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ABSTRACT. A real polynomial P of degree n in one real variable is hyperbolic
if its roots are all real. Denote by x,(;) the roots of P(i), k=1,....,n—1,
i = 0,...,n - 1. Thep one has W,< 7, xl,(;) < x,(j)v < x,(;)rjfi and ((331(;) =
x,(;'H)) or (x,(g_l = x,(;H))) = (x,(;) = x,(frl) = x,(;}rl). For n > 4 not all
arrangements of n(n 4+ 1)/2 real numbers a:,(f) compatible with these two
conditions are realizable by the roots of hyperbolic polynomials of degree n
and of their derivatives. We show that for n = 4 they are realizable either
by hyperbolic polynomials of degree 4 or by non-hyperbolic polynomials of
degree 6 whose fourth derivatives never vanish (these are a particular case

of the so-called hyperbolic polynomial-like functions of degree 4).

1. Introduction.
1.1. Hyperbolic polynomials and polynomial-like functions. Con-
sider the polynomial P(z,a) = 2" +ayz" ' +...+an, v,a; € R. Call it (strictly)
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hyperbolic if all its roots are real (real and distinct). It is clear that if P is (strictly)
hyperbolic, then such are P, ..., P 1 as well. Examples of hyperbolic polyno-
mials are the ones of all known orthogonal families (e.g. the Legendre, Laguerre,
Hermite, Tchebyshev polynomials).

Notation 1. Denote by x1 < ... < x,, the roots of P and by xgk) <...<
k)

xf%k the ones of P We set 1‘5-0) = x;. In the examples we never go beyond
degree 5 and to avoid double indices we use also the notation f;, s;, t;, l; for the
roots respectively of P', P”, P", P® . The letters are chosen to match “first”,
“second”, “third” and “last”.

Definition 2. Call arrangement (or configuration) of the roots of P,
P, ..., P Y the complete system of strict inequalities and equalities that hold
for these roots. We assume that the roots are arranged in a chain in which any
two roots occupying consecutive positions are connected with a sign < or =. An
arrangement is called non-degenerate if there are no equalities between any two

of the roots, i.e. no equalities of the form a:gj) = a:ff) for any indices i, j,q,r.
Definition 3. Arrangements are also defined by means of configuration

vectors (CV). On a CV the positions of the roots of P, P', P", P", PY are

denoted by 0, f, s, t, I and coinciding roots are put in square brackets. FE.g. the

cVv
([0f0],s, f,t,1,0,s, f,t,s,]0f0]) (for n=25)

indicates that 1 = fi=To < s1 < fo<t1 <l <x3<$2< fa <ty <s3<xy=
fa=x5.

The classical Rolle theorem implies that the roots of P and of its deriva-
tives satisfy the following inequalities:

(1) Vi<j, x,(j) < a:](gj) < l‘](;)rjii

One has also the self-evident condition:

@ (@) =) or @), =2l = @) =2l =af))

In papers [4], [2] and [3] we dealt with the question given n(n + 1)/2 real
(k)

numbers z;, k= 0,...,n—1,j =1,...,n—k, satisfying conditions (1) and (2),

which of these arrangements (called a priori admissible) can be realized by the
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roots of hyperbolic polynomials of degree n and of their derivatives. We showed
there that for n > 4 not all (and even not all non-degenerate) arrangements
can be realized by hyperbolic polynomials. In the present paper we continue
this work and we suggest a class of objects (called polynomial-like functions, see
Definition 10) by which one should replace hyperbolic polynomials in order to
realize all a priori admissible arrangements. We show (see Theorem 13) that for
n = 4 polynomial-like functions realize all such arrangements and that one can
choose them to be either hyperbolic polynomials of degree 4 or non-hyperbolic
polynomials of degree 6.

1.2. The results. The following lemma results from (1) and (2), see
Lemma 4.2 in [4]:

Lemma 4. A root of multiplicity m < k of a hyperbolic polynomial P is
at most a simple root of P*).

Remark 5. A result of R.M. Thrall (see [6]) says that for arbitrary

1\, 112!... (n —1)!
n € N* there are exactly <n—2|— )!1'3' ((271 1))
(4)

arrangements of the roots z;” which are compatible with (1). We call arrange-
ments compatible with (1) and (2) also a priori admissible.

