain

W (ljf@)
10@) = HifLy @,V A)| = 07 5 logn.
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