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QUATERNION EXTENSIONS OF ORDER 16

Ivo M. Michailov

Communicated by V. Drensky

We describe several types of Galois extensions having as Galois group the
quaternion group Q16 of order 16.

1. Introduction. The realization of small 2-groups as Galois groups
over arbitrary field of characteristic not 2 has been an object of many papers in
recent years. Most commonly among them are investigated the nonabelian groups
of orders 8 and 16. The goals, which are pursued in these works, are mainly in
two directions. Firstly, there is looked for the conditions (or obstructions) under
which the groups are realizable. Secondly, there is looked for a description of all
Galois extensions, realizing these groups. The conditions under which the groups
are realizable are often expressed by the so-called obstructions, which are usually
products of quaternion classes in the Brauer group. When the obstruction is
expressed as a product of two quaternion classes, an explicit parameterization
of all Galois extensions is being given. This is done in [2], [5], [6]. Since the
obstruction to realizability of the quaternion group Q16 is a product of three
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quaternion classes, such a description can not be made. That is why the Q16

extensions are not considered in the mentioned works. Some interesting results
about realizability of Q16 as a Galois group over algebraic fields are obtained
in [1].

Our goal is to give a description of Q16 extensions in specific situations.
In Section 3 we give three types of Q16 extensions, which make use of extensions
realizing other nonabelian groups of order 16. There is used the equivalence of
quadratic forms. This theory is well developed in [6]. In Section 4 we give a
different kind of description of Q16 extensions in a specific situation. Namely, we
give all Q16 extensions that contain a given quadratic extension, which in turn,
contains a primitive 8th root of unity.

2. The dihedral and quasidihedral (semidihedral) groups of
order 16. We begin by giving the Galois extensions realizing the groups QD16

andD16, as we find them in [5, 6]. ByQD16 we denote the quasidihedral group (by
Ledet’s notation QD8) generated by elements u and v, such that u8 = 1, v2 = u4

and vu = u3v. By D16 we denote the dihedral group (by Ledet’s notation D8)
generated by elements u and v, such that u8 = v2 = 1 and vu = u−1v.

Now, let a, b ∈ k∗ (k has characteristic 6= 2) be quadratically independent,
i.e., a, b and ab are not in k2. Let also (a, ab) = 1 ∈ Br(k), i.e., D8 is realizable.
Then there exist α, β ∈ k∗, such that α2 − aβ2 = ab, hence all D8 extensions are
{k(

√

r(α+ β
√
a),

√
b)/k, r ∈ k∗}. Denote

ϕ =

√

r(α+ β
√
a) and ψ =

√

r(α− β
√
a) =

α− β
√
a√

ab
ϕ,

so D8 is generated by the elements σ and τ , such that

σ : ϕ 7→ ψ,
√
b 7→

√
b; τ : ϕ 7→ ϕ,

√
b 7→ −

√
b.

Note also that we have

σ : ψ 7→ −ϕ, τ : ψ 7→ −ψ.

From [6], we have the following theorems describing the QD16 and D16

extensions:

Theorem 2.1. Let α 6= 0. The embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension

(2.1) 1 → µ2 → QD16 −→
u 7→σ
v 7→τ

D8 → 1
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is solvable if and only if the quadratic forms 〈b, 2rα, 2brα〉 and 〈a, 2, 2a〉 are equiv-
alent over k. If this equivalence is expressed by the matrix P:

Pt〈b, 2rα, 2brα〉P = 〈a, 2, 2a〉,

we can assume det P = a/brα and get the solutions

K(
√
sωQD)/k = k(

√
sωQD,

√
b)/k, s ∈ k∗,

where

ωQD = 1 + p11

√
b/
√
a+

1

2
(p22 + p23/

√
a− p32

√
b+ p33

√
b/
√
a)ϕ

+
1

2
(p22 − p23/

√
a+ p32

√
b+ p33

√
b/
√
a)ψ.