' possible non-degenerate

Remark 6. For n = 1,2 or 3 conditions (1) and (2) together are neces-
sary and sufficient for an arrangement to be realized by the roots of a hyperbolic
polynomial.

For n = 2 there are two a priori admissible arrangements: (0, f,0) (non-
degenerate) and ([0f0]) (degenerate). For n = 3 there are two a priori admis-
sible non-degenerate arrangements: (0, f,s,0, f,0) and (0, f,0, s, f,0). All four
arrangements are realized by hyperbolic polynomials of degrees respectively 2
and 3 (and all a priori admissible degenerate arrangements for n = 3 as well).

For n = 4 there are 12 non-degenerate a priori admissible arrangements
(see Remark 5) out of which only 10 are realized by hyperbolic polynomials, see
[1], [2], [3] or [4]; see also Fig. 1 (explanations concerning the figure are given at
the beginning of Subsection 2.1). The two missing arrangements are

(Al) : (Ouf70787t7f70757f70) and (AQ) : (07f78707f7t75707f70)'

For n = 5 only 116 out of the 286 a priori admissible non-degenerate arrangements
are realized by hyperbolic polynomials, see [2]. It is intuitively clear that for
larger n this proportion is to drop even more dramatically because a hyperbolic
polynomial has only n coefficients while the number of roots of the polynomial
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and of all its derivatives equals n(n + 1)/2. Therefore if one wants to realize all a
priori admissible arrangements (or at least the non-degenerate ones) one should
try to do it by means of a class larger than the one of hyperbolic polynomials.

For n = 4 one has the following

Lemma 7. Arrangements (A1) and (As) can be realized by non-hyperbolic
polynomials of degree 6 which are obtained as analytic perturbations of the poly-
nomial Py = 2* — 2% + 5/36.

The lemmas from this subsection (except Lemma 4) are proved in the
next one.

Remark 8. The polynomial P; from Lemma 7 is the Gegenbauer
polynomial of degree 4, i.e. the unique monic polynomial of the form z™ — z"2 +
..., n > 3, which is divisible by its second derivative. The Gegenbauer polynomial
is hyperbolic; it is even or odd together with n, see [4], [2] or [3]. The polynomial
P; and its derivatives of order < 3 realize the following arrangement:

(Ag) : (0, f,[0s], [f1], [0s], f, 0)

For n > 5 perturbations of hyperbolic polynomials are insufficient to
realize all a priori admissible non-degenerate arrangements:

Lemma 9. The following non-degenerate arrangement (which is a priori
admissible) cannot be realized by a hyperbolic polynomial of degree 5 or by an
analytic perturbation of such a polynomial:

(3) (A3) : (0,f,S,O,f,t,l,O,S,f,t,O,S,f,O)

This is why to realize all a priori admissible arrangements we introduce
a new object:

Definition 10. A polynomial-like function (PLF) of degree n is a C*°-
smooth real-valued function whose n-th derivative never vanishes (we assume that
it is everywhere positive). The notion of a PLF was introduced in paper [5] (whose
authors call a PLF a pseudopolynomial ). It is clear that a PLF of degree n has
< n real roots and that its k-th derivative has < n — k real roots counted with the
multiplicities. In case of equality the PLF is called hyperbolic.

Remark 11. When perturbing analytically a hyperbolic polynomial P
of degree n, we use perturbations of the form P + Q) where ¢ > 0 is small and
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@ is a monic polynomial of degree n + 2k, k € N*. As P > 0 is a constant
and as Q™ is of degree 2k, with positive leading coefficient, one has Q™ > 0 for
|z| large enough and one has (P + Q)™ > 0 for all z if € > 0 is small enough.
Hence, such a perturbation of a hyperbolic polynomial of degree n is a PLF of
degree n.

The present paper is the first step in an effort to answer the following

Problem 12 (B. Z. Shapiro). Is it true or not that hyperbolic PLFs of
degree n realize all a priori admissible arrangements?

We prove (see Section 2) the following

Theorem 13. Forn = 4 all a priori admissible arrangements (degenerate
or not) are realizable by hyperbolic polynomials of degree 4 or by non-hyperbolic
polynomials of degree 6 which are hyperbolic PLFs of degree 4. Fxactly eight
of the degenerate arrangements cannot be realized by perturbations of hyperbolic
polynomials of degree 4.

