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We describe several types of Galois extensions having as Galois group the
quaternion group Q14 of order 16.

1. Introduction. The realization of small 2-groups as Galois groups
over arbitrary field of characteristic not 2 has been an object of many papers in
recent years. Most commonly among them are investigated the nonabelian groups
of orders 8 and 16. The goals, which are pursued in these works, are mainly in
two directions. Firstly, there is looked for the conditions (or obstructions) under
which the groups are realizable. Secondly, there is looked for a description of all
Galois extensions, realizing these groups. The conditions under which the groups
are realizable are often expressed by the so-called obstructions, which are usually
products of quaternion classes in the Brauer group. When the obstruction is
expressed as a product of two quaternion classes, an explicit parameterization
of all Galois extensions is being given. This is done in [2], [5], [6]. Since the
obstruction to realizability of the quaternion group @16 is a product of three
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quaternion classes, such a description can not be made. That is why the Qg
extensions are not considered in the mentioned works. Some interesting results
about realizability of Q15 as a Galois group over algebraic fields are obtained
in [1].

Our goal is to give a description of Q16 extensions in specific situations.
In Section 3 we give three types of Q14 extensions, which make use of extensions
realizing other nonabelian groups of order 16. There is used the equivalence of
quadratic forms. This theory is well developed in [6]. In Section 4 we give a
different kind of description of ()14 extensions in a specific situation. Namely, we
give all 14 extensions that contain a given quadratic extension, which in turn,
contains a primitive 8th root of unity.

2. The dihedral and quasidihedral (semidihedral) groups of
order 16. We begin by giving the Galois extensions realizing the groups QD1
and D¢, as we find them in [5, 6]. By QD16 we denote the quasidihedral group (by
Ledet’s notation QDg) generated by elements u and v, such that u® = 1,0? = u*
and vu = u3v. By Dig we denote the dihedral group (by Ledet’s notation Dg)
generated by elements v and v, such that «® = v? = 1 and vu = v~ .

Now, let a,b € k* (k has characteristic # 2) be quadratically independent,
i.e., a,b and ab are not in k. Let also (a,ab) = 1 € Br(k), i.e., Dg is realizable.

Then there exist a, 3 € k*, such that a® — a3? = ab, hence all Dg extensions are

{k(\/7(a+ By/a),Vb)/k, 7 € k*}. Denote

o= /r(a+ Bva) and v = \/r(a— Bv/a) = %w

so Dg is generated by the elements ¢ and 7, such that
a:<p»—>1/),\/5r—>\/5; T:<p|—>g0,\/5'—>—\/5.
Note also that we have
ol —p, T:iyY— —1.

From [6], we have the following theorems describing the QD¢ and Dig
extensions:

Theorem 2.1. Let o # 0. The embedding problem given by K/k =
k(p,v/D)/k and the group extension

(21) 1—>MQ—>QD16 ED8—>1

V=T
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is solvable if and only if the quadratic forms (b, 2ra, 2bra) and (a,2,2a) are equiv-
alent over k. If this equivalence is expressed by the matrix P:

P! (b, 2ra, 2bra)P = (a,2,2a),
we can assume det P = a/bra and get the solutions

K(\/swqp)/k = k(\/s0qp, Vb)/k, s € k",

where

wgp =1 +puvo/Va+ %(pm + pas/va — p3aVb + pssVb/va)p

+ = (pa2 — pas/Va + psaVb + pssVb/Va)p.

N | —

Theorem 2.2. Let a # 0. The embedding problem given by K/k =
k(p,Vb)/k and the group extension

(2.2) 1—>u2—>D16mD8—>1

V—T

is solvable if and only if the quadratic forms (b,ra, bra)) and (ab,2b,2a) are equiv-
alent over k. If this equivalence is expressed by the matrix P:

P!(b,ra, bra)P = (ab, 2b, 2a),
we can assume det P = 2a/ra and get the solutions

K(y/550)/k = k(y5op,VB)/k, s € k",

where

wp=1—pi1/va+ %(p32 + pas/Va)e + %(pm/\/g — p33Vb/Va)y.