Theorem 2.2. Let α 6= 0. The embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension

(2.2) 1 → µ2 → D16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if the quadratic forms 〈b, rα, brα〉 and 〈ab, 2b, 2a〉 are equiv-
alent over k. If this equivalence is expressed by the matrix P:

Pt〈b, rα, brα〉P = 〈ab, 2b, 2a〉,

we can assume det P = 2a/rα and get the solutions

K(
√
sωD)/k = k(

√
sωD,

√
b)/k, s ∈ k∗,

where

ωD = 1 − p11/
√
a+

1

2
(p32 + p23/

√
a)ϕ+

1

2
(p22/

√
b− p33

√
b/
√
a)ψ.

The obstructions to the embedding problems given by (2.1) and (2.2)
are, respectively, (−b,−2rα)(−a,−2) ∈ Br(k) and (−ab,−2a)(−b,−rα). In the
special case b = −1 we can assume that all D8 extensions are k( 4

√
a, i)/k and the

action of the generators of D8 is

σ : 4
√
a 7→ 4

√
ai, σ : i 7→ i; τ : 4

√
a 7→ 4

√
a, τ : i 7→ −i.
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Theorem 2.3. The embedding problem given by K/k = k( 4
√
a, i)/k, with

Galois group D8, and the group extension

(2.1) 1 → µ2 → QD16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if

∃p, q ∈ k : p2 + aq2 = −2.

The solutions are:

K(
√
rωQD)/k = k(

√
rωQD, i)/k, r ∈ k∗,

where ωQD = (1 + i)(p + qi
√
a) 4
√
a.

Theorem 2.4. The embedding problem given by K/k = k( 4
√
a, i)/k, with

Galois group D8, and the group extension

(2.2) 1 → µ2 → D16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if

∃p, q ∈ k : p2 − aq2 = 2.

The solutions are:

K(
√
rωD)/k = k(

√
rωD, i)/k, r ∈ k∗,

where ωD = (p+ q
√
a) 4
√
a.

Now, we turn our attention to the semidihedral group SD16, generated
by elements u and v, such that u8 = v2 = 1 and vu = u3v. The group SD16

is in fact isomorphic to the group QD16, but it has different obstruction, hence
different parameterization of the solutions. The obstruction to embedding the
D8 extension into an SD16 extension is (a,−2)(−b, 2rα) = (−ab,−2)(−b,−rα) ∈
Br(k), as is shown in [4, 7]. Whence, given α 6= 0, the embedding problem given

by K/k = k(ϕ,
√
b)/k and the group extension

(2.3) 1 → µ2 → SD16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if 〈b, rα, brα〉 is equivalent to 〈ab, 2, 2ab〉 over k. Let this
equivalence be expressed by the matrix P:

Pt〈b, rα, brα〉P = 〈ab, 2, 2ab〉,
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and assume det P = 2a/rα. With similar argument as to the group D16 given in
[6] we define the matrix P′:

P′ =





−1 0 0
0 1/2 1/2
0 1/2 −1/2



 〈
√
b, 1,

√
b〉P〈1/

√
b, 1, 1/

√
b〉.

We can assume det P′ = a/rα and denote α′ = α/
√
b, β′ = β/

√
b. Now we put

ω = 1 + p′11/
√
a+

1

2
[(p′22 − p′32) + (p′23 + p′33)/

√
a]ϕ

+
1

2
[(p′22 + p′32) − (p′23 − p′33)/

√
a]
α′ − β′

√
a√

a
ϕ,

where p′ijs are the entries of the matrix P′. Then

ω = 1 − p11/
√
a+

1

2
[
√
bp32 + p23/

√
ab]ϕ+

1

2
[p22 − p33/

√
a]
α− β

√
a

√
a
√
b
ϕ,

whence K(
√
ω)/k(

√
b) is a C8 extension. Now we may put

ωSD = σω = 1 + p11/
√
a+

1

2
(p32

√
b− p23/

√
ab)ψ − 1

2
[p22 + p33/

√
a]ϕ.

