
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2010

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2010

Proceedings of the Thirty Ninth Spring Conference of

the Union of Bulgarian Mathematicians

Albena, April 6–10, 2010

UNDERSTANDING COMPUTING THROUGH DEFINING

ITS LEXICON*

Boyko Bantchev

Important questions regarding what computing is and how it pervades nature, science,
engineering and other fields remain unanswered. Even restricted to programming or
using computer-based technology, computing lacks proper understanding. We argue
that one way to bring this understanding closer is by discovering the most fundamental
structures and relations in computing and, thus, building a dictionary of computing.

Doing 6= understanding. Computing, as a human activity, has its origins in
times immemorial. Initially it was almost exclusively concerned with doing numeric
calculations. With time, logic, geometry, and other formal disciplines have contributed
to extending the domain of application of concepts like ‘procedure’ and ‘method’ to other
areas. It took many centuries before the very notions of computing and computability,
information and complexity, data and algorithm became topics of academic scrutiny of
their own.

The advent of automatic computers lead to the employment of computing methods
and computer programs in a vast number of human activities. This required, and did lead
to the discovery of important computing paradigms now embodied in our programming
models and languages, software construction methods, and patterns of interfacing of that
software to humans. Computing is establishing itself as an inseparable ingredient of our
culture – and one that pervades more and more of it.

This new and growing presence challenges our comprehension of computing as a phe-
nomenon, its facets, forms, implications, and related concepts. In order to manage the
ever growing diversity and complexity of software, its construction and use, and more-
over, in order to enjoy the benefits of the mutual fertilization between computing and
other fields, it is necessary that computing is not perceived as the phenomenology of us-
ing a computer, or restricted to the sphere of human activities. Computing is any process
that has to do with information, and is not only done by humans but is something that
occurs in any living system, and any material system at all.

However, this more general understanding has only recently begun to receive wide ap-
preciation. For too long computing was a technology-related concept. Even the science
of computing is usually called ‘computer science’, thus further aggravating the miscon-
ception. For the said and other reasons, we are lacking understanding of the profound

*2000 Mathematics Subject Classification: 68Q01.

Key words: computing, concepts, structure, language.

171



principles on which computing is based, of what is computable, and of what computing
itself and its inherent structure are. Put shortly – if somewhat bluntly – we, as comput-
ing scientists, have not yet properly defined our field of study, and we are urged to do
so.

In order to observe how inadequate our current perception of computing is we need to
look no further than programming, which we have partitioned into ‘styles’ or ‘paradigms’.
Two styles, say imperative and functional, can be so much different that it is hard to
explain how they both express the same general idea of computation. The different styles
appear to be almost totally disunited because each one is based on its own set of concepts
that barely intersects with that of the other styles.

In fact, it is very difficult even to formulate what a programming style in the above
sense is. It is also hard to speculate on what paradigms beyond the known ones are
possible: how could we do that in the absence of a language suitable for expressing such
ideas? Clearly, we need an underlying language – the true language of computing – that
would provide us with the common basic terms in which all aspects of computing could
be discussed.

The deeper understanding of computing can:

• improve our abilities to develop and use computer-based technology, in particular
to find better ways to approach programming and software construction;

• make us more able to apply computational concepts, such as algorithms and data
organisation, to other areas of human activity, not necessarily involving the use of
computers;

• help us identify and explore the ways in which computing takes place in Nature.

It is our belief that the road to this deeper understanding passes through discovering
the most fundamental structures and relations in computing – those that are neither
based on particular models of computing, nor dependent on the current computer tech-
nology, but are truly essential and general – and building a dictionary that captures the
meanings of the relevant notions.

General views of computing. Computing is seeking its true place in our knowl-
edge system. Recognition of the need for more comprehensive understanding of comput-
ing has taken the form of new conceptual paradigms such as ‘computational thinking’
and ‘great principles of computing’.

