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ABSTRACT. We construct invariant polynomials for the reflection groups
[3,4, 3] and [3, 3, 5] by using some special sets of lines on the quadric P; x Py
in P3. Then we give a simple proof of the well known fact that the ring of
invariants are rationally generated in degree 2,6,8,12 and 2,12,20,30.

0. Introduction. There are four groups generated by reflections which
operate on the four-dimensional Euclidean space. These are the symmetry groups
of some regular four dimensional polytopes and are described in [5, p. 145 and
Table I p. 292-295]. With the notation there the polytopes, the groups and their
orders are

Polytope | 5 —cell 16 —cell 24 —cell 600 — cell
Group | [3,3,3] [3,3,4] [3,4,3] [3,3,5]
Order 120 384 1152 14400
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They operate in a natural way on the ring of polynomials R = Rxg, z1, T2, 3]
and it is well known that the ring of invariants R (G one of the groups above) is
algebraically generated by a set of four independent polynomials (cf. [2, p. 357]).
Coxeter shows in [4] that the rings R®, G = [3,3,3] or [3,3,4] are generated in
degree 2,3,4,5 resp. 2,4,6,8 and since the product of the degrees is equal to
the order of the group, any other invariant polynomial is a combination with real
coefficients of products of these invariants (i.e., in the terminology of [4], the ring
RC is rationally generated by the polynomials). Coxeter also gives equations for
the generators. In the case of the groups [3,4,3] and [3,3,5] he recalls a result
of Racah,(cf. [9]), who shows with the help of the theory of Lie groups that the
rings RC are rationally generated in degree 2,6,8,12 resp. 2,12, 20, 30.

Equations for these generating polynomials can be found e.g. in [8], [11,
p. 218], [3, p. 203] and most recently in [6] (the groups are often denoted in
the literature by Fy and Hy4). The method used by Metha in [8] is simple: He
considers the equations of the reflecting hyperplanes and he finds a set of linear
forms which are invariant under the action of the groups [3, 4, 3] resp. [3, 3, 5], then
he uses these to give equations for the polynomial invariants (a similar method
is used by Coxeter in the case of the groups [3,3,3] and [3,3,4]). In [11, p. 218§]
Smith explains how to obtain equations for the invariant polynomials of the rings
RE, but he refers to [3] for the explicit equations, however only in the case of
the group [3,4,3]. In fact Conway and Sloane use coding theory to construct
the invariants of this group, but they do not consider the case of [3,3,5]. In [6]
the authors find the invariants by solving a special system of partial differential
equations. But as they say the method is quite elaborated and they need the
support of computer-algebra.

In this paper we give a different construction, which should be interesting
in particular from the point of view of algebraic geometry: We consider some
special [3,4,3]-, resp. [3,3,5]-orbit of lines on the quadric P; x Py in P3 and
construct the invariant polynomials by using the action of the group and geo-
metric considerations. We remark that in our construction of the polynomials we
use very little computer-algebra, in fact only MAPLE for some computation in
Proposition 2.1 and 3.2 (cf. Section 4). Otherwise everything is proved by hand
and by geometric considerations. This construction seems to be interesting for
the following reasons:

1. We can give a simple proof of Racah’s result,

2. We establish relations between the invariants of the groups [3,4, 3] and
[3,3,5] and the invariants of some binary subgroups of SU(2),

3. The construction may be helpful in the study of the geometry of the
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algebraic surfaces defined by the zero sets of the invariant polynomials. We have
in fact families of surfaces with many symmetries and by the construction, for
example it is possible to determine immediately the base locus of the families,
which consists of sets of lines on P; x P;.

We explain now briefly our method and also the structure of the paper:
Denote by T', O and I the rotations subgroups in SO(3,R) of the platonic solids:
tetrahedron, octahedron and icosahedron, it is well known that SO(4,R) contains
central extensions Gg of T'x T, Gg of O x O and G129 of I x I by £1. Then Gg is
an index four subgroup of [3,4, 3] and G2 is an index two subgroup of [3, 3, 5] (cf.
e.g. [10], Section 3). These two groups, and Gg too, act on the three dimensional
projective space P3, and in particular on the two ruling of the quadric P; x Py
(this action is studied in [10]). The quadric can be described as the zero set of
the quadratic form:

2 2 2 2
1‘0+$1+$2+.’L‘3

which is [3,4,3]- and [3,3, 5]-invariant. By considering some special orbits of
lines of P; x P; under Gg, G12 and Gg, it is possible to construct explicitly
[3,4,3]- and [3, 3, 5]-invariant polynomials, this is done and explained in details
in Section 2. In Section 3 we show that our polynomials generate the rings of
invariants R® by showing some relations between them and the invariant forms
of the binary tetrahedral group and of the binary icosahedral group in SU(2).
More precisely we define a surjective map between polynomials of degree d on
P; and polynomials of be-degree (d,d) on P; x P;. Then we show that the
image of a Gp-invariant polynomial n = 6,12 splits into the product of two
invariant polynomials of the same degree under the action of the binary subgroup
in SU(2) corresponding to G, (there are classical 2 : 1 maps SU(2) — SO(3,R),
SU(2) x SU(2) — SO(4,R) which we recall in Section 1). This corresponds in
some sense to the fact that G, contains the product Gx G (forn = 6is G = T and
for n =12 is G = I) and each copy G x 1, 1 x G operates on one ruling of P; x P;
and leaves the other ruling invariant. This relation is the main ingredient in our
proof of the result of Racah (Corollary 2.1). It seems to be however interesting
by itself. Finally Section 4 contains explicit computations and in Section 5 we
present open problems and possible applications of the results of the paper. It
is a pleasure to thank W. Barth of the University of Erlangen for many helpful
discussions and the referees for pointing me out some important bibliographical
information.

1. Notations and preliminaries. Denote by R the ring of polynomi-
als in four variables with real coefficients R[xq, x1, 2, z3], by G a finite group of
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homogeneous linear substitutions, and by R the ring of invariant polynomials.
1. A set of polynomials Fi, ..., F, in R is called algebraically dependent
if there is a non trivial relation

> ap(Fj-. - Fir) =0,

where I = (i1,...,i,) € N a; € R.

2. The polynomials are called algebraically independent if they are not
dependent. For the ring RY, there always exists a set of four algebraically inde-
pendent polynomials (cf. [2], thm. I, p. 357).

3. We say that RC is algebraically generated by a set of polynomials
Fi,...,Fy, if for any other polynomial P € R® we have an algebraic relation

> ag(PO-F . Fit)=0.

4. We say that the ring R is rationally generated by a set of polynomials
Fy, ..., Fy, if for any other polynomial P € R we have a relation

- FiY)=P, areR

5. The four polynomials of 3 are called a basic set if they have the smallest
possible degree (cf. [4]).
6. There are two classical 2 : 1 coverings

p:SU@2) — SO(3,R) and o:SU(2) x SU(2) — SO(4,R),

we denote by T',0, I the tetrahedral group, the octahedral group and the icosa-
hedral group in SO(3,R) and by T, O, I the corresponding binary groups in
SU(2) via the map p. The o-images of T x T, O x O and I x I in SO(4,R) are
denoted by G¢, Gg and G13. By abuse of notation we write (p, q) for the image
in SO(4,R) of an element (p,q) € SU(2) x SU(2). As showed in [10] (3.1) p
436, the groups Gg and G2 are subgroups of index four respectively two in the
reflections groups [3,4, 3] and [3, 3, 5].

2. Geometrical construction. Denote by G one of the groups T, O
or I. Clearly, the subgroups G x 1 and 1 x G of SO(4,R) are isomorphic to G.
Moreover, each of them operates on one of the two rulings of the quadric P x Py
and leaves invariant the other ruling (as shown in [10]). We recall the lengths of
the orbits of points under the action of the groups 7', O and I
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group ‘ T ‘ O ‘ 1
lengths of the orbits | 12, 6, 4 | 24, 12, 8, 6 | 60, 30, 20, 12

These lines are fixed by elements (p,1) € G x 1 on one ruling, resp. (1,p') € 1x G
on the other ruling of the quadric. Recall that these elements have two lines of
fix points with eigenvalues «, @ which are in fact the eigenvalues of p and p’. We
call two lines L, L’ of P; x Py a couple if L is fixed by (p,1) with eigenvalue «
and L' is fixed by (1,p) with the same eigenvalue.

2.1. The invariant polynomials of Gg and of Gi3. Consider the
six couples of lines Ly, LY,..., Lg, Ly in Py >< IP’I which form one orbit under the
action of T' x 1, resp. 1x T and denote by f11 Yo ég) the six planes generated

by such a couple of lines (and by abuse of notation their equation, too). Now set

Fo= Y gt £ )= ah) - 9(£9) - alfid).

geTxl gETxl

Observe that an element g € T x 1 leaves each line of one ruling invariant and
operates on the six lines of the other ruling. A similar action is given by an
element of 1 x T'. Since we sum over all the elements of T x 1, the action of 1 x T
does not give anything new, hence Fy is Gg-invariant. Furthermore observe that
F§ has real coefficients. In fact, in the above product, for each plane generated
by the lines L;, L} we also take the plane generated by the lines which consist of

the conjugate pomts The latter has equatlon E ©) , l.e., we have an index j # ¢
with f}?) = ﬁ( and the products f;; ©) ﬁ have real coefficients.
Consider now the orbits of lengths eight and twelve under the action of