Remarks 14. 1) One can ask the question: What conditions except (1)

and (2) have to be imposed upon the n(n+1)/2 real numbers J:S-k), E=0,...,n—1,
j =1,...,n —k, so that they should be roots of a PLF of degree n and of its
derivatives. (The question concerns not only the arrangement defined by the
numbers but the choice of the numbers themselves.) For n = 3 an exhaustive
answer is given in [5] which is a system of linear and quadratic inequalities. For
n > 4 the question seems to be still open.

2) If a non-degenerate arrangement can be realized by a hyperbolic PLF f
of degree n, then it can be realized by a polynomial P (in general, not hyperbolic
and of degree > n) which is a hyperbolic PLF of degree n. To this end one has
to approximate f() by a polynomial @@ = P™) and leave the same constants
of integration to obtain f, P respectively from f(, P — the roots of the
polynomials P, P', ..., P~ will be close to the respective roots of f, f, ...,
f=1  they will still be all distinct and will define the same arrangement.

3) It would be interesting to know for what minimal number C'(n) (resp.
C%(n)) all (resp. all non-degenerate) a priori admissible arrangements can be
realized by polynomials of degree C(n) (resp. C°(n)) which are PLFs of degree
n. For n = 4 one has C(n) = C°n) = 6, see Theorem 13 (and Remark 6,
Lemma 7, Remark 11 about (A1) and (Az)). It is clear that C°(n) < C(n) and
that n, C(n) and C°(n) are simultaneously even or odd.
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1.3. Proofs of the lemmas.

Proof of Lemma 7. 1. Recall that Pi(x) = (2? — 1/6)(2? — 5/6),
PJ'(x) = 12(2% — 1/6). Consider the one-parameter deformation (of the polyno-
mial P) P(z,¢) = Py(x)+ePs(x), € € (R,0), where Py(z) = 23(22—1/6)(x—1) =
28 — 2% — 2%/6 + 23/6. One has Py(z) = 302* — 2023 — 222 + z, Py'(z) =
1202° — 602? — 4z + 1.

As degP, = 6, the polynomial P, takes only positive values for x < —1
and for z > 1. For € > 0 small enough P has real roots close to z1 and x4 and
P(x3) = P(z3) = 0. For such values of ¢ the polynomial P (resp. P’, P", P")
has only 4 (resp. 3, 2, 1) real roots. For k = 0,...,3 the real roots of P(*) are
close to the ones of P(*). The polynomial P is a hyperbolic PLF of degree 4, see
Remark 11.

20, One has Py(+1/v/6) = 0 and P(£1/v/6) = 0; P5(0) = 0 and P'(0) =

1 7 1 7
0. Next, P/(=1/v6) = = + —— >0, P/(1//6) = = — —— < 0 and P/ (0) =
> U.

Hence, for P one has 29 < s1, 23 < so and t1 < fo (when € > 0 is
small enough). This implies that the real roots of P and of its derivatives realize
arrangement (Aj).

To realize arrangement (Az) one can consider in the same way the defor-
mation Pj(x) 4+ ePy(—xz) for ¢ > 0 close to 0. O

Proof of Lemma 9. 1° Suppose that arrangement (A3) is realizable
by a monic hyperbolic polynomial P of degree 5. Then the roots of P/, P”, P and
P® define the following a priori admissible arrangement: (f,s, fot, s, fotys, f) (%)
(just forget the roots of P in (3)). Shifting the order of the derivatives by 1 (i.e.
changing in the last arrangement f, s, t, [ respectively to 0, f, s, t), this implies
that the following arrangement is realizable by the roots of a hyperbolic poly-
nomial of degree 4: (0, f,0,s,t, f,0,s, f,0) (x«). This is arrangement (A;) from
Remark 6 which is not realizable by a hyperbolic polynomial.

20, Suppose that arrangement (3) is realizable by the perturbation of
a monic hyperbolic polynomial of degree 5 different from % (the case of % is
considered in 4°). Show that this must be a strictly hyperbolic polynomial P.

Indeed, one cannot have xs = x3 because this will imply xo =t; =11 =
x3; however, t; = [; implies that P’ has a double root t; = t5 which is possible
only for 2°, see Lemma 4.

The root x1 of P cannot coincide with x9, because then they will equal
also s; which implies that this will be a root of multiplicity > 3. Hence, these
roots must equal also z3, which (see the lines above) is impossible.
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One cannot have x3 = x4 because this implies that x3 = so = x4, hence,
the root z3 of P is of multiplicity at least 3 and given that xo < 3, one must
have z3 = x4 = x5 = t3. Hence, the root x3 is of multiplicity > 4 which by
T9 < x3 is impossible.