Historically, there were several attempts to untie the understanding of computing
from the restrictive view that bonds it to technology and software. The most recent one
is the so called ‘computational thinking’ (CT) movement, first proclaimed in [12], and
also discussed in [3, 13, 14]. CT is aimed at awakening awareness of the role algorithmic
structures have or could have in a variety of human activities, from everyday life to science
disciplines and manufacturing. According to [12], CT is ‘the study of computation – what
can be computed and how to compute it’. The cited article goes on to describe CT’s
characteristic features as follows:

• conceptualization (thinking at multiple levels of abstraction);

• fundamental, not rote skill;

• human-like (imaginative) thinking;

• complementing and combining mathematical and engineering thinking;

• emphasizing computational concepts rather than artifacts;

172



• for everyone and permeating every human endeavour.
Biology, physics, chemistry, economics are considered successful examples of compu-

tational thinking, more precisely – of infiltration of computational methods into science.
There can be also an influence in the reverse direction, e. g. new computational paradigms
can be extracted from observing the mechanisms for manipulating information in living
organisms [10].

In the context of CT, [9] draws attention to the pre-existence of computing concepts in
people before they are exposed to education in computing, and to whether programming
languages should be redesigned in order to make computing and programming accessible
to a wider audience.

Of course, ideas similar to computational thinking are not new. A. Perlis, E.Dijkstra
and others maintained that understanding a wide variety of topics could and should be
recasted in terms of computation. A. Ershov’s vision of the inevitable ubiquity of what
has come to be called after him ‘second literacy’ [7] was in the same vein.

More recently B. Chazelle, in his brilliant essay [4], argued that algorithms are the
heart of computing and ‘the new language of science’, a way of thinking with a rev-
olutionary impact on it. In his words, ‘not only is this new “order” empowering the
e-technology . . . it is also challenging what we mean by knowing, believing, trusting,
persuading, and learning’.

F. Brooks in his classic work [2], contrary to Chazelle, although in a narrower context,
insists that ‘representation is the essence of programming’, meaning that (in program-
ming) data structures are of primordial importance and algorithms are secondary.

To us, the stark contradiction between emphasizing algorithms or data as the essence
of computing – in whatever understanding of the word – only indicates that they are
equally fundamental. Both algorithm and data possess structure and, more importantly,
their intimate interrelation is what turns mere structure into computation.

Somewhat earlier than the emergence of the CT movement, P.Denning pioneered the
idea of ‘great principles of computing’ [5, 8], aiming at exposing, naming and describ-
ing recurrent computational patterns in both human practice and natural phenomena.
Specifically – and in contrast to CT – Denning places explicit emphasis on the fact that
computing is a natural phenomenon itself, and therefore occurs virtually everywhere re-
gardless of whether its manifestations are being observed or not (‘computation is more
fundamental than computational thinking’) [6].

As currently defined in [8], the basic principles of computing are categorized in seven
major groups: computation, communication, coordination, recollection, automation,
evaluation, and design. However, this discrimination is just for convenience of refer-
ence; grouping, as well as the actual principles, are considered variable, pursuant to the
perfection of those who identify and describe them.

Denning’s approach to understanding computing is characterised by accenting on the
need for ‘developing a new language for discussing the core principles of computing’.
This is very much in consonance with our own vision of the subject, although Denning’s
treatment appears to be significantly different from ours. Our approach and his can be
considered complementary.

The intersection of computing and science attracts increasingly more attention. An
international expert group produced an extensive report on the topic [11], in which
‘computer science’ is foreseen to ‘make a major, if not reforming contribution to natural

173



sciences’ and ‘become fundamental’ to them. By employing computing techniques, sci-
ences are able to conduct new kinds of experiments that are also generating new kinds
of data – of giant complexity and volume. Being able to represent, interpret, and make
use of such data is a challenge reflecting back to computing science, and it is anticipated
that this challenge may result in revolutionary changes to computing itself.

Computing and programming. Computing is processing information. Although
it means more than programming or using computers, in understanding and describing
it we have no better place to start than the science of programming, especially program-
ming languages. Indeed, a programming language is an embodiment of a set of ideas –
mathematical concepts as well as pragmatic considerations – about designing software,
and therefore about the essence of computation.

We create computing systems by programming, and programming and other formal
languages are the formalization of our computational thoughts. Each such language offers
a set of concepts and mechanisms intended for expressing computations. Not only are
these languages a means of representing ideas about computation, but they are the only
means so far.