O x 1 and 1 x O and the planes fl , ;;2) generated by the eight, respectively
by the twelve couples of lines. As before the polynomials

8 8
Fg = Z 9( 1(1)"'-‘ és)%
gETxl
12 12
Fip = Z 9( 1(1)""' 1(21;)
geTxl

are Gg-invariant and have real coefficients.
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Finally we consider Phe lines of P; X P; which form orbits of length 12,20
and 30 under the action of I x 1 resp. 1 x I. The planes generated by the couples
of lines produce the Gis-invariant real polynomials

12 12
P = Z g(hgl . hgm)z)a
gefxl
20 20
Py = Z gy thQ)O)v
gelx1
30 30
I3y = Z g(hgl ). cee hg03)0)'
gefxl

2.2. The invariant polynomials of the reflection groups. We con-
sider the matrices

10 0 O 10 00

10 -1 0 O / 0100
¢= 0 0 -1 0 » O= 000 1|

0 0 0 -1 0010

as in [10] (3.1) p. 436, the groups generated by Gg, C, C' and G12, C are the
reflections groups [3, 4, 3] respectively [3, 3, 5].

Proposition 2.1. 1. The polynomials Fg, Fg, Fio, I'19, I'sg, I'sg are C
invariant. 2. The polynomials Fg, Fy, Fio are C' invariant.

Proof. 1. The matrix C interchanges the two rulings of the quadric,
hence the polynomials F; and I'; are invariant by construction. We prove 2 by a
direct computation in the last Section. O

From this fact we obtain

Corollary 2.1. The polynomials q, Fg, Fg, Fi2 are [3,4, 3]-invariant and
the polynomials q,T'12,1920, 3o are [3, 3, 5]-invariant.
Here we denote by ¢ the quadric Py x P;.

3. The rings of invariant forms. Identify P3 with PM (2 x 2,C) by
the map

(1) (ko1 : w2t 3) — < To + 12 56‘2—1—2;1:3)‘

—xo 4+ 1T3 TQ — T
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Furthermore consider the map

C2 x 2 — M(2X27C)
(2) 2022 20%3 _
((20,21),(22723)) — 2129 2173 =&

Then Z is a matrix of determinant :L‘(Q) + l‘% + x% + x% = 0 which is the equation of
q. Now denote by Op,(n) the sheaf of regular functions of degree n on P3 and by
O4(n,n) the sheaf of regular function of be-degree (n,n) on the quadric ¢. We
obtain a surjective map between the global sections

(3) ¢: HO(Opy(n)) — H"(Og(n,n))

by doing the substitution

_ ZoR2 + 21%23 _ R0Z2 — 2173
S R
ZO0R3 — R21%9 2023 + 2129
mETT g W™

in a polynomial p(xg, 21,72, 23) € HY(Op,(n)). Observe that ¢(q) = 0. Now let

t = zoz(zf —21),
W = 284 142821 + 25,
X = 2% —33(252t + 2528) + 212

denote the T-invariant polynomials of degree 6,8 and 12 and let

= 202120 + 112520 — 219),
H = —(23°+230) +228(28%2) — 2021%) — 494249210,
T = (284 20) + 522220 — 2522°) — 10005(22°210 + 21°220)

be the I-invariant polynomials of degree 12,20,30 given by Klein in [7] p. 51-
58. Put tl = t(Zo,Zl), tg = t(ZQ,Zg), W1 = W(Zo,Zl), W2 = W(ZQ,Zg) and
analogously for the other invariants.

Proposition 3.1. If p € H°(Ops(n)) is Gg-invariant, then:

o(p) = Y arti 5 WP W x5
1
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If p is Gio-invariant, then:

o(p) = Z Bsft 1f2ﬂ1 Hlﬁz ngfz—lﬁ:az]—?ﬂs
J

where

I = {(a1,a],as,ah, as,a)|a;, o € N,6a; + 8as + 12a3 = n,
6a) + 8a + 12055 = n},

J = {(/817/817ﬂ27/857/837ﬂ2/3)|/8i7/8£ € N7 ]'Qﬂl + 20/82 + 30ﬂ3 =n,
1203 + 2005 + 30335 = n}.