Then we have τωSD = ωSD, so K(
√
ωSD)/k is Galois, and since the preimage of

τσ in the Galois group is of order 4, the Galois group is SD16. Thus we have:

Theorem 2.5. Let α 6= 0. The embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension

(2.3) 1 → µ2 → SD16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if the quadratic forms 〈b, rα, brα〉 and 〈ab, 2, 2ab〉 are equiv-
alent over k. If this equivalence is expressed by the matrix P:

Pt〈b, rα, brα〉P = 〈ab, 2, 2ab〉,

we can assume det P = 2a/rα and get the solutions

K(
√
sωSD)/k = k(

√
sωSD,

√
b)/k, s ∈ k∗,

where ωSD is as above.
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For b = −1 we have:

Theorem 2.6. The embedding problem given by K/k = k( 4
√
a, i)/k, with

Galois group D8, and the group extension

(2.3) 1 → µ2 → SD16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if

∃p, q ∈ k : p2 − aq2 = −2.

The solutions are:

K(
√
rωSD)/k = k(

√
rωSD, i)/k, r ∈ k∗,

where ωSD = (p + q
√
a) 4
√
a.

3. The quaternion group of order 16. In this section we give
three types of Galois extensions having the group Q16 as Galois group which are
obtained easily by the dihedral, quasidihedral and semidihedral Galois extensions
described in the previous section. Let the quaternion group Q16 be generated by
elements u and v, such that u8 = 1, v2 = u4 and vu = u−1v. Then the embedding
problem given by K/k = k(ϕ,

√
b)/k and the group extension

(3.1) 1 → µ2 → Q16 −→
u 7→σ
v 7→τ

D8 → 1

is solvable if and only if (ab, 2)(b,−1)(−b, rα) = 1 ∈ Br(k) (see [4]).
We will consider three special cases, where one of the elements a, b, ab is

a sum of two squares. We use this simple argument: If a group G is of exponent
8, and

1 → µ2 → G −→
u 7→σ
v 7→τ

D8 → 1

is a non-split group extension, then G is isomorphic to one of the groups QD16

(SD16), D16 or Q16. Moreover, the group G is determined uniquely by the orders
of the pre-images u, v, uv of the generators σ, τ, στ ∈ D8.

Proposition 3.1. Let (a,−1) = 1 ∈ Br(k), i.e., ∃x, y ∈ k such that
a = x2 − ay2. Then all the solutions of the embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension (3.1) are

K

(

√

s(x+ y
√
a)ωQD

)

/

k = k

(

√

s(x+ y
√
a)ωQD,

√
b

)

/

k, s ∈ k∗,
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where ωQD is as in theorems 2.1 or 2.3.

P r o o f. The obstruction is

(ab, 2)(b,−1)(−b, rα)=(ab,−2)(ab,−1)(b,−1)(−b, rα)=(ab,−2)(−b, rα)∈Br(k),

which is exactly the obstruction to realizability ofQD16. Now, let (ab,−2)(−b, rα)
= 1 ∈ Br(k) and ωQD give the QD16 extension. Then στωQD = ωQD, and we
put ωQ = (x+ y

√
a)ωQD. We have στωQ = a2

στωQ, where

aστ =

√
a

x+ y
√
a
.

Thus K(
√
ωQ)/k is Galois and the pre-images of στ and τ in the Galois group G

are of order 4, since aστστaστ = −1. Hence K(
√
sωQ)/k is Q16 extension. �

Proposition 3.2. Let (b,−1) = 1 ∈ Br(k), i.e., ∃x, y ∈ k such that
b = x2 − by2. Then all the solutions of the embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension (3.1) are

K

(
√

s(x+ y
√
b)ωD

)

/

k = k

(
√

s(x+ y
√
b)ωD,

√
b

)

/

k, s ∈ k∗,

where ωD is as in theorems 2.2 or 2.4.