The obstructions to the embedding problems given by (2.1) and (2.2)
are, respectively, (—b, —2ra)(—a,—2) € Br(k) and (—ab, —2a)(—b, —r«a). In the
special case b = —1 we can assume that all Dg extensions are k(+/a,i)/k and the
action of the generators of Dyg is

o:var Vai,o i i; Tivar Va, i —i.
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Theorem 2.3. The embedding problem given by K/k = k(a,i)/k, with
Galois group Dg, and the group extension

(2.1) 1 — o — QD1g — Dg — 1
v—T

is solvable if and only if
p,q €k :p*+ag® = —2.

The solutions are:

K(\/rogp)/k = k(\/rogp,1)/k, r €k,
where wgp = (1 +1)(p + giv/a)Va.
Theorem 2.4. The embedding problem given by K/k = k(a,i)/k, with
Galois group Dg, and the group extension
(2.2) 1—>u2—>D16mD8—>1

is solvable if and only if
Ip,q €k :p*—ag® =2.
The solutions are:

K(yf@p)/k = k(yiwp,i)/k, 1 ek,

where wp = (p + ¢ /a)+/a.

Now, we turn our attention to the semidihedral group SDig, generated
by elements v and v, such that u® = v?> = 1 and vu = u3v. The group SDj
is in fact isomorphic to the group @ Dig, but it has different obstruction, hence
different parameterization of the solutions. The obstruction to embedding the
Dsg extension into an SDig extension is (a, —2)(—b, 2ra) = (—ab, —2)(—b, —ra) €
Br(k), as is shown in [4, 7]. Whence, given o # 0, the embedding problem given
by K/k = k(¢,/b)/k and the group extension

(23) 1— Ho — SD16 E Dg — 1

V—T

is solvable if and only if (b, ra,bra) is equivalent to (ab,2,2ab) over k. Let this
equivalence be expressed by the matrix P:

P! (b, ra, bra)P = (ab, 2, 2ab),
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and assume det P = 2a/ra. With similar argument as to the group Dig given in
[6] we define the matrix P’

-1 0 0
P=( 0 1/2 1/2 | ({Vb1,V)P(1/Vb,1,1/Vb).
0 1/2 —1/2

We can assume det P’ = a/ra and denote o = o/v/b, 8 = 3/v/b. Now we put

1
w=1+p)/Va+ 5[(?’22 — P3o) + (ph3 + p33)/Valp

—f'Va

+ =[(p92 + Pso) — (Ph3 — p33)/\/_] 7a ®,

N —

where pgjs are the entries of the matrix P’. Then

0=V

w—l—p11/\/_+ [\/_p32+p23/\/_]<ﬁ+ [p22—p33/\/_] \/—\/—

whence K (y/w)/k(v/b) is a Cg extension. Now we may put

wsp =ow =1+pi/va+ %(p32\/5 —p23/\/%)1/) - %[pm + p33/Valep.

Then we have Twsp = wgp, so K(y/wgp)/k is Galois, and since the preimage of
7o in the Galois group is of order 4, the Galois group is SD1g. Thus we have:

Theorem 2.5. Let a # 0. The embedding problem given by K/k =
k(p,Vb)/k and the group extension

(2.3) 1 — s — SDyg — Dg — 1

v—T

is solvable if and only if the quadratic forms (b, ra, bra) and (ab, 2, 2ab) are equiv-
alent over k. If this equivalence is expressed by the matrix P:

P! (b, ra, bra)P = (ab, 2, 2ab),
we can assume det P = 2a/ra and get the solutions

K(y/30sp)/k = k(\/30sD, Vb) [k, s € k",

where wgp s as above.
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For b = —1 we have:

Theorem 2.6. The embedding problem given by K/k = k(a,i)/k, with
Galois group Dg, and the group extension

(2.3) 1 — ps — SDig — Dg — 1

v—T

is solvable if and only if
Ip,q €k :p* —ag® = —2.
The solutions are:

K(\/iwsn)/k = k(y/rosp, i)k, T €k,
where wsp = (p + qv/a)Va.