Proof. Put

o(p) Zp/(20721722723)~

An element g = (g1,¢92) in Gg or G2 operates on (xg : x1 : x2 : x3) € P3 by the
matrix multiplication

xo + il‘l T9 + il‘g -1
1 . .
I\ g+ irs xo — i1y 2

and on the matrix Z of (2) by

2022 Z0%3 -1 20 -1
= . z z .
9 < o >92 al ) (=2 =)0

Clearly if p is Gg- or Gyo-invariant then also the projection ¢(p) with the previous
operation is. In particular for g = (g1,1) in T 1, resp. in Ix1 the polynomial p' is
T x 1-, respectively I x 1-invariant as polynomial in the coordinates (20:21) €y
and for any (23 : 23) € P;. On the other hand for g = (1,g2) in 1 x T resp. in
1 x I the polynomial p’ is 1 x T-, respectively 1 x I-invariant as polynomial in
the coordinate (2 : 2z3) € Py and for any (2q : 21) € P;. Hence p’ must be in the
form of the statement. O
By a direct computation in Section 4 we prove the following

Proposition 3.2. The quadric q does not divide the polynomials F;, T';.
Moreover, Fg does not divide Fs.
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Corollary 3.1. We have ¢(q) = 0, ¢(Fg) = t1 - ta, ¢(Fg) = Wy - W,

d(Fi2) = x1-x2, ¢(T'12) = f1- f2, ¢(T'20) = H1 - Ha, ¢(I'30) = T1 -T2 (up to some
scalar factor).

Proof. This follows from Proposition 3.1 and 3.2. O

Proposition 3.3. The polynomials q, Fg, Fg, F12, resp. q,1'12,1'20,'30
are algebraically independent.

Proof. Let 3, arg" F2FPF4 = 0 and 3, Br¢ T3R5 T4 = 0 be
algebraic relations7 I = (i17i27i37i4) € N47 J = (j17j27j37j4) € N47 CE[,,BJ € Ru
then

0 = o(Zraq FPRFY)
(4) = 2parg(Fs)2¢(Fy)s¢(Fia)'s
= YpaptPty WPW X'y

similarly

0 = (X, A TR
(5) = 35 Brd(T12)726(T20) 3¢ (T30)%

= S, 8t EP EP T

If the polynomials t1, W7, x1 are fixed, we obtain a relation between to, Wo and
X2, which is the same relation as for t1, W7 and x; if we fix t9, W5 and yo. The

same holds for the polynomials f1, H1,7; and fo, Ho,75. From [7] p. 55 and p.
57 there are only the relations

108t — W +x2 =0, 108t3—W3+x2=0
and
T2+ HP —1728/0 =0, T2+ Hj —1728f5 =0

between these polynomials. By multiplying these relations, however, it is not
possible to obtain expressions like (4) and (5). O

Corollary 3.2. The polynomials q, Fg, Fg, F12, resp. q,1'12,'9,'sg gen-
erate rationally the ring of invariant polynomials of [3,4, 3], resp. [3,3,5].

Proof. (cf. [4] p. 775) By Proposition 3.3 and Proposition 3.2 these are
algebraically independent, moreover the products of their degrees are

2-6-8-12=1152 and 2-12-20-30 = 14400,
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which are equal to the order of the groups [3,4, 3] and [3,3,5]. By [4] this implies
the assertion. O

4. Explicit computations. We recall the following matrices of SO (4, R)
(cf. [10)):

0 -1 0 0 0 1 0
0 0 1 0 0 0 1
(Q2> 1) = 5 (1>Q2) = 5
1 0 0 0 — 0 0 O
0O -1 0 0 0O -1 0 O
1 -1 1 -1 1 1 -1 1
1 -1 -1 -1 1 -1 -1
p371:_ ) 17173:_ ’
(s 1) = 1 1 1 -1 (L.ps) =2 1 1 1 -1
1 1 1 1 -1 1 1 1
1 -1 0 1 10
1 1 0 -1 1 0
p471:L 5 1ap4:_ 5
(s 1) = 75 0 1 -1 (Lpa) = 75 01 —1
0O 0 1 1 0O 01 1
T 0 1-7 -1
0 T -1 -1
p5,1) = 3 ,
(Ps, 1) 2 7—1 1 T 0
1 1—7 T
T 0 T—1 1
0 T -1 -1
17]95:l 5
( ) 2 1—7 T 0

where 7 = (1 + v/5). Then we have
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Group Generators

GG (Q%1)7(17Q2)7(p371)7(17p3)
G8 (Q2, 1)7 (17 q2)7 (p3a 1)? (1?p3)7 (p47 1)7 (17]94)

G12 (QQu 1)7 (17 QZ)v (p37 1)7 (17173)7 (p57 1)7 (17]75)