P r o o f. The obstruction is (ab, 2)(b,−1)(−b, rα) = (ab, 2)(−b, rα) ∈
Br(k), which is exactly the obstruction to realizability of D16. Now, let
(ab, 2)(−b, rα) = 1 ∈ Br(k) and ωD give the D16 extension. Here τωD =
ωD, στωD = a2

στωD; the pre-images of τ and σ in D16 are of order 2, and we

put ωQ = (x+ y
√
b)ωD. Now we have τωQ = a2

τωQ and στωQ = a′2στωQ, where

aτ =

√
b

x+ y
√
b
, a′στ = aτaστ .

From aττaτ = −1, aστστaστ = 1 we get a′στστa
′

στ = aττaτaστστaστ = −1, so
the pre-images of τ and στ in G are of order 4. Thus K(

√
sωQ)/k is Galois Q16

extension. �

Proposition 3.3. Let (ab,−1) = 1 ∈ Br(k), i.e., ∃x, y ∈ k such that
ab = x2 − aby2. Then all the solutions of the embedding problem given by K/k =

k(ϕ,
√
b)/k and the group extension (3.1) are

K

(
√

s(x+ y
√
ab)ωSD

)

/

k = k

(
√

s(x+ y
√
ab)ωSD,

√
b

)

/

k, s ∈ k∗,
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where ωSD is as in theorems 2.5 or 2.6.

P r o o f. The obstruction is

(−ab,−2)(ab,−1)(−1,−2)(b,−1)(−b, rα) = (−ab,−2)(−b,−rα) ∈ Br(k),

which is exactly the obstruction to realizability of SD16. Now, (−ab,−2)(−b,−rα)
= 1 ∈ Br(k) and ωSD give the SD16 extension. Here τωSD = ωSD, στωSD =
a2

στωSD; the pre-image of τ is of order 2 and the pre-image of στ is of order 4
(in SD16), and we put ωQ = (x + y

√
ab)ωSD. Now we have τωQ = a2

τωQ and
στωQ = a2

στωQ, where

aτ =

√
ab

x+ y
√
ab
.

From aττaτ = −1 and aστστaστ = −1 we get that the pre-images of τ and στ in
G are of order 4. Thus K(

√
sωQ)/k is Galois Q16 extension. �

4. Quaternion extensions over quadratic extensions that
contain a primitive 8th root of unity. Let b ∈ k∗ \ (k∗)2, let L = k(

√
b)

and let L contain a primitive 8th root of unity ζ. Our goal is to describe all
Galois extensions M/k, which are solutions to the embedding problem given by
L/k and the group extension

(4.1) 1 → C8 = 〈u〉 → Q16 → C2
∼= Gal(L/k) → 1,

where Q16 is generated by u and v the same way as in Section 3.
Now, assume M is cyclic over L of degree 8. Then M = L(ω1/8) by

Kummer theory. If Gal(L/k) = {1, v}, then M is Galois over k if and only if
v(ω) = ωtβ8, where β ∈ L∗ and t2 ≡ 1 (mod 8). So, we must give a detailed
description of the element ω.

If G is a group of order 16, which contains a cyclic subgroup 〈u〉 of order
8, then G is generated by elements u and v such that

1. |u| = 8, v /∈ 〈u〉;

2. vuv−1 = uj, v2 = ul;

3. j2 ≡ 1 (mod 8), l(j − 1) ≡ 0 (mod 8).

It is known that G ∼= Q16 if and only if j ≡ −1 and l ≡ 4 (mod 8). Since
ζ ∈ L, we have v(ζ) = ζr, where r is an integer, such that gcd(r, 8) = 1, i.e., r is

odd. Assume ζ =

√
2

2
(1 + i), where i =

√
−1. Then we have the following four

cases:
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1. r ≡ 1, i.e., ζ ∈ k;

2. r ≡ −1, i.e.,
√

2 ∈ k and b =2 −1;

3. r ≡ 5, i.e., i ∈ k and b =2 2;

4. r ≡ −5, i.e.,
√
−2 ∈ k and b =2 −1 =2 2.