Finally, x4 = x5 implies x4 = x5 = s3 which means that z4 is of multi-
plicity > 3, i.e. x3 = x4 = x5. It was shown above that this is impossible.

3%, The polynomial P from 2° being strictly hyperbolic, so is its derivative
Q = P’ as well. Hence, the arrangement defined by the roots of @) and its
derivatives is either (xx) (i.e. (A;) which is impossible, see Remark 6; here once
again we shift the order of the derivatives by 1) or is obtained from (xx) by
replacing certain inequalities between roots by the corresponding equalities.

The polynomial @ being strictly hyperbolic, only equalities of the form
s; = xj or t; = f} are possible, see Lemma 4. More exactly — of the form s; = w2,
s9 = x3 and/or t; = fo. Any two of them imply the third one, see [4] or just look
at Fig. 1. One can deduce from that figure that if one has s; = x9, s9 > x3 or
§1 > X9, So = x3, then one has t; > fo; and that if one has s1 > x9, t; = fo, then
one has sy < x3.

Hence, up to rescaling of the z-axis the polynomial () must be the poly-
nomial P, = z* — 2% 4+ 5/36, see Remark 8, and it defines arrangement (Ap)
from Remark 8. This means that up to rescaling of the z-axis one has P(z) =
x5 — 523/3 + 252/36.

One has P = 2023 — 102z = 20z(z — 1/v/2)(x + 1/+/2). Thus P(1/\/2) =
1/9v/2 > 0 and one has x3 < s3 < x4. By perturbing such a polynomial one
cannot obtain arrangement (3) in which one has z4 < s3. This means that
arrangement (3) cannot be obtained by analytically perturbing a monic hyper-
bolic polynomial different from z°.

49, Suppose that the family of functions f(z,¢) (f(z,0) = %), analytic
both in z € C and € € (C,0), realizes arrangement (3) for some £ # 0. Set
f=>5 aj(e)?, aj € O, a5(0) = 1, a;(0) = 0 for j # 5. Without loss of
generality we assume that as(¢) = 1. One cannot have a; = 0 for j = 0,...,4
because for such a deformation of 5 one does not get arrangement (3).

Denote by v; the valuation of a;, i.e. one has a; = €"b;(¢e), b;(0) # 0.
We set v; = oo if a; = 0.

Set ¢ = n'?° and g(z,n) = f(z,n'?°). Hence, for j = 0,...,4 one has
aj = nt2%ib;(n'?0), v; € N, with at least one non-zero v;.

120)

Denote by [ the smallest of the non-zero numbers 120v;/(5 — j), j =
0,...,4 (notice that they are integers), and by jo one of the indices j < 4 for which
this minimum is attained. Set 2 + n'z. This change transforms ¢ into h(z,n) =
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n°'hyi(z,n) where hy is analytic in (x,7n) and hy(x,0) is a monic polynomial of
degree 5 which is not 2° (it contains also the monomial 27°). Indeed, the monomial
n'20% 23 (resp. %) becomes 720 +ilzd (vesp. n°la®). For j = jo one has 120v; +
jl = 5l while for the other indices j < 4 one has 120v; + jl > 5l. For j > 5 one
has 120v; + jl > jl > 5l.

Hence, the function h/n® is an analytic deformation of a (necessarily hy-
perbolic) monic polynomial of degree 5 different from x> and realizes arrangement

(3) which by 2° — 3% is impossible. O

1 (0f,0sfts0,/f,0) 6 (0£,0stf,50,,0)

2 (0£,0,sf10sf,0) 7 (0£,50.L1,50£,0)
3 (0f,50,f,,0,sf,0) 8 (0f,s01f,05sf,0)
4 (0f,0,sf,0t5sf,0) ©1) 9 (0f,st,0f,50f,0)
(0.1)
5 (0fs0f,01sf,0) 10 (0f,51,0£,0,sf,0)
A ([0f0],s[ft],s[0f0]) B (0f,[0s],[ft],[05] f,0)
C (0f,s[0ft0],5f,0) ©2)
L
D ([OfsOf0] t;5,0) E (0 st[0fs0f0])
2 2
F  ([0f0],sf,[0t],,,0) K (0f,s[0t].f.s[0f0])
3
©3) F 5
G (0f,[0df[0] 1,0 % ¢ H (0f,s[00,1[08],1,0)
D
L ([0f0],s1.[0s].f,0) M (0f[08] t.f,s[0f0])
Fig. 1.
Fig. 1