Now we can write down the equations of the fix lines on P; x P; and those
of the planes which are generated by a couple of lines. The products of planes of
Section 2.1 in the case of the group Gg are

( ). f66) =(wo—ixs)(x1+izs)(xotixs)(x1—ixs)(x1—ixs)(x1+ize),

f11 f22 8) =(z1+azxy—bxs)(r1+bra—axs3)(r1—ary—bxs)(r1—ax3—bxs)
(zo+bxry — axs)(xetaxi—brs)(xe—bri+axs)(xet+brs—axy),

f11 (12 - fu& (r3—x14cxe)(x3—x1 —cxa)(To+x3—Ccrr)(x2+23+Cx)
(x3—zo+cry)(zg—zo—cx1)(x1+20+C3) (T1+T2—CX3)
(r1+x3—cro)(x1+x3+cxs)(r1—wotcrs)(x1—r9—C3),

with a = (1/2)(1 +4v/3),b = (1/2)(1 — iV3),c = iv/>2.

Then the Gg-invariant polynomials Fg, Fg and Fjo have the following
expressions
Fg =+ af + 25 + 2§ + bagaf (vf + o) + Saiai(af + 23) + 5ajzd(a? + 23)

+6x325(xf + x5) + 6xga3 (g + x3) + 62323 (23 + x3) + 2xga323,

Fy =3Yaf +12) ala? + 30 Y afa) + 243 ajala] + 144afatadas,

123 231 21
Fry=—= Yl + = Z$10$2+§Z T DRl pr ??
949 1839 6111
5 Lafeiag + —- afeja} + — = Tatu
7281
—|—1809Z wdudaiey + —— Y wlajriay,.
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Here the sums run over all the indices 4, j, k,h = 0,1,2, 3, always being different
when appearing together. By applying the map ¢, a computer computation with
MAPLE shows that

13
F = ——1t1-t
d(Fs) 16 1 U2,
BFR) = Wi,
8 — 64 1 29
B(F) = —
12 = 256X1 X2

as claimed in Corollary 3.1.

Proof of Proposition 2.1, 2. The polynomials Fg, Fg, Fio remain
invariant by interchanging zo with x3, which is what the matrix C’ does. O

Proof of Proposition 3.2. We write the computations just in the
case of the [3,4, 3]-invariant polynomials. Consider the points p; = (iv/2:1:1:
0) and po = (1:4:0:0), then ¢(p1) = q(p2) = 0 and by a computer computation
with MAPLE we get Fg(p1) = 26, Fg(p2) = 12 and Fja(p2) = 32. This shows
that ¢ does not divide the polynomials. Since Fg(p2) = 0, Fg does not divide
Fis. O

Remark 4.1. Observe that an equation for a [3,4, 3]-invariant poly-
nomial of degree six and for a [3, 3, 5]-invariant polynomial of degree twelve was
given by the author in [10] by a direct computer computation with MAPLE.

5. Final remarks. 1. The zero sets of the polynomials which are
described in this paper define algebraic surfaces in P3(C) with many symme-
tries. Such surfaces are expected to have many interesting geometrical properties:
many lines, many singularities, etc. In [10] it is shown that the projective one-
dimensional families of surfaces with equations Fg + A\g® = 0 and I'12 + A\¢® = 0,
A € Py contain each four surfaces with many nodes. The article also describes
a one-dimensional [3,4, 3|-invariant family of surfaces of degree 8. The family
contains four surfaces with Aj-singularities and it is also Gg-symmetric. In Fig-
ure 1 we show the picture of a surface with 144 nodes. But in fact the whole
[3, 4, 3]-invariant family of surfaces of degree 8 is projectively two-dimensional
with equation Fy + AFg - q + pg* = 0, (\, i) € Py. It would be interesting to
describe more surfaces in this family and in the families of [3,4, 3]-symmetric
surfaces of degree 12 and of [3, 3, 5]-symmetric surfaces of degree 20 and 30.
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2. Another interesting problem is to study the quotients of the previous
surfaces by the groups. In [1] it is shown that the Gg-quotient, resp. the Gio-
quotient of a surface in the family defined by Fg + A¢g®> = 0, resp. defined by
I + A¢% = 0 is a K3-surface. It would be interesting to identify the quotients
by the groups [3,4, 3], resp. [3,3,5] which contain the groups Gg, resp. Gi2. And
in general, to describe more quotients.

Fig. 1. [3,4, 3]-symmetric octic with 144 nodes

o8+ 2§ + 2§ + 2§ + 14 (x%x‘ll + xhxd + xhah + vixd + ik + x%x%) +

+1682322232% — (v + 22 + 23 + 231 =0
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