The embedding problem given by L/k = k(
√
b)/k and the group extension (4.1)

is solvable if and only if there exists a ∈ k, such that a and b are quadratically
independent over k, (a, ab) = 1 ∈ Br(k) and (ab, 2)(b, b)(−b, x) = 1 ∈ Br(k),
for some x ∈ k (see [8]). We denote by N the norm map NL/k : L → k. Now,
consider the four cases, described above.

If r ≡ 1, i.e., ζ ∈ k, then the embedding problem given by L/k and (4.1)
is solvable if and only if there exists a, such that (a, b) = 1, i.e., ∃γ ∈ L, such
that a = N(γ) and b are quadratically independent. The description of all Q16

extensions is given in Theorem 4.5.
If r ≡ −1, i.e.,

√
2 ∈ k and b =2 −1, then the embedding problem

is solvable if and only if there exists a, such that a and −1 are quadratically
independent and (−1,−1) = 1, i.e., −1 = N(γ) for some γ ∈ L. The description
of all Q16 extensions is given in Theorem 4.6.

If r ≡ 5, i.e., i ∈ k and b =2 2, then the embedding problem is solvable
if and only if there exists a, such that (a, 2) = 1 and also a = N(γ) and 2
are quadratically independent. The description of all Q16 extensions is given in
Theorem 4.7.

If r ≡ −5, i.e.,
√
−2 ∈ k and b =2 −1 =2 2, then the embedding problem

is solvable if and only if there exists a, such that (a, 2) = 1 and a = N(γ) and 2
are quadratically independent. The description of all Q16 extensions is given in
Theorem 4.8.

Now, we will write down several lemmas, which are particular cases of
results obtained in [3].

Lemma 4.1. If δ, δ′ ∈ L∗ and v(δ)/δ = v(δ′)/δ′, then δ′ = dδ, with
d ∈ k.

Lemma 4.2. Assume ζ =

√
2

2
(1 + i) ∈ L. Let M = L( 8

√
ω), where

ω ∈ L and assume [M : L] = 8. Then M/k realizes Q16 as Galois group if

and only if v(ω) = ωtβ8, with t ≡ −r (mod 8) and ω(t2−1)/8βtv(β) = ζ l1, where
l1 ≡ 4 (mod 8).

Lemma 4.3. If b /∈ −k2 (i.e., L = k(
√
b) 6= k(i)), then k∩L8 = k8∪b4k8

and k ∩ L4 = k4 ∪ b2k4.
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Lemma 4.4. L 6= k(i) (i.e., i ∈ k) if and only if r ≡ 1 (mod 4); ζ ∈ k
if and only if r ≡ 1 (mod 8).

With the help of these lemmas we will prove the following theorems.

Theorem 4.5. Let L = k(
√
b), ω ∈ L and let ζ ∈ k. Then M/k =

L( 8
√
ω)/k is a Q16 extension if and only if ω = (c

√
b)4N(γ)/γ2, where c ∈ k∗, γ ∈

L∗ and N(γ) /∈ k2 ∪ bk2.

P r o o f. Assume that ω is given by the formula in the statement of this
theorem. Then

√
ω = ±c2b

√

N(γ)/γ. Since a = N(γ) and b are quadratically

independent, we have [L(
√
ω) : L] = 2, L(

√
ω) = k(

√
a,
√
b) – a biquadratic

extension over k and [M : L] = 8. Furthermore, N(ω) = (c
√
b)8 = δ8, where

δ = c
√
b ∈ L∗. Therefore v(ω) = ω−1δ8, hence M/k is Galois and t = −1. Also,

ρ = ω(t2−1)/8δtv(δ) = v(δ)/δ = −1 = ζ l1, so l1 ≡ 4 and M/k is a Q16 extension.
Now, assume that M/k = L( 8

