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CONVOLUTION NONLINEARITY IN RN*

George Venkov, Hristo Genev

We are concerned with a class of L
2-critical nonlinear Schrödinger equations in R

1+n

with convolution nonlinearity of Hartree type. We aim to establish local and global
existence and well-posedness of solutions in a small neighborhood of the origin in
L

2(Rn). As a natural consequence of the global results, we prove the existence of
scattering operator for small initial data.

1. Introduction. In this paper we consider the Cauchy problem for the defocussing
mass-critical Schrödinger equation with convolution nonlinearity of the form

(1.1) i∂tψ + △ψ =

(

1

|x|n−γ
∗ |ψ|α

)

ψ, ψ(0, x) = ψ0(x),

(t, x) ∈ R+ × Rn for n ≥ 3, where α > 0 and 0 < γ < n. Here ψ = ψ(t, x) is a complex
valued function, the initial data ψ0 takes value in L2(Rn) and ∗ denotes the convolution
in space. Equation (1.1) can be written in terms of the wave function ψ and the potential
V as the following system

(1.2) i∂tψ + △ψ = V ψ, (−△)
γ
2 V = Cn|ψ|α,

where the constant Cn = Cn(γ) in the second equation can be calculated explicitly (see
Chapter V in Stein [5]). Due to the appearance of convolution operator, equation (1.1) is
known as the Schrödinger equation with nonlocal nonlinearity (or Hartree equation). As
a special case of (1.1), the Schrödinger equation of Hartree type in R3, say α = 2, with
the Coulomb convolution kernel |x|−1 is derived from the Maxwell-Schrödinger system
with zero magnetic field.

In this paper we study the local and global existence, well-posedness and scattering
of solutions to (1.1) with small initial data. The scaling argument, i.e. the scaling
symmetry ψλ(t, x) = λ

n
2 ψ(λ2t, λx), for λ > 0 gives the value of the mass-critical power

αc =
2(2 + γ)

n
. It is obvious that the scalling trasformation preserves the L2-norm

and leaves equation (1.1) unperturbed. For dimension n = 3 and γ = 2 the system
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(1.2) becomes the mass-critical Schrödinger-Poisson system, which has been extensively
studied in [8, 9].

It is essential in our study that, in general, equation (1.1) does not possess Hamiltonian
structure, i.e. it is not a Hamiltonian completely integrable dynamical system. We prove
that except for the value γ = n−2, equation (1.1) has only one conserved quantity – the
mass, while its solution does not satisfy the energy conservation law. This fact prevents
one from studying (1.1) for general powers α of the nonlinear term.

In general, the scaling symmetry relates (1.1) to a wide class of equations, referred
to as the mass-critical (L2-critical or pseudoconformal) nonlinear Schrödinger equations.
The name comes from the fact that the above transform leaves both the equation and
the mass (the L2-norm) invariant. Mass is one of the basic structures used in physics and
is defined by M(ψ(t)) =

∫

Rn |ψ(t, x)|2dx. For (1.1), we prove (see Theorem 1.1 bellow)
that the mass is a conserved quantity, i.e. M(ψ(t)) = M(ψ0). As in the papers [2, 8, 9],
our results make use of mixed spaces of the type Lq([0, T ], Lr(Rn)) for admissible q and
r. Thus, we use the following

Definition 1.1. We say that the pair (q, r) of exponents is Schrödinger–admissible if

q and r satisfy
2

q
= n

(

1

2
− 1

r

)

, for 2 ≤ q ≤ ∞.

Following the strategy developed for the semilinear Schrödinger equation (see for
instance [1, 2, 7]), we aim to establish the local well-posedness theory for (1.1) and to
construct global solutions for sufficiently small L2-initial data. More precisely, we use
the following

Definition 1.2.A function ψ : [0, T ∗) × Rn → C, is a L2(Rn) solution to (1.1) if

ψ ∈ C0([0, T ], L2(Rn))∩Lq0 ([0, T ], Lr0(Rn)) for (q0, r0) =

(

2(n+ γ + 2)

n
,
2(n+ γ + 2)

n+ γ

)

and 0 < T < T ∗. Moreover, we have the following Duhamel’s integral representation

(1.3) ψ(t) = U(t)ψ0 − i

∫ t

0

U(t− s)

(

1

|x|n−γ
∗ |ψ(s)|αc

)

ψ(s)ds, t ∈ [0, T ].