3. The quaternion group of order 16. In this section we give
three types of Galois extensions having the group Q16 as Galois group which are
obtained easily by the dihedral, quasidihedral and semidihedral Galois extensions
described in the previous section. Let the quaternion group ()16 be generated by
elements u and v, such that u® = 1,v? = u* and vu = v~ 'v. Then the embedding
problem given by K/k = k(y,v/b)/k and the group extension

(3.1) 1—>u2—>Q16mD8—>1

V—T

is solvable if and only if (ab,2)(b, —1)(—b,ra) =1 € Br(k) (see [4]).

We will consider three special cases, where one of the elements a, b, ab is
a sum of two squares. We use this simple argument: If a group G is of exponent
8, and

1—puy— G — Dg—1
V=T

is a non-split group extension, then G is isomorphic to one of the groups Q) D¢
(SDs1g), D1g or Q16. Moreover, the group G is determined uniquely by the orders
of the pre-images u, v, uv of the generators o, 7,07 € Ds.

Proposition 3.1. Let (a,—1) = 1 € Br(k), i.e., 3x,y € k such that
a = 2% — ay®. Then all the solutions of the embedding problem given by K/k =

k(p,V/b)/k and the group extension (3.1) are

K <\/s(a: —I—y\/E)wQD) /k =k <\/s(:v +y\/5)wQD,\/5) /k, s €k,
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where wgp s as in theorems 2.1 or 2.3.

Proof. The obstruction is
(a’b7 2)(b7 _1)(_b7 Ta):(aba —2)((11), _1)(b7 _1)(_b7 Ta):(a’b7 _2)(_b7 Ta)EBr(k)7

which is exactly the obstruction to realizability of @ D1g. Now, let (ab, —2)(—b, r«)
=1 € Br(k) and wgp give the QD16 extension. Then oTwgp = wgp, and we
put wg = (z + yyv/a)wgp. We have otwg = aZ wg, where

Va
Aogr = ———.
oT x_’_y\/a

Thus K (v/wg)/k is Galois and the pre-images of o7 and 7 in the Galois group G
are of order 4, since a,r07a,r = —1. Hence K (,/5wq)/k is Q16 extension. 0O

Proposition 3.2. Let (b,—1) = 1 € Br(k), i.e., dx,y € k such that
b =22 —by?. Then all the solutions of the embedding problem given by K/k =
k(p,vVb)/k and the group extension (3.1) are

K <\/8<x + yme) Jk=k ( s(z + yvB)wn, @) b sek

where wp 15 as in theorems 2.2 or 2.4.

Proof. The obstruction is (ab,2)(b,—1)(=b,ra) = (ab,2)(=b,ra) €
Br(k), which is exactly the obstruction to realizability of Djs. Now, let
(ab,2)(=b,ra) = 1 € Br(k) and wp give the Dis extension. Here Twp =
wp,o0TWp = agTwD; the pre-images of 7 and ¢ in D¢ are of order 2, and we
put wg = (z + yvb)wp. Now we have Twg = a2wg and oTwg = a'2,wg, where

_7\/5 a' = ara
[L‘—i—y\/g’ oT TYOT*

From a;7a, = —1,a5,0T06; = 1 we get a,_oTa. = a,Tara,r07a5r = —1, so
the pre-images of 7 and o7 in G are of order 4. Thus K (,/5wq)/k is Galois Q16
extension. [

Proposition 3.3. Let (ab,—1) = 1 € Br(k), i.e., Jz,y € k such that
ab = x? — aby?®. Then all the solutions of the embedding problem given by K/k =
k(p,vb)/k and the group extension (3.1) are

K (\/s(a: + y\/%)wsp> /k =k <\/s(:v + y\/%)WSD, \/5) /k‘, s € k*,

ar
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where wgp s as in theorems 2.5 or 2.6.
Proof. The obstruction is

(—ab, —2)(ab,—1)(-1,—-2)(b,—1)(=b,rax) = (—ab,—2)(—b, —ra) € Br(k),

which is exactly the obstruction to realizability of SDg. Now, (—ab, —2)(—b, —r«)
= 1 € Br(k) and wgp give the SDyg extension. Here Twsp = wsp,oTwsp =
a’_wsp; the pre-image of 7 is of order 2 and the pre-image of o7 is of order 4

(in SD1), and we put wg = (z + yVab)wsp. Now we have Twg = a?wg and
oTwg = a2 wg, where
Vab

::L‘—I-y\/@.