√
ω)/k is a Q16 extension. Then t = −1 and

N(ω) = δ8 for δ ∈ L∗. From Lemma 4.3 follows that δ8 ∈ k ∩ L8 = k8 ∪ b4k8.
If δ8 ∈ k8, then δ ∈ k, since ζ ∈ k. In this case, ρ = v(δ)/δ = 1 = ζ l1,
whence l1 ≡ 0, so M/k is not a Q16 extension, a contradiction. Therefore,

δ8 ∈ b4k8, i.e., δ = c
√
b, c ∈ k∗. Then ρ = v(δ)/δ = −1, so l1 ≡ 4. Furthermore,

(ω/δ4)v(ω/δ4) = N(ω)/δ8 = 1 and Hilbert’s Theorem 90 implies ω/δ4 = v(γ)/γ,

for some γ ∈ L∗. Whence ω = δ4v(γ)/γ = (c
√
b)4N(γ)/γ2. Now, assume

u( 8
√
ω) = 8

√
ωζ. Then

√
ω is contained in the fixed field of u2, which must be

a biquadratic extension over k. Therefore, a = N(γ) and b are quadratically
independent. �

Theorem 4.6. Let
√

2 ∈ k, L = k(i) and let ω ∈ L∗. Then M/k =
L( 8

√
ω)/k is a Q16 extension if and only if

ω =















c1i, if c1 ∈ k,−1 = α8, N(α) = −1, and c1 /∈ k2 ∪ −k2;

c2(1 + γ8), if c2 ∈ k,N(γ) = −1, 1 + γ8 = dδ2, d ∈ k∗, δ ∈ L∗, and

c2d /∈ k2 ∪ −k2.

P r o o f. Assume that ω is given by the formula in the statement of
this theorem. If ω = c1i, then

√
ω = ±

√
c1α4 = ±√

c1α
2. Whence L(

√
ω) =

k(
√
c1,

√
b) is biquadratic over k and [M : L] = 8. Furthermore, v(ω) = −ω =

ωα8, so t = 1 and r ≡ −1. Also, ρ = αv(α) = N(α) = −1 = ζ l1, so l1 ≡ 4
and M/k is a Q16 extension. If ω = c2(1 + γ8), then

√
ω = ±

√
c2dδ. Whence

[M : L] = 8. Furthermore, v(ω) = c2(1 + v(γ8)) = ωβ8, where β = v(γ). Since
N(β) = N(γ) = −1 = ζ l1, M/k is a Q16 extension.

Now, let M/k be a Q16 extension. If v(ω) = −ω, then ω = c1i, c1 ∈ k.
Since r ≡ −1, we have t = 1, i.e., v(ω) = ωα8, α ∈ L∗, so α8 = −1. Also,
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ρ = αv(α) = N(α) = −1 = ζ4, since l1 ≡ 4. Furthermore, the fixed field
of u2 is biquadratic over k, so u2(

√
ω) =

√
ω = ±√

c1α
2. Whence c1 and −1

are quadratically independent, i.e., k(
√
c1, i)/k is a biquadratic extension. If

v(ω) 6= −ω, then v(ω)/ω = β8 6= −1, therefore 1 + v(β8) 6= 0. From N(β8) = 1,
follows that

v(ω)/ω = β8 =
1 + β8

1 + v(β8)
=
v(1 + v(β8))

1 + v(β8)
,

and Lemma 4.1 implies that ω = c2(1 + γ8), where γ = v(β) and N(γ8) = 1.
Now, from ρ = N(β) = −1 follows that N(γ) = −1. Since the fixed field of u2

must be biquadratic over k, we have that 1 + γ8 = dδ2, where d ∈ k∗ and δ ∈ L∗.
We have then

√
ω = ±

√
c2dδ, so c2d and −1 must be quadratically independent

over k. �

Theorem 4.7. Let i ∈ k, L = k(
√

2) and let ω ∈ L∗. Then M/k =
L( 8

√
ω)/k is a Q16 extension if and only if ω = c3/γ2, where c ∈ k∗, γ ∈

L∗, N(γ) = −c and c /∈ k2 ∪ 2k2.