Here U(t) = eit∆ is the free Schrödinger evolution group defined via the Fourier transform

by U(t)f = F−1e−it|ξ|2Ff. We say that ψ is a global solution to (1.1) if T ∗ = ∞.

The first main result of the present paper is the following

Theorem 1.1.Let 0 < γ <
√
n2 + 1− 1 for n = {3, 4} and

n− 4

2
≤ γ <

√
n2 + 1− 1

for n > 4. Then, for every initial data ψ0 ∈ L2(Rn), there exists a unique maximal

solution ψ ∈ C0([0, T ∗), L2(Rn)) ∩ Lq0([0, T ∗), Lr0(Rn)) of (1.1). Furthermore:

(i) ψ ∈ Lq([0, T ], Lr(Rn)), for 0 < T < T ∗ and every admissible pair (q, r);

(ii) the mass is conserved, i.e. M(ψ(t)) = M(ψ0) for t ∈ [0, T ∗);

(iii) there exists a constant ε > 0 sufficiently small, such that if ‖ψ0‖L2(Rn) < ε, then

T ∗ = ∞ and ψ ∈ Lq(R+, L
r(Rn)) for every admissible pair (q, r);

(iv) if T ∗ <∞, then ‖ψ‖Lq([0,T∗),Lr(Rn)) = ∞ for every r > r0;

(v) ψ depends continuously on the initial data ψ0 ∈ L2(Rn) in the space

ψ ∈ C0([0, T ∗), L2(Rn)) ∩ Lq0([0, T ∗), Lr0(Rn)).
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With our second result we develop a scattering theory for (1.1) in L2(Rn) with small
initial data.

Theorem 1.2. Let ε > 0 be sufficiently small and consider the ball Bε = {ψ ∈
L2(Rn); ‖ψ‖L2 < ε}. Let ψ ∈ C0([0, T ∗), L2(Rn)) ∩ Lq0([0, T ∗), Lr0(Rn)) be the unique

maximal solution of (1.1), given by part (iii) of Theorem 1.1. Then, we have:

(i) for any ψ± ∈ Bε, there exists unique ψ0 ∈ Bε, such that

(1.4) lim
t→±∞

‖U(−t)ψ(t) − ψ±‖L2 = lim
t→±∞

‖ψ(t) − U(t)ψ±‖L2 = 0;

(ii) for any ψ0 ∈ Bε, there exists unique ψ± ∈ Bε, such that (1.4) is satisfied;

(iii) the wave operators Ω± : ψ± 7→ φ0 and the scattering operator S = Ω−1
+ ◦ Ω− are

homeomorphisms from Bε onto itself and isometric in the L2 norm.

2. Proof of Theorems 1.1 and 1.2. We point out that the mixed space Lq0Lr0

for the admissible pair (q0, r0) with q0 =
2(n+ γ + 2)

n
and r0 =

2(n+ γ + 2)

n+ γ
plays a

fundamental role. This is better understood if we recall the dispersive properties of the
Schrödinger operator [4, 10].

Lemma 2.1.Let (q, r) be an admissible pair. Then, for every ϕ ∈ L2(Rn) the follow-

ing estimate holds

‖U(t)ϕ‖Lq(R,Lr(Rn)) ≤ C0‖ϕ‖L2(Rn).(2.1)

Moreover, for every admissible pair (θ, ρ) and f ∈ Lθ′

([0, T ], Lρ′

(Rn)) we have
∥

∥

∥

∥

∫ t

0

U(t− s)f(s)ds

∥

∥

∥

∥

Lq([0,T ],Lr(Rn))

≤ C‖f‖Lθ′([0,T ],Lρ′(Rn)), 0 < T ≤ ∞.(2.2)

Here the constants C0, C > 0 and depend only on the spatial exponents r and ρ.

