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LIE GROUPS AS FOUR-DIMENSIONAL SPECIAL

COMPLEX MANIFOLDS WITH NORDEN METRIC*

Marta Teofilova

An example of a four-dimensional special complex manifold with Norden metric of

constant holomorphic sectional curvature is constructed via a two-parametric family

of solvable Lie algebras. The curvature properties of the obtained manifold are stu-

died. Necessary and sufficient conditions for the manifold to be isotropic Kählerian

are given.

1. Preliminaries. Let (M,J, g) be a 2n-dimensional almost complex manifold with
Norden metric, i.e. J is an almost complex structure and g is a metric on M such that:

(1.1) J2x = −x, g(Jx, Jy) = −g(x, y), x, y ∈ X(M).

The associated metric g̃ of g on M , given by g̃(x, y) = g(x, Jy), is a Norden metric too.
Both metrics are necessarily neutral, i.e. of signature (n, n).

If ∇ is the Levi-Civita connection of g, then the tensor field F of type (0, 3) is defined
by

(1.2) F (x, y, z) = g ((∇xJ)y, z)

and it has the following symmetries

(1.3) F (x, y, z) = F (x, z, y) = F (x, Jy, Jz).

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M . The
components of the inverse matrix of g with respect to the basis {ei} are denoted by gij .
The Lie 1-forms θ and θ∗ associated with F are defined by

(1.4) θ(x) = gijF (ei, ej , x), θ∗ = θ ◦ J, respectively.

The Nijenhuis tensor field N for J is given by

(1.5) N(x, y) = [Jx, Jy] − [x, y] − J [Jx, y] − J [x, Jy].

It is known [4] that the almost complex structure is complex iff it is integrable, i.e. iff
N = 0.

A classification of the almost complex manifolds with Norden metric is introduced in
[2], where eight classes of these manifolds are characterized according to the properties of
F . The three basic classes: W1, W2 of the special complex manifolds with Norden metric
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and W3 of the quasi-Kähler manifolds with Norden metric are given as follows:

(1.6)

W1 : F (x, y, z) =
1

2n
[g(x, y)θ(z) + g(x, z)θ(y)

+g(x, Jy)θ(Jz) + g(x, Jz)θ(Jy)] ;

W2 : F (x, y, Jz) + F (y, z, Jx) + F (z, x, Jy) = 0, θ = 0 ⇔ N = 0, θ = 0;

W3 : F (x, y, z) + F (y, z, x) + F (z, x, y) = 0.

The class W0 of the Kähler manifolds with Norden metric is defined by F = 0 and is
contained in each of the other classes.

Let R be the curvature tensor of ∇, i.e. R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z. The
corresponding (0,4)-type tensor is defined by R(x, y, z, u) = g (R(x, y)z, u). The Ricci
tensor ρ and the scalar curvatures τ and τ∗ are given by:

(1.7) ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej), τ∗ = gijρ(ei, Jej).

A tensor of type (0,4) is said to be curvature-like if it has the properties of R. Let S
be a symmetric (0,2)-tensor. We consider the following curvature-like tensors:

(1.8)

ψ1(S)(x, y, z, u) = g(y, z)S(x, u) − g(x, z)S(y, u)

+ g(x, u)S(y, z) − g(y, u)S(x, z),

π1 =
1

2
ψ1(g), π2(x, y, z, u) = g(y, Jz)g(x, Ju) − g(x, Jz)g(y, Ju).

It is known that on a pseudo-Riemannian manifold M (dimM = 2n ≥ 4) the confor-
mally invariant Weyl tensor has the form

(1.9) W (R) = R−
1

2(n− 1)

{
ψ1(ρ) −

τ

2n− 1
π1

}
.

Let α = {x, y} be a non-degenerate 2-plane spanned on the vectors x, y ∈ TpM ,
p ∈M . The sectional curvature of α is given by

(1.10) k(α; p) =
R(x, y, y, x)

π1(x, y, y, x)
.

We consider the following basic sectional curvatures in TpM with respect to the structures
J and g: holomorphic sectional curvatures if Jα = α and totally real sectional curvatures

if Jα ⊥ α with respect to g.

The square norm of ∇J is defined by ‖∇J‖
2

= gijgklg
(
(∇ei

J)ek, (∇ej
J)el

)
. Then,

by (1.2) we get

(1.11) ‖∇J‖
2

= gijgklgpqFikpFjlq ,

where Fikp = F (ei, ek, ep).

An almost complex manifold with Norden metric satisfying the condition ‖∇J‖2 = 0
is called an isotropic Kähler manifold with Norden metric [3].