In recognition of this role of programming languages, [14] for example maintains that
successful development of computational thinking depends on studying programming
and programming languages and using the latter as an environment for growing new
computational concepts. In this respect, the work of K. Iverson on the properties of
programming notation is found particularly inspiring for its abundance of ideas spanning
not only programming but also mathematics.

The work done on designing and using programming languages has already had, and
will continue to have, a great impact on clarifying the concepts of computing. Elaborate
conceptual systems have been developed within languages, and sometimes across them,
to represent views on the subject.

The usefulness of programming languages for conveying computational ideas is un-
questionable, but it is also insufficient. In programming, being specific is inescapable,
or at least this is how today’s programming works. More than in mathematics, utmost
precision of meaning is needed, without which the process that a program realises would
not have been properly defined, and therefore interpreted. A language represents a spe-
cific point of view on computing, but being specific also means being limited in the scope
of what can be expressed. The notions defined in a programming language are relatively
small in number, restricted to mean what the language needs them to mean, and do not
necessarily correspond to similar, or similarly named, notions in other languages. Even
this alone creates confusion in understanding computing.

Using terminology from different programming paradigms is another source of con-
fusion, as is the very existence of these similarly not comparable paradigms. Currently,
we are not able to answer questions such as: Why do we have exactly these paradigms?
Are they natural, in some sense, or do some of them just result from speculation instead
of being rooted at the essence of computing? Can we expect new major paradigms to
emerge? If so, can we predict them? Is it possible to reconcile all computing paradigms
with each other? The inability to tackle such questions clearly indicates the immaturity
of our conceptualizing of computing.

Moreover, it is necessary to distinguish essential concepts within a programming lan-

174



guage from accidental ones with respect to its programming model, or with respect to
computing in general. Languages have too many accidental concepts that only confuse
the true understanding of computing.

The language of computing. Previously [1], we have discussed the importance
of general and abstract comprehending of structure in programming and gave general
formulations of some kinds of structural relationship. The present endeavour can be seen
as a continuation and further generalization of that work. For lack of space, we do not
discuss in detail particular concepts in computing, and only concentrate on setting the
principles on which we see necessary to found building a general dictionary of computing.
We intend to present a more elaborate discussion on a number of computing-related
concepts in a subsequent publication.

How can we discover the fundamental language of computing? Our proposal rests on
the following key principles:

Action- and structure-relatedness. Any computation consists of actions and has
structure. The objects and systems that take part in the computation also have structure.
Action and structure are thus the fundamental notions of computing, around which the
language of computing should be built. In other words, the dictionary of computing is
an enumeration – or a taxonomy – of action- and structure-related phenomena.

As structure is also characteristic for other phenomena and disciplines, what partic-
ular kind of structure is that of computing? The ‘specificity’ of computing’s structure is
that it is the archetypal structure – that of systems in the general sense, or the struc-
ture. If computing, i. e. information processes pervade all phenomena, then computing’s
structure pervades any other form of structure. For example, physical processes may be
characterised by the interaction of physical forces and how a system is changed under
it. Similarly for chemical or biological processes. But to the extent these systems man-
ifest information-related, i. e. computational properties, they are also characterisable as
abstract systems, and thus exhibit structure pertaining to computing. That is the kind
of structure that should interest us.

Defining major topics. Building a general terminology of computing should be
done by clustering the needed concepts around properly selected major topics. These
would be the major areas and ways in which computing structure manifests itself. Here
is an example list of topics:

– Action and closely related concepts, such as subject, resource, access.

– Creation and destruction. Instantiation, reproduction and others also belong here.

– Aggregation and interrelation. Many concepts of varying generality fall into this
group, e. g. precedence, nesting, determinacy, tupling, sequencing, bifurcation,
looping, subordination, coordination.

– Transformation. This concerns structure in general and can include concepts re-
flecting various specific kinds of transformation, such as adapting, preserving, com-
plementary etc.

– Interaction. Simple examples of concepts that belong here are invocation, resump-
tion, and interruption.