From a,7a, = —1 and a,r07a,r = —1 we get that the pre-images of 7 and o7 in

G are of order 4. Thus K (,/5wq)/k is Galois Q16 extension. O

ar

4. Quaternion extensions over quadratic extensions that
contain a primitive 8th root of unity. Let b € k*\ (k*)2, let L = k(\/b)
and let L contain a primitive 8th root of unity (. Our goal is to describe all
Galois extensions M /k, which are solutions to the embedding problem given by
L/k and the group extension

(4.1) 1—Cs=(u) = Qi — C2 = Gal(L/k) — 1,

where QQ1¢ is generated by u and v the same way as in Section 3.

Now, assume M is cyclic over L of degree 8. Then M = L(w'/®) by
Kummer theory. If Gal(L/k) = {1,v}, then M is Galois over k if and only if
v(w) = w3, where 3 € L* and > = 1 (mod 8). So, we must give a detailed
description of the element w.

If G is a group of order 16, which contains a cyclic subgroup (u) of order
8, then G is generated by elements v and v such that

L ful =8, v ¢ (u);
2. vuv~ !l =l v? =l
3. j2=1 (mod 8), I(j — 1) =0 (mod 8).

It is known that G = Q16 if and only if j = —1 and | = 4 (mod 8). Since
¢ € L, we have v({) = (", where r is an integer, such that ged(r,8) = 1, i.e., r is

2
odd. Assume ( = g(l + i), where ¢ = /—1. Then we have the following four
cases:
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1. r=1,ie., ( €k;

2. r=—1,ie,vV2€kand b=y —1;

3. r=5,ie,1 €k and b=9 2;

4. r=—b,ie,v—2€kand b =9 —1 =9 2.

The embedding problem given by L/k = k(v/b)/k and the group extension (4.1)
is solvable if and only if there exists a € k, such that a and b are quadratically
independent over k, (a,ab) = 1 € Br(k) and (ab,2)(b,b)(—b,z) = 1 € Br(k),
for some z € k (see [8]). We denote by N the norm map Ny, : L — k. Now,
consider the four cases, described above.

If r =1, ie., ( € k, then the embedding problem given by L/k and (4.1)
is solvable if and only if there exists a, such that (a,b) = 1, i.e., 3y € L, such
that a = N(y) and b are quadratically independent. The description of all Q14
extensions is given in Theorem 4.5.

If » = —1, i.e, V2 € k and b =, —1, then the embedding problem
is solvable if and only if there exists a, such that a and —1 are quadratically
independent and (—1,—1) =1, i.e., =1 = N () for some v € L. The description
of all Q16 extensions is given in Theorem 4.6.

If r =5, 1ie., 4 €k and b =5 2, then the embedding problem is solvable
if and only if there exists a, such that (a,2) = 1 and also a = N(v) and 2
are quadratically independent. The description of all ()1 extensions is given in
Theorem 4.7.

If r=—5,ie., V-2 € kand b =9 —1 =5 2, then the embedding problem
is solvable if and only if there exists a, such that (a,2) =1 and a = N(v) and 2
are quadratically independent. The description of all ()1 extensions is given in
Theorem 4.8.

Now, we will write down several lemmas, which are particular cases of
results obtained in [3].

Lemma 4.1. If 6,0’ € L* and v(0)/d = v(d')/d, then ¢’ = do, with
dek.