2. Almost complex manifolds with Norden metric of constant holomorphic
sectional curvature. In this section we obtain a relation between the vanishing of
the holomorphic sectional curvature and the vanishing of ‖∇J‖2 on W2-manifolds and
W3-manifolds with Norden metric. In [1] it is proved the following
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Theorem A. ([1]) An almost complex manifold with Norden metric is of pointwise

constant holomorphic sectional curvature if and only if

(2.1)

3{R(x, y, z, u) +R(x, y, Jz, Ju) +R(Jx, Jy, z, u) +R(Jx, Jy, Jz, Ju)}

−R(Jy, Jz, x, u) +R(Jx, Jz, y, u) −R(y, z, Jx, Ju) +R(x, z, Jy, Ju)

−R(Jx, z, y, Ju) +R(Jy, z, x, Ju) −R(x, Jz, Jy, u) +R(y, Jz, Jx, u)

= 8H{π1 + π2}

for some H ∈ FM and all x, y, z, u ∈ X(M). In this case H(p) is the holomorphic

sectional curvature of all holomorphic non-degenerate 2-planes in TpM , p ∈M .

Taking into account (1.7) and (1.8), the total trace of (2.1) implies

(2.2) H(p) =
1

4n2
(τ + τ∗∗),

where τ∗∗ = gilgjkR(ei, ej, Jek, Jel).
In [5] we have proved that on a W2-manifold

(2.3) ‖∇J‖
2

= 2(τ + τ∗∗),

and in [3] it is proved that on a W3-manifold

(2.4) ‖∇J‖
2

= −2(τ + τ∗∗).

Then, by Theorem A, (2.2), (2.3) and (2.4) we obtain

Theorem 2.1. Let (M,J, g) be an almost complex manifold with Norden metric of

pointwise constant holomorphic sectional curvature H(p), p ∈M . Then,

(i) ‖∇J‖
2

= 8n2H(p) if (M,J, g) ∈ W2;

(ii) ‖∇J‖2 = −8n2H(p) if (M,J, g) ∈ W3.

Theorem 2.1 implies

Corollary 2.2. Let (M,J, g) be a W2-manifold or W3-manifold of pointwise constant

holomorphic sectional curvature H(p), p ∈M . Then, (M,J, g) is isotropic Kählerian iff

H(p) = 0.

In the next section we construct an example of a W2-manifold of constant holomorphic
sectional curvature.

3. Lie groups as four-dimensional W2-manifolds. Let g be a real 4-dimensional
Lie algebra corresponding to a real connected Lie group G. If {X1, X2, X3, X4} is a basis
of left invariant vector fields on G and [Xi, Xj] = Ck

ijXk (i, j, k = 1, 2, 3, 4), then the

structural constants Ck
ij satisfy the anti-commutativity condition Ck

ij = −Ck
ji and the

Jacobi identity Ck
ijC

l
ks + Ck

jsC
l
ki + Ck

siC
l
kj = 0.

We define an almost complex structure J and a compatible metric g on G by the
corresponding conditions:

(3.1) JX1 = X3, JX2 = X4, JX3 = −X1, JX4 = −X2,

(3.2)
g(X1, X1) = g(X2, X2) = −g(X3, X3) = −g(X4, X4) = 1,

g(Xi, Xj) = 0, i 6= j, i, j = 1, 2, 3, 4.

Because of (1.1), (3.1) and (3.2), g is a Norden metric. Thus, (G, J, g) is a 4-dimensional
almost complex manifold with Norden metric.
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From (3.2) it follows that the well-known Levi-Civita identity for g takes the form

(3.3) 2g(∇Xi
Xj , Xk) = g([Xi, Xj ], Xk) + g([Xk, Xi], Xj) + g([Xk, Xj ], Xi).

Let us denote Fijk = F (Xi, Xj, Xk). Then, by (1.2) and (3.3), we have

(3.4)
2Fijk = g

(
[Xi, JXj] − J [Xi, Xj ], Xk

)
+ g

(
J [Xk, Xi] − [JXk, Xi], Xj

)

+g
(
[Xk, JXj] − [JXk, Xj], Xi

)
.

According to (1.6), in order to construct an example of a W2-manifold, we need to
find sufficient conditions for the Nijenhuis tensor N and the Lie 1-form θ to vanish on g.

By (1.2), (1.5), (3.2) and (3.4) we calculate the essential componentsNk
ij (N(Xi, Xj) =

Nk
ijXk) of N and θi = θ(Xi) of θ, respectively, as follows:

(3.5)

N1
12 = C1

34 − C1
12 − C3

23 + C3
14, θ1 = 2C1

13 − C4
12 + C2

14 + C2
23 − C4

34,

N2
12 = C2

34 − C2
12 − C4

23 + C4
14, θ2 = 2C2

24 + C3
12 + C1

14 + C1
23 + C3

34,

N3
12 = C3

34 − C3
12 + C1

23 − C1
14, θ3 = 2C3

13 + C2
12 + C4

14 + C4
23 + C2

34,

N4
12 = C4

34 − C4
12 + C2

23 − C2
14, θ4 = 2C4

24 − C1
12 + C3

14 + C3
23 − C1

34.