2. Proof of Theorem 13.

2.1. Plan and basic ideas of the proof. Fig. 1 represents the hy-
perbolicity domain of the family of polynomials P = z* — 22 4+ az + b, i.e. the
set of values of the coefficients a,b € R for which the polynomial is hyperbolic.
(One can always normalize the first three coefficients into 1,0, —1 by a shift of
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the origin, a change of the scope of the z-axis and by multiplying the polyno-
mial by a non-zero number.) This domain is a curvilinear triangle divided by
the discriminant sets into 10 open subdomains on each of which one and the
same non-degenerate arrangement is realized. The discriminant sets are the sets
D(i,5) := {(a,b) € R?[Res(PW, PU)) =0}, 0<4,j <3,i#j.

The boundaries of the domains consist of arcs on which exactly one equal-
ity of the form x,(gl) = :L‘,(f) takes place and of points at which two or more such
equalities take place. (We call them further just equalities for short.) On each
arc and at each point a degenerate arrangement is realized. For the domains and
for the points the arrangements are indicated beside the figure. From them the
ones corresponding to the arcs can be deduced immediately.

Definition 15. Two or more equalities are called independent if they
are linearly independent as linear equalities and if none of them results from the
others due to condition (2). The domains, arcs and points on each of which one
and the same arrangement of the roots of P and its derivatives is realized are
called the strata of the hyperbolicity domain. The points A and B are the only
overdetermined strata, i.e. strata on which more than two independent equalities
hold, see [4], [2] or [3]. Further we denote the arrangement realized at a point X

by (Ax).

Lemma 16. 1) No a priori admissible arrangement has four independent
equalities.

2) There are exactly four a priori admissible arrangements with three
independent equalities. Two of them (namely,

(Aa) = ([0f0],s,[ft],5,[0f0]) and (Ap) : (0,f,[0s],[fi],[0s], f,0)

see Fig. 1) are realizable by hyperbolic polynomials. The other two are

(A) « ([0£0],s,[f1],[0s], £,0) and (A") : (0, f,[0s], [ft],s,[0£0]).

3) The arrangements (A") and (A”) are realizable by non-hyperbolic poly-
nomials of degree 6 which are hyperbolic PLFs of degree 4.

4) These two arrangements cannot be realized by analytic deformations
(perturbations) of hyperbolic polynomials of degree 4.

The lemmas from this subsection are proved in the next one.
Remarks 17. 1) In general one expects overdetermined strata not to be
present (to define a stratum which is a point on Fig. 1 one needs two, not three
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independent equalities). Their presence is explained by a symmetry, i.e. by the
fact that at these strata P is even. This explains why the other two arrangements
with three independent equalities (A’) and (A”) are not realizable by hyperbolic
polynomials; to realize them one needs an additional parameter.

2) Geometrically overdetermined strata are points on Fig. 1 where three
sheats of discriminant sets defined by three independent equalities meet at one
point. This is the case of the points A and B but not of C' where the three
equalities 9 = x3 = fo = t; are not independent (the second results from the
first one).

3) One can think of the analytic perturbations of hyperbolic polynomials
(in particular, of the Gegenbauer polynomial) in the following way. Adding the
perturbation parameter ¢ results in perturbing the discriminant sets which inter-
sect at the point B, see Fig. 1. If one fixes a small non-zero value of ¢, then they
do not intersect at one point and the set D(1,3) moves, say, to the left of the
self-intersection point of the set D(0,2) (which we still call point B). The small
triangle with vertex at B and formed by the sets D(1,3) and D(0,2) will be a
domain in which arrangement (A;) is realized. One can easily see which degen-
erate arrangements are realized on the vertices and on the sides of this triangle.
If the set D(1,3) moves to the right, then in the small triangle to the right of the
point B arrangement (Ay) will be realized.

To realize arrangement (A’) (resp. (A”)) the set D(1,3) must move to
the left (resp. to the right) till it passes through the point L (resp. M), see Fig.
1. This is not a small perturbation but a global deformation which illustrates
geometrically part 4) of the lemma.