V2

Lemma 4.2. Assume ( = 7(1 +1i) € L. Let M = L(JYw), where
w € L and assume [M : L] = 8. Then M/k realizes Q16 as Galois group if
and only if v(w) = W', with t = —r (mod 8) and w*~V/83tw(3) = ¢, where
l1 =4 (mod 8).

Lemma 4.3. Ifb¢ —k? (i.e., L = k(/b) # k(i)), then kN L8 = k8 Ub*kS
and kN L* = k* U b%k2.
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Lemma 4.4. L # k(i) (i.e., i € k) if and only if r =1 (mod 4); ¢ € k
if and only if r = 1 (mod 8).
With the help of these lemmas we will prove the following theorems.

Theorem 4.5. Let L = k(Vb),w € L and let ¢ € k. Then M/k =
L(¥w)/k is a Qg extension if and only if w = (V) N (7)/~2, where ¢ € k*,~ €
L* and N(v) ¢ k* U bk2.

Proof. Assume that w is given by the formula in the statement of this
theorem. Then y/w = £c?by/N(7)/7. Since a = N(v) and b are quadratically
independent, we have [L(y/w) : L] = 2,L(v/w) = k(v/a,Vb) — a biquadratic
extension over k and [M : L] = 8. Furthermore, N(w) = (cvb)® = 6%, where
§ = cv/b € L*. Therefore v(w) = w™16%, hence M/k is Galois and t = —1. Also,
p=wDB5y(5) = v(8)/6 = —1 =", so l; =4 and M/k is a Q16 extension.

Now, assume that M/k = L(/w)/k is a Q16 extension. Then t = —1 and
N(w) = 6% for § € L*. From Lemma 4.3 follows that 6% € kN L® = k% U b*k8.
If 8% € k8, then 6 € k, since ¢ € k. In this case, p = v(8)/d = 1 = ¢4,
whence I; = 0, so M/k is not a Q16 extension, a contradiction. Therefore,
68 € b*E8, ie., 6 = cv/b,c € k*. Then p = v(0)/6 = —1, so l; = 4. Furthermore,
(w/6*)v(w/6*) = N(w)/6® = 1 and Hilbert’s Theorem 90 implies w/d* = v(7)/7,
for some v € L*. Whence w = §*v(y)/y = (cvb)*N(y)/7*>. Now, assume
u(Yw) = Yw¢. Then \/w is contained in the fixed field of u?, which must be
a biquadratic extension over k. Therefore, a = N(v) and b are quadratically
independent. O

Theorem 4.6. Let \/2 € k,L = k(i) and let w € L*. Then M/k =
L(¥/w)/k is a Q16 extension if and only if

c1t, if c; €k,—1=0a® N(a) =—1, and c; ¢ k* U —k?;
w=1< c2(1+8), if ca €k, N(y)=—-1,1+~%=dé% dck* 6 < L*, and
ead & K2 U —k2.

Proof. Assume that w is given by the formula in the statement of
this theorem. If w = ci, then Vw = £Ve1a® = £/c1a®. Whence L(Vw) =
k(\/c1,Vb) is biquadratic over k and [M : L] = 8. Furthermore, v(w) = —w =
wab sot =1and r = —1. Also, p = aw(a) = N(a) = -1 = ("', s0o | = 4
and M/k is a Q16 extension. If w = ca(1 + %), then y/w = ++/cad§. Whence
[M : L] = 8. Furthermore, v(w) = c2(1 + v(7®)) = w3®, where 3 = v(v). Since
N(B)=N(y) = —1=¢", M/kis a Q16 extension.