The arguments of Theorem 1.1 rely primarily on the estimate (2.2), applied to the
integral representation (1.3), Hölder inequality and the following Lemma

Lemma 2.2 (Hardy-Littlewood-Sobolev Inequality [6]). For 0 < γ < n consider the

Riesz potential

(2.3) Iγ(f)(x) =

∫

Rn

f(y)

|x− y|n−γ
dy.

Then, for any 1 < r < θ <∞ and f ∈ Lr(Rn), we have

(2.4) ‖Iγ(f)‖Lθ ≤ C‖f‖Lr ,
1

θ
=

1

r
− γ

n
.

Let us denote by N(ψ) the nonlinear term

(2.5) N(ψ) = (|x|−(n−γ) ∗ |ψ|αc)ψ

in the Schrödinger equation (1.1).

Lemma 2.3. Let 0 < T ≤ ∞ and let (q, r) be a Schrödinger-admissible

pair. Then, there exists a constant C > 0, independent of T , such that for every
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ψ, χ ∈ Lq0([0, T ], Lr0(Rn)) we have
∥

∥

∥

∥

∫ t

0

U(t− s)[N(ψ)(s) −N(χ)(s)]ds

∥

∥

∥

∥

Lq([0,T ],Lr)

(2.6)

≤ C
(

‖ψ‖αc

Lq0([0,T ],Lr0) + ‖χ‖αc

Lq0([0,T ],Lr0)

)

‖ψ − χ‖Lq0([0,T ],Lr0).

Proof. To prove the Lemma, it is sufficient to show that

(2.7) ‖N(ψ) −N(χ)‖
L

q′
0([0,T ],Lr′

0)

≤ C
(

‖ψ‖αc

Lq0([0,T ],Lr0) + ‖χ‖αc

Lq0([0,T ],Lr0)

)

‖ψ − χ‖Lq0([0,T ],Lr0).

Indeed, we can write

N(ψ) −N(χ) = Iγ(|ψ|αc)ψ − Iγ(|χ|αc)χ

= Iγ(|ψ|αc)(ψ − χ) + Iγ(|ψ|αc − |χ|αc)χ,(2.8)

where the operator Iγ is defined by (2.3). Then, using Hölder inequality we estimate

‖N(ψ) −N(χ)‖
L

r′
0
≤ C‖Iγ(|ψ|αc)‖Lp1‖ψ − χ‖Lr0

+‖Iγ(|ψ|αc − |χ|αc)‖Lp1‖χ‖Lr0 ,(2.9)

with p1 =
n+ γ + 2

2
. Now, using Lemma 2.2 we have

‖Iγ(|ψ|αc − |χ|αc)‖Lp1 ≤ C‖|ψ|αc − |χ|αc‖Lp2 ,(2.10)

where p2 =
n(n+ γ + 2)

(n+ γ)(γ + 2)
. The condition 1 < p2 < p1 is equivalent to the following

algebraic inequality γ2 + 2γ − n2 < 0, which gives the upper bound γ <
√
n2 + 1 − 1.

On the other hand, the lower bound
n− 4

2
≤ γ ensures that αc ≥ 1 and, thus, we can

estimate

||ψ|αc − |χ|αc | ≤ Cmax
{

|ψ|αc−1, |χ|αc−1
}

|ψ − χ|.(2.11)

Combining the above estimates, we obtain the following inequality

‖N(ψ) −N(χ)‖
L

r′
0
≤ C (‖ψ‖αc

Lr0
+ ‖χ‖αc

Lr0
) ‖ψ − χ‖Lr0 .(2.12)

Applying Hölder inequality in time to (2.12), we obtain (2.7). Finally, it is sufficient
to use the estimate (2.2) from Lemma 2.1 and the proof is completed. �

Now we prove Theorem 1.1. The proof of (ii) is rather technical. We prove the
existence of solution to (1.1) by a fix point argument. Let ψ0 ∈ L2(R3) be an arbitrary
initial data, R > 0 and T be a fixed positive time and consider the ball

(2.13) BR(T ) = {ψ ∈ C0([0, T ], L2)) ∩ Lq0([0, T ], Lr0); ‖ψ‖Lq0([0,T ],Lr0) < R},
endowed with the metric d(ψ, χ) = ‖ψ − χ‖Lq0([0,T ],Lr0). It is clear that BR(T ) is a
complete metric space.