P r o o f. Assume that ω is given by the formula in the statement of this
theorem. From c /∈ k2 ∪ 2k2 follows that L(

√
ω) = k(

√
c,
√

2) is biquadratic over
k and [M : L] = 8. Furthermore, v(ω)/ω3 = γ8/c6N(γ2) = β8, where β = γ/c.
Therefore t = 3 and (t2 − 1)/8 = 1, so ρ = ωβ3v(β) = N(γ)/c = −1 = ζ l1. Thus
M/k is a Q16 extension.

Now, assume that M/k = L( 8
√
ω)/k is a Q16 extension. Then v(ω) =

ω3β8, β ∈ L∗, hence N(ω) = (ωβ2)4 ∈ L4 ∩ k. Then Lemma 4.3 implies that
L4 ∩ k = k4 ∪ 4k4, whence ωβ2 = c or ωβ2 =

√
2c for c ∈ k. We have that

N(ω) ∈ k2. On the other hand, if ωβ2 =
√

2c, then N(ωβ2) = −2c2 ∈ −2k2 =
2k2 6= k2, a contradiction. Thus the only possibility that remains is ωβ2 = c. Let
γ = cβ. Then ω = c/β2 = c3/γ2 and N(γ2) = c4N(c/ω) = c2, i.e., N(γ) = ±c.
If N(γ) = c, then ρ = ωβ3v(β) = N(γ)/c = 1 = ζ l1, so l1 ≡ 0, a contradiction.
Thus remains that N(γ) = −c. Also, c and 2 must be quadratically independent
over k, since [M : L] = 8. �

Theorem 4.8. Let
√
−2 ∈ k, L = k(

√
i) and let ω ∈ L∗. Then M/k =

L( 8
√
ω)/k is a Q16 extension if and only if ω = N(γ)η2/γ4, where η ∈ ik, γ ∈ L∗

and N(γ) /∈ k2 ∪−k2.

P r o o f. Assume that ω is given by the formula in the statement of this
theorem. From N(γ) /∈ k2 ∪ −k2 follows that L(

√
ω) is biquadratic over k and

[M : L] = 8. Since r ≡ 3, we must show that t = 5 and l1 ≡ 4. Indeed,
v(ω)/ω4 = ωβ8, where β = γ2/v(γ)η. Also, ρ = ω3β5v(β) = η/v(η) = −1, so
l1 ≡ 4. Therefore, M/k = L( 8

√
ω)/k is a Q16 extension.

Now, assume that M/k = L( 8
√
ω)/k is a Q16 extension. Then v(ω) =

ω5β8, where β ∈ L∗ and l1 ≡ 4. Hence v(ω)/ω = (ωβ2)4. Let α = N(ωβ2) ∈ k.
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Then α4 = N((ωβ2)4) = N(v(ω)/ω) = 1. Therefore, α2 = ±1. If α2 = −1, then
α = ±i ∈ k, a contradiction. Then α2 = 1, so α = ±1. Let δ = ωβ2. If N(δ) = 1,
we have δ = γ/v(γ), for some γ ∈ L∗. Therefore, ω = γ/v(γ)β2 = N(γ)η2/γ4,
where η = γ2/v(γ)β. Also, ρ = ω3β5v(β) = η/v(η) = ζ4 = −1, so v(η) = −η, i.e.,
η ∈ ik. If α = −1, i.e., N(δ) = −1, then v(ωδ2) = ωδ4v(δ2) = ωδ2, i.e., ωδ2 ∈ k.
Therefore, N(ωδ2) ∈ k2 and N(ω) ∈ k2. But then −1 = N(ωβ2) = N(δ) ∈ k2,
a contradiction. Thus we have ω = N(γ)η2/γ4, where η ∈ ik. Finally, since
k(
√
ω, i)/k must be a biquadratic extension, we have that a = N(γ) and −1

must be quadratically independent over k. �
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