Lemma 18. All a priori admissible arrangements with exactly two in-
dependent equalities and different from (Ap), (Ac), (Ag), (Ar), (Ac), (Ax),
(Ak), (Ar) and (Apr) can be obtained by perturbing analytically the polynomials
realizing arrangements (Aa), (Ag), (A") or (A"). The perturbed polynomials are
of degree 6; they are hyperbolic PLFs of degree 4.

Remark 19. When perturbing a non-hyperbolic polynomial P of degree
6 which is a hyperbolic PLF of degree 4 we add €@, € € (R, 0) where @ is a real
polynomial of degree < 6. Therefore the perturbed polynomial is still a hyperbolic
PLF of degree 4 for € small enough.

Lemma 20. All a priori admissible arrangements with exactly one equal-
ity and not realizable by hyperbolic polynomials of degree 4 can be obtained by
perturbing analytically polynomials of degree 6 which are hyperbolic PLF's of de-
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gree 4. The perturbed polynomials are also of degree 6 and hyperbolic PLFs of
degree 4.

All non-degenerate arrangements are realizable by hyperbolic polynomials
of degree 4 (see Fig. 1) or by polynomials of degree 6 which are perturbations
of degree 4 hyperbolic ones, see Lemma 7 and Remark 11. From the degenerate
arrangements only (A’), (A”) and six of the arrangements obtained by perturbing
these two cannot be realized by perturbations of hyperbolic polynomials, see
Remarks 23 and 24. Therefore Lemmas 18 and 20 and Remark 19 finish the
proof of the theorem. O

Remark 21. Some of the arrangements from Lemma 20 are in fact ob-
tained by perturbing first arrangements (A4), (4p), (A") or (A”) (see Lemma 18)
and then again perturbing one of the newly obtained arrangements with exactly
two independent equalities. Giving directly a one-parameter perturbation when
starting from (A4), (Ap), (A’) or (A”) is possible but technically more difficult.

2.2. Proofs of the lemmas.

Proof of Lemma 16. 1 Parts 1) and 2) of the lemma are to
be checked directly. Part 1) implies part 4) — if an arrangement with three
independent equalities can be realized as a perturbation of another arrangement,
then the latter should have at least four independent equalities which by part 1)
is impossible.

20, Prove part 3). Look for a real polynomial f = 264ax®+ba* +cx3+da?
which realizes arrangement (A’) (the root 1 = x9 is at 0). Impose the conditions

(4) fQ)=f"1) =0, f(w)=f"(w)=0

We are looking for w € (0, 1) for which arrangement (A’) is realized. This means
that the following condition must be added to system (4):

(5) 5a* —12b < 0
It results from f*) = 24(1522 4+ 5ax + b) having no real roots (f must be a PLF
of degree 4).
30, Set A = 40w* —125w3 +132w? —56w+8. System (4) has the following

solution (found with the help of MAPLE):

a = —2(56w’ — 135w* + 60w + 56w? — 48w + 9)/A

b = 2(40w® — 243w* + 315w3 — 120w? + 5)/A

c = —4w(50w® — 126w* 4 70w + 40w? — 45w + 10)/A

d = w?(120w* — 392w? + 456w? — 225w + 40)/A
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One checks with the help of MAPLE that for w = 0.55 one has (5). Hence, this
value of w gives a polynomial f which realizes arrangement (A’). For (A”) such
a polynomial is f(—z). O

Remark 22. It should be noted that condition (5) holds on a very
narrow interval w.r.t. w — (0.54855...,0.55249...). Therefore using MAPLE here
was indispensible. The author acknowledges the help of M. Elkadi who performed
the computation with MAPLE.

Proof of Lemma 18. 1°. We let the reader check oneself that all
arrangements with exactly two independent equalities are either (Ap), (Ac),
(Ag), (Ar), (Ac), (Am), (Ak), (AL), (Anr) or are obtained from (A4), (4g),

<

z¥ or

/ " : : (k) _ ; : (k)
(A", (A”) by replacing an equality z;” = z;, by an inequality x; "

AN Ty,

Perturbing (A4).

20, Arrangement (A,4) is realized by the polynomial R = (2% — 1)%
Consider its perturbation R(z,e) := R(z)+eRy(x) where Ry (z) = (z—1)%(z+1)%,
The polynomials R} and R (resp. R’ and R"”") have only = —1 (resp. = = 0) as
common zero (to be checked directly). Hence, for almost all € # 0 the polynomials
R’ and R" have no root in common.