Consider the map Φ[ψ] defined by the right-hand side of the Duhamel’s integral
representation (1.3). Then, for ψ ∈ BR(T ), using (2.1), (2.2) and (2.6), we can write

‖Φ[ψ]‖Lq0([0,T ],Lr0) ≤ ‖U(·)ψ0‖Lq0([0,T ],Lr0) + C1‖ψ‖αc+1
Lq0([0,T ],Lr0).(2.14)

From the fact that ‖U(·)ψ0‖Lq0([0,T ],Lr0) → 0 as T → 0, we can choose T in such a
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way that ‖U(·)ψ0‖Lq0([0,T ],Lr0) ≤ R

2
. Now, we can take R ≤ (2C1)

− 1

αc , which implies

Φ[ψ] ∈ BR(T ). On the other hand, from the relation

(2.15) (Φ[ψ] − Φ[χ])(t) = −i
∫ t

0

U(t− s) (N(ψ) −N(χ)) (s)ds,

and (2.6) it follows that

‖Φ[ψ] − Φ[χ]‖Lq0([0,T ],Lr0
≤ 2RαcC2‖ψ − χ‖Lq0([0,T ],Lr0),(2.16)

for every ψ, χ ∈ BR(T ). If we choose R < min
{

(2C1)
− 1

αc , (2C2)
− 1

αc

}

, then we finally

obtain that the map Φ[ψ] is a strict contraction on the ball BR(T ). Thus, Φ[ψ] has a
fixed point, which is the unique solution of (1.1) in C0([0, T ], L2)) ∩ Lq0([0, T ], Lr0). To
prove (iii), let us denote by T ∗ the supremum of all T > 0 for which such a solution exists.
Observe now that if ψ0 is sufficiently small, then (2.14) holds regardless of the value of
T . Thus, we may accomplish the fixed point procedure in the ball BR(∞), providing
T ∗ = ∞.

Further, we claim that if T ∗ < ∞, then ‖ψ‖Lq([0,T∗),Lr) = ∞ for every r > r0.
Indeed, on the contrary, let us assume that T ∗ <∞ and ‖ψ‖Lq0([0,T∗),Lr0) <∞. For any
t ∈ [0, T ∗) let τ ∈ [0, T ∗ − t). Using Duhamel’s formula (1.3), we can write

ψ(t+ τ) = U(τ)ψ(t) − i

∫ t+τ

t

U(t+ τ − s)N(ψ)(s)ds.(2.17)

From (2.17) and the estimate (2.6) in Lemma 2.3 we obtain

(2.18) ‖U(·)ψ(t)‖Lq0([0,T∗−t),Lr0) ≤ C
(

‖ψ(t)‖Lq0([t,T∗),Lr0) + ‖ψ‖αc+1
Lq0([t,T∗),Lr0)

)

.

Observing now that ‖U(·)ψ‖Lq0([0,T ],Lr0) → 0 as T → 0 and taking t close enough to
T ∗, it follows that ‖U(·)ψ(t)‖Lq0([0,T∗−t),Lr0) can be made small enough and the assump-
tions in (iii) are fulfilled. Therefore, ψ can be extended beyond T ∗, which contradicts
the maximality. Let (q, r) be a Schrödinger-admissible pair with r ≥ r0. Then, from
Hölder inequality, for T < T ∗, we can write

(2.19) ‖ψ‖Lq0([0,T ],Lr0) ≤ ‖ψ‖1−θ
L∞([0,T ],L2)‖ψ‖

θ
Lq([0,T ],Lr), θ ∈ (0, 1).

Letting T → T ∗, we obtain that ‖ψ‖Lq([0,T ],Lr) = ∞, which proves the statement
(iv).