Then, (1.6) and (3.5) imply

Theorem 3.1. Let (G, J, g) be a 4-dimensional almost complex manifold with Norden

metric defined by (3.1) and (3.2). Then, (G, J, g) is a W2-manifold iff for the Lie algebra

g of G are valid the conditions:

(3.6)
C1

13 = C4
12 − C2

23 = C4
34 − C2

14, C3
13 = −

(
C2

12 + C4
23

)
= −

(
C4

14 + C2
34

)
,

C4
24 = C1

12 − C3
14 = C1

34 − C3
23, C2

24 = −
(
C3

12 + C1
14

)
= −

(
C1

23 + C3
34

)
,

where Ck
ij (i, j, k = 1, 2, 3, 4) satisfy the Jacodi identity.

One solution to (3.6) and the Jacobi identity is the 2-parametric family of solvable
Lie algebras g given by

(3.7) g :

[X1, X2] = λX1 − λX2, [X2, X3] = µX1 + λX4,

[X1, X3] = µX2 + λX4, [X2, X4] = µX1 + λX3,

[X1, X4] = µX2 + λX3, [X3, X4] = −µX3 + µX4, λ, µ ∈ R.

Let us study the curvature properties of the W2-manifold (G, J, g), where the Lie
algebra g of G is defined by (3.7).

By (3.2), (3.3) and (3.7) we obtain the components of the Levi-Civita connection:

(3.8)

∇X1
X2 = λX1 + µ(X3 +X4), ∇X2

X1 = λX2 + µ(X3 +X4),

∇X3
X4 = −λ(X1 +X2) − µX3, ∇X4

X3 = −λ(X1 +X2) − µX4,

∇X1
X1 = −λX2, ∇X2

X2 = −λX1, ∇X3
X3 = µX4, ∇X4

X4 = µX3,

∇X1
X3 = ∇X1

X4 = µX2, ∇X2
X3 = ∇X2

X4 = µX1,

∇X3
X1 = ∇X3

X2 = −λX4, ∇X4
X1 = ∇X4

X2 = −λX3.
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Taking into account (3.4) and (3.7), we calculte the essential non-zero components of F :

(3.9)
F114 = −F214 = F312 =

1

2
F322 =

1

2
F411 = F412 = −λ,

F112 =
1

2
F122 =

1

2
F211 = F212 = −F314 = F414 = µ.

The other non-zero components of F are obtained from (1.3).
By (1.11) and (3.9) for the square norm of ∇J we get

(3.10) ‖∇J‖
2

= −32(λ2 − µ2).

Further, we obtain the essential non-zero components Rijks = R(Xi, Xj , Xk, Xs) of
the curvature tensor R as follows:

(3.11)

−
1

2
R1221 = −R1341 = −R2342 = R3123 =

1

2
R3443 = R4124 = λ2 + µ2,

R1331 = R1441 = R2332 = R2442 = −R1324 = −R1423 = λ2 − µ2,

R1231 = R1241 = R2132 = R2142

= −R3143 = −R3243 = −R4134 = −R4234 = 2λµ.

Then, by (1.7) and (3.11) we get the components ρij = ρ(Xi, Xj) of the Ricci tensor and
the values of the scalar curvatures τ and τ∗:

(3.12)

ρ11 = ρ22 = −4λ2, ρ33 = ρ44 = −4µ2,

ρ12 = ρ34 = −2(λ2 + µ2), ρ13 = ρ14 = ρ23 = ρ24 = 4λµ,

τ = −8(λ2 − µ2), τ∗ = 16λµ.

Let us consider the characteristic 2-planes αij spanned on the basic vectors {Xi, Xj}:
totally real 2-planes - α12, α14, α23, α34 and holomorphic 2-planes - α13, α24. By (1.10)
and (3.11) for the sectional curvatures of the holomorphic 2-planes we obtain

(3.13) k(α13) = k(α24) = −(λ2 − µ2).

Then, it is valid

Theorem 3.2.The manifold (G, J, g) is of constant holomorphic sectional curvature.

Using (1.9), (3.11) and (3.12) for the essential non-zero components
Wijks = W (Xi, Xj , Xk, Xs) of the Weyl tensor W we get:

(3.14)

1

2
W1221 = W1331 = W1441 = W2332 = W2442 =

1

2
W3443

= −
1

3
W1324 = −

1

3
W1423 =

1

3
(λ2 − µ2).

Finally, by (1.9), (3.10), (3.12), (3.13) and (3.14) we establish the validity of

Theorem 3.3.The following conditions are equivalent:

(i) (G, J, g) is isotropic Kählerian;

(ii) |λ| = |µ|;

(iii) τ = 0;
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(iv) (G, J, g) is of zero holomorphic sectional curvature;

(v) the Weyl tensor vanishes;

(vi) R =
1

2
ψ1(ρ).
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ГРУПИ НА ЛИ КАТО ЧЕТИРИМЕРНИ СПЕЦИАЛНИ

КОМПЛЕКСНИ МНОГООБРАЗИЯ С НОРДЕНОВА МЕТРИКА

Марта Теофилова

Конструиран е пример на четиримерно специално комплексно многообразие с

норденова метрика и постоянна холоморфна секционна кривина чрез двупара-

метрично семейство от разрешими алгебри на Ли. Изследвани са кривинните

свойства на полученото многообразие. Дадени са необходими и достатъчни усло-

вия за разглежданото многообразие да бъде изотропно келерово.
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