Now, let M/k be a Q16 extension. If v(w) = —w, then w = ¢ji,¢; € k.
Since r = —1, we have t = 1, ie., v(w) = wa®,a € L*, so o® = —1. Also,
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p = av(a) = N(a) = —1 = (4, since Iy = 4. Furthermore, the fixed field
of u? is biquadratic over k, so u?*(y/w) = w = +,/ca®*. Whence ¢; and —1
are quadratically independent, i.e., k(,/ci,i)/k is a biquadratic extension. If
v(w) # —w, then v(w)/w = B8 # —1, therefore 1 + v(8%) # 0. From N(8%) = 1,

follows that e ( ()
1+ v(l4+wv
= 8 = =

W == T T TR o)
and Lemma 4.1 implies that w = e3(1 +4®), where v = v(3) and N(7®) = 1.
Now, from p = N(3) = —1 follows that N(y) = —1. Since the fixed field of u?
must be biquadratic over k, we have that 1+~® = dé?, where d € k* and 6§ € L*.
We have then /w = £+/cadd, so cad and —1 must be quadratically independent
over k. 0O

Theorem 4.7. Leti € k,L = k(v/2) and let w € L*. Then M/k =
L(Yw)/k is a Qe extension if and only if w = c3/¥%, where ¢ € k*,y €
L*,N(y) = —c and c ¢ k* U 2k>.

Proof. Assume that w is given by the formula in the statement of this
theorem. From ¢ ¢ k? U 2k? follows that L(\/w) = k(1/¢, V2) is biquadratic over
k and [M : L] = 8. Furthermore, v(w)/w® = +%/cSN(7?) = 3%, where 3 = v/c.
Therefore t = 3 and (12 —1)/8 = 1, so p = wBv(B) = N(y)/c = —1 = ¢"*. Thus
M/k is a Q16 extension.

Now, assume that M/k = L({Yw)/k is a Q16 extension. Then v(w) =
w338, 3 € L*, hence N(w) = (wf?)* € L* Nk. Then Lemma 4.3 implies that
L*Nk = k* U4k*, whence w3? = ¢ or wf? = V2¢ for ¢ € k. We have that
N(w) € k2. On the other hand, if w3? = v/2¢, then N(wB?) = —2¢% € —2k? =
2k? +# k2, a contradiction. Thus the only possibility that remains is w3? = c. Let
v =¢f. Then w = ¢/B? = 3/7? and N(v?) = ¢*N(c/w) = %, i.e., N(v) = +c.
If N(v) = ¢, then p = wB(B) = N(y)/c =1 = ¢, so l; = 0, a contradiction.
Thus remains that N(y) = —c. Also, ¢ and 2 must be quadratically independent
over k, since [M : L] =8. O

Theorem 4.8. Let /=2 € k,L = k(i) and let w € L*. Then M/k =
L(Yw)/k is a Qi extension if and only if w = N(y)n?/y*, where n € ik, € L*
and N(v) ¢ k*> U —k2.

Proof. Assume that w is given by the formula in the statement of this
theorem. From N(v) ¢ k? U —k? follows that L(,/w) is biquadratic over k and
[M : L] = 8. Since r = 3, we must show that ¢ = 5 and [; = 4. Indeed,
v(w)/wh = wp®, where 3 = v*/v(y)n. Also, p = W?B%(B) = n/v(n) = —1, so
1 = 4. Therefore, M/k = L({/w)/k is a Q16 extension.

Now, assume that M/k = L({Yw)/k is a Q16 extension. Then v(w) =
w538, where 3 € L* and I; = 4. Hence v(w)/w = (wB?)*. Let a = N(wB?) € k.
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Then o* = N((wB?)*) = N(v(w)/w) = 1. Therefore, a? = +1. If o> = —1, then
a = +i € k, a contradiction. Then a? =1, s0 a = +1. Let § = wp? If N(6) =1,
we have § = ~/v(7), for some v € L*. Therefore, w = v/v(v)3%* = N(v)n?/~*,
where 5 = 72/v(y)8. Also, p = w3350(8) = n/u() = ¢ = —1, 50 v(n) = —1, ic.,
n €ik. If a = —1, i.e., N(6) = —1, then v(wé?) = wd*v(§?) = w?, i.e., wd? € k.
Therefore, N(wd?) € k? and N(w) € k?. But then —1 = N(wB?) = N(0) € k?,
a contradiction. Thus we have w = N(y)n?/7*, where n € ik. Finally, since
k(y/w,i)/k must be a biquadratic extension, we have that a = N(v) and —1
must be quadratically independent over k. O
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