The following two are perhaps more on the side of the language than computing itself,
but are nevertheless relevant:

– Binding. This describes how a resource gets scoped to a particular context of use,

175



and how different scoped entities interact.
– View creation. This includes concepts related to how a computing system is being

interpreted, examples being projection and various forms of abstraction.
Generalizing fundamental concepts from programming languages. Concepts

that admit of generalizing should be identified and their most general meaning must be
found. Whenever two or more such concepts lead to similar definitions, they probably
should be further generalized. For example, in many programming languages an action
can be applied uniformly across the elements of a data structure. Also, a binding of some
name may be made known within the scope of some set of actions in a program. Both
mentioned are instances of distribution of a resource across recipients. In the former case,
the resource is an action, and in the latter it is a binding, but the structural relation is
nevertheless the same.

Looking for computing-related words in the human language(s). Program-
ming language terminology has already employed a number of words from the English
or other natural languages for the purpose of describing computational phenomena. We
feel that other such words just need to be discovered. In this way we could draw on
the contextual power of words that they bring with themselves in order to enrich the
meaning of known computational concepts or even to discover new concepts.

This has been done in the process of creation of programming languages in the past,
of which Algol 68 is a notable example. There is no reason why it cannot continue in
the more general setting of defining computation.

Uniform treatment of actions and data. Actions and data both carry (compu-
tational) structure. However, other than the ability of some programming languages to
treat data as actions or vice versa, the structural interrelation between the two is very
little explored. It seems that such exploration could be beneficial to better understanding
of computing. A number of mathematical disciplines provide us with inspiration for this
by successfully making use of dualities: between points and lines or planes in geometry,
between nodes and edges in graph theory etc.

REFERENCES

[1] B.B. Bantchev. Towards a framework for comprehending structure in programs. Mathe-

matics and Education in Mathematics, 27 (1998), 210–215.

[2] F. P. Brooks. The mythical man-month: essays on software engineering, 2nd ed. Addison-
Wesley Professional, 1995.

[3] Center for computational thinking at Carnegie Mellon.
http://www.cs.cmu.edu/~CompThink

[4] B. Chazelle. The Algorithm: idiom of modern science.
http://www.cs.princeton.edu/~chazelle/pubs/algorithm.html, 2006.

[5] P. J. Denning. Great principles in computing. Comm. ACM., 46 (2003), No 11, 15–20.

[6] P. J. Denning. Beyond computational thinking. Comm. ACM., 52 (2009), No 6, 28–30.

[7] A.P. Ershov. Programming, the second literacy, a talk at the 3rd IFIP and UNESCO
World Conf. on Computers in Education, 1981.
Web: http://ershov.iis.nsk.su/russian/second_literacy/article.html.

176



[8] Great principles in computing Web site. http://greatprinciples.org.

[9] M. Guzdial. Paving the way for computational thinking. Comm. ACM., 51 (2008), No 8,
25–27.

[10] C. Priami. Algorithmic systems biology. Comm. ACM., 52 (2009), No 5, 80–88.

[11] Towards 2020 Science, a report of ‘The 2020 Science Group’.
http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science,
2005.

[12] J. M. Wing. Computational thinking. Comm. ACM., 49 (2006), No 3, 33–35.

[13] J. M. Wing. Five deep questions in computing. Comm. ACM., 51 (2008), No 1, 58–60.

[14] B.W. York. Computational thinking, abstraction and programming: a personal perspec-
tive. http://web.cecs.pdx.edu/~york/CTshort.pdf, 2008.

Boyko Bantchev
Institute of Mathematics and Informatics
Acad. G. Bontchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: bantchev@math.bas.bg

РЕЧНИК НА “ПРЕСМЯТАНЕТО”, РАЗБИРАНО В ШИРОК

СМИСЪЛ

Бойко Банчев

Понятието пресмятане в широкия му смисъл и неговото присъствие в природата,

науката, технологията и други области е свързано с редица неизяснени въпроси.

Дори в по-тесните рамки на програмирането и използването на компютри то не

е адекватно разбрано. Представяме тезата, че един начин за приближаване към

такова разбиране е разкриването на дълбинните структури и отношения, свър-

зани с пресмятането, и на тази основа построяване на речник на пресмятането.

177