To prove (v), consider a sequence ψk
0 ∈ L2(Rn), such that ψk

0 → ψ0 ∈ L2(Rn) as
k → ∞. Thus, for k large enough, ‖U(·)ψk

0‖Lq0([0,T ],Lr0) < ε. We can use the Duhamel’s

formula (1.3) to construct a sequence of solutions ψk ∈ Lq0([0, T ], Lr0(Rn)) to (1.1) with
initial data ψk

0 . Applying the proof of (iii), we obtain that ψk → ψ in C0([0, T ], L2(Rn))∩
Lq0([0, T ], Lr0(Rn)) as k → ∞, and in fact in every Lq([0, T ], Lr(Rn))) for (q, r) be an
admissible pair. Thus, the proof of the Theorem is completed.

We begin the proof of Theorem 1.2 by recalling some definitions from the scattering
theory for Schrödinger equation. Let v(t) = U(t)ψ± be a solution to the free Schrödinger
equation with initial data ψ± ∈ L2(Rn) (called the asymptotic state). If there exists
a solution of (1.1), which behaves asymptotically as v when t → ±∞, then the map
Ω± : L2(Rn) 7→ L2(Rn) is called the wave operator for positive or negative times. In
other words, a global strong L2-solution ψ to the nonlinear equation (1.1) with an initial
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data ψ0 scatters in L2(Rn) to a solution v(t) = U(t)ψ± if we have

(2.20) lim
t→±∞

‖ψ(t) − U(t)ψ±‖L2 = lim
t→±∞

‖U(−t)ψ(t) − ψ±‖L2 = 0.

The arguments for proving the existence of the wave operator are standard and follows
the exposition in [3]. We prove only the (+) case since the (−) case can be proved
similarly. Let ψ0 ∈ L2(Rn) with ‖U(·)ψ0‖Lq0([0,T ],Lr0) < ε and ψ ∈ B2ε. Then, for
t > t0, using Duhamel’s integral formula (1.3), we have

U(−t)ψ(t) = U(−t0)ψ(t0) − i

∫ t

t0

U(−s)N(ψ)(s)ds.(2.21)

Therefore, the estimate (2.6) yields

‖U(−t)ψ(t) − U(−t0)ψ(t0)‖L2 ≤ C ‖ψ‖αc+1
Lq0([t0,t],Lr0) → 0,(2.22)

as t0 → ∞. Since U(−t0)ψ(t0) ∈ L2, the proof of part (ii) is completed.
To prove (i), assume that ψ+ ∈ L2(Rn), ψ ∈ B2ε and consider the map

Φ+[ψ](t) = U(t)ψ+ + i

∫ +∞

t

U(t− s)N(ψ)(s)ds, t > T,(2.23)

for some T = T (ψ+) large enough. Then, using the same arguments as in the proof of
part (iii) of Theorem 1.1, we find that Φ+ is a contraction on B2ε and has a unique
fixed point if ‖ψ+‖L2 < ε. Using the global well-posedness result established in Theorem
1.1 for small data, one can then extend this solution uniquely for any t ∈ [0,∞), and in
particular ψ takes some value ψ0 = ψ(0) ∈ L2 at time t = 0. This ensures the existence
of the wave operator Ω+, defined by

Ω+ψ+ = ψ0 = ψ+ + i

∫ +∞

0

U(−s)N(ψ)(s)ds.(2.24)

To prove (iii), we use the following observations. Since the wave operators Ω± are
isometric in the space B2ε, it is clear that the scattering operator S : φ− 7→ φ+ is well
defined as a map from B2ε onto itself and is isometric in the L2 norm, i.e. ‖Sψ‖L2 =
‖ψ‖L2. This completes the proof of the Theorem 1.2.
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ГЛОБАЛНИ РЕЗУЛТАТИ ЗА РЕШЕНИЕТО НА УРАВНЕНИЕТО НА
ШРЬОДИНГЕР С КРИТИЧНА МАСА И НЕЛИНЕЙНОСТ ОТ

КОНВОЛЮЦИОНЕН ТИП В RN

Георги Венков, Христо Генев

Разглеждаме един клас от L
2-критични нелинейни уравнения на Шрьодингер в

R
1+n с конволюционна нелинейност от тип Хартри. Целта ни е да установим ло-

калното и глобално съществуване на решенията, както и коректност на задачата

на Коши в достатъчно малка околност на нулата в пространството L
2(Rn). Като

естествено следствие на глобалните резултати ние доказваме съществуване на

оператор на разсейване за малки начални условия.
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