For ¢ = gy > 0 small enough the polynomial R is a hyperbolic PLF of
degree 4. (Indeed, it can have no real roots different from +1 because both R
and R; are positive.) It has double roots at +1. Hence, it realizes one of the
arrangements

(A") : ([0£0), s, ft,5,[0£0]) or (AY) : ([0f0],s,t, f,5,[0f0]).

The other one of the two is realized by the polynomial R(x) + egRy(—x).

3. Arrangement (A4) is realized also by the polynomial V; := z%(z —2)%.
(In this case one has fo = t; = 1.) There exists a real polynomial V5 = 2% +
az® + br* + cx® + dz? (hence, having a double root at 0) for which one has
Vy(1) = Vi (1) = 0, V5(2) = V5(3) = 0 — these conditions are a linear system
with unknown variables a, b, ¢, d and with non-zero determinant. Hence, the
polynomial V(x,e) := Vi (z) 4+ eVa(x) for € > 0 small enough is a hyperbolic PLF
of degree 4 which realizes arrangement (A®) : ([0f0],s,[ft],s,0, f,0). The
polynomial V(—z,¢) realizes arrangement (A©)) : (0, f,0, s, [ft], s, [0£0]).

Perturbing (Ap).

4%, Arrangement (Ap) is realized by a hyperbolic polynomial Ry with
Tr9 =81 = —1, x3 = s9 = 1. Hence, Ry = 2t — 622+ 5. The arrangements

(07f7 [08]7f7t7 [08]7f70) and (07f7 [08]7t7f7 [08]7f70)
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are realized by polynomials of the kind Ry + £9R;(£x) with the same meaning
of Ry and g as in 2°.
5%, To realize arrangements

(A7) (0,£,0,5,[tf],[0s], £,0) and (A®) : (0, f,s,0,[tf], [0s], f,0)

perturb Ry by a polynomial ® of degree 6 such that ®'(0) = ®”(0) = 0 and
®(1) = ®”(1) = 0. The first two of these conditions imply that ® is of the form
28 + ax® + Bzt + y2? 4 4.

The root of the polynomial Ry + €® which is close to x5 = —1 equals
x9 — e(®(—=1)/Ry(—1)) + o(¢). One has ®(—1) -1 = —a+F+~v+3d = L.
The root of the polynomial Rj + ¢®” which is close to s; = —1 equals s; —

e(®"(-1)/RY(—1)) + o(¢). One has ®"(—1) — 30 = =20« + 123 + 27y := M.

Show that the linear form £/R,(—1)— M/R}) (—1) (with arguments a, 3,
7, ) is not a linear combination of the linear forms ®(1)—1 =a+8+v+0 = U
and ®”(1) — 30 = 20 + 128 + 2y =: V. This will imply that one can choose «,
B, v, 0 such that for € # 0 small enough the roots zo and s; are different; by
choosing the sign of € one can obtain either xo < s1 or xo > s1.

Indeed, if £L/R,(—1) — M/RY (—1) = qU + rV, then one must have ¢ =
1/RL(—1) (compare the coefficients before 0) and r = —1/R}'(—1) (compare the
coefficients before ). But then the coefficients before « to the left and to the right
must equal respectively —1/R5(—1) + 20/RY (—1) and 1/R,(—1) — 20/ R (—1).
Hence, the equality is possible only if —1/R,(—1) + 20/R4'(—1) = 0. This,
however, is not the case — one has R)(—1) =8 and R (—1) = —24.

6°. Similarly to 5% one realizes the arrangements

(O7f7 [08]7[tf]70787f70) and (07f7 [08]7[tf]78707f70)

by means of the polynomial Rs(x) + e®(—x).

Perturbing (A”).

70, Recall that arrangement (A7) was already obtained in 5°. Therefore
there remains to realize the arrangements obtained by destroying one of the
conditions fo = t; and x3 = s9.

Suppose that arrangement (A’) is realized by a polynomial f of degree 6
(which is a PLF of degree 4) such that there hold the conditions f(0) = f/(0) =0
and (4), see the proof of Lemma 16. Recall that we chose w = 0.55 in that proof.
Consider a real polynomial F' of degree 5 of the form az® + ba* + cx3 + da?. The
system of conditions

Fl)=a, F'(1)=8 Fw =~ F"(w)=46
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is a system of linear equations with unknown variables a, b, ¢, d. The determinant
of this system is non-zero for w = 0.55 (computation performed by means of
MAPLE).

Hence, one can obtain such polynomials F' for which one has («a, 3,7,0) =
(0,£1,0,0) or (0,0,0,+1). In the first case the perturbation f+&F preserves the
equalities x1 = x9, fo = t; and destroys x3 = sg; the latter equality is replaced
by 3 < so (we obtain arrangement (A®) : ([0£0],s,[tf],0,s, f,0)) or z3 > so
(this is arrangement (A®))) according to the choice of the sign of . In the second
case the equality fo = t; is replaced by fo < t1 (this is arrangement (Ar)) or
f2 > t1 (this gives arrangement (A10) . ([0f0],s,t, f,[0s], f,0)) according to
the sign of € while 1 = x2 and x3 = so are preserved.

8%, When perturbing arrangement (A”) the reasoning is completely anal-
ogous. [

Remark 23. Exactly the following six arrangements with two or three
independent equalities are not realizable by hyperbolic polynomials of degree 4
or by their perturbations: (A4’), (4”), (A®), (A09) and the analogs of (A®),
(A19)) when perturbing (A”) instead of (4’). This can be deduced from the proof
of Lemma 18.

Proof of Lemma 20. 1°. Any a priori admissible arrangement (A*)
with only one equality can be obtained from one with two equalities (say, (A**))
by replacing one of them by an inequality. We show that in all possible cases one
can perturb analytically the polynomial realizing arrangement (A™*) to obtain
arrangement (A*).

It suffices to consider the case when the equalities are of one of the three
types:

1) Tj = Tij+1; 2) Ti = Sj3 3) f2 = tl.

We do not mention z; = f; and z;41 = f; in which case an equality of type 1)
occurs. We assume that there is no triple root x; = x;4+1 = x;42 in which case
the arrangements are realized by hyperbolic polynomials.

20, If there are two equalities of type 1), then these are 1 = x5 and
T3 = x4, otherwise there is a triple root; one can perturb the polynomial realizing
the arrangement with the two equalities by adding e(x — z1)?(x — z3) to destroy
x3 = x4 or e(z — z1)(z — 23)? to destroy x; = x5. We leave the details in this
proof (including the sign of €) for the reader.

30, If there is an equality of type 1) and one of type 2), then these are
either x1 = z9 and z3 = sy or x3 = x4 and z9 = s; (otherwise there must be
a triple root). We consider only the first case, the second one can be treated
by analogy with the first one. One can perturb the polynomial realizing such an
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arrangement by adding e(z —z1)?(z — 3) to destroy x3 = s1 or e(x —x3)3(x — 1)
to destroy x1 = xo.

49, If there is an equality of type 1) and one of type 3), then the first is
either x; = x5 or &9 = x3 or z3 = x4. The last case is treated by analogy with
the first one. In the second case the arrangements are realized by hyperbolic
polynomials.

In the first case one perturbs the polynomial of degree 6 which realizes
the arrangement by adding (z — z1)? to destroy fo = t1 or e(z — f2)*(z — x1) to
destroy x1 = xo.

50, If there are two equalities of type 2), then these are x5 = s; and
73 = s9. One adds e(x — 12)3(z — x3) to destroy x5 = s3 or e(x — x2)(z — x3)3 to
destroy x9 = s1.

6°. If there is one equality of type 2) (say, 2 = s1) and one of type 3),
then one adds eQ(z) where Q(z) = (z — 72)3(z — ) to destroy fo = t; here a
is chosen such that Q'(f2) = 0. To destroy xo = 51 one adds e(z — f2)*(z — x2).

7°. In all cases the added polynomials are of degree < 6 and for £ # 0
small enough the perturbed polynomial is still a hyperbolic PLF of degree 4, see
Remark 19. O

Remark 24. Consider the arrangements with exactly one equality
obtained by perturbing (A®)), (A119) or their analogs in the sense of Remark 23,
Only such arrangements with one equality can happen not to be among the
ones obtained from hyperbolic polynomials or from their analytic perturbations.
For (A®) (and for (A19)) as well) this is only ([0£0],s,t, f,0,s, f,0). For their
analogs this is only (0, f,s,0, f,t,s,[0f0]). This makes two arrangements.
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