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A PROBLEM ON INFINITE SERIES: DIFFICULT OR EASY?

Petra Staynova

We show that the difficulty of a problem or its solution depends on how we formulate
it, no matter that the essential mathematical ideas that lie beneath it are one and
the same. Thus, such a problem can be considered at an initial stage of the course
material.

In this note we present three problems based on similar mathematical ideas that can
be considered easy or difficult for students depending at what stage of Mathematical
Analysis course they are presented. Thus we have different means for their solutions, one
— based on the basic definitions and intuitive understanding of the notions, hence, more
natural but more difficult; the other — based on the theorems and results, proved later
in the course. They present us with an opportunity to introduce and relate in a “spiral”
way basic ideas and, thus, deepening the students’ understanding.

The following is a standard problem in the course of Mathematical Analysis [1]:

1 1 1 1
Problem 1. Find the sum of Leibniz’s series 1 — > + 371 + ET
Solution 1. A standard solution involves considering the Taylor expansion of the
logarithmic function In(1+x), its convergence at = 1 and, hence, 1—§—|—§— Z—i—g —e =
In2.

This problem can be posed after considering the Taylor expansion of elementary
functions. The following solution is possible only after introducing the notion of a definite
integral and theorems about term by term integration of a series.

1
Solution 2. We obtain this solution if we consider the definite integral / . Jlr ldx.
0
We expand 1 as a geometric progression - =l—as+2®2 -2+t -2+,
2 23
integrate term by term and then evaluate the result — = — > + 377 +--atx=0

and x = 1 (checking that all the required results apply).
We notice that Solution 2 is also a solution to the following problem:
1

Problem 2. Prove that/

0
Both of the above are more or less standard problems with known, hence, standard
solutions. The second one uses the Leibniz-Newton formula for calculation of a definite
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integral. Hence, Problem 2 can be considered only after introduction of this formula in
the Mathematical Analysis course.

However, if we reformulate Problem 2, as shown below, its solution becomes neither
straightforward, nor standard. On the other hand, the solution we give can be understood
right after the introduction the notion of a definite integral. This approach can be used
as a natural transition from the student’s own intuition about “area” to the Riemann
definition of an integral.

So, let us consider:

Problem 3. Prove that
1

1 1111
1 dr=1—=4——=42_...
@) /:c+1:” s t3 7175

0

without using Leibniz-Newton formula for calculation of the definite integral to the left.

1
Solution 3. Let f(z) = P (Figure 1).

FOA=1/(14x) | y

1

Fig. 1. The graph of the f(z) = 1
x

1 1 1
Let A=1—-+4+-—~
¢ 57371
defining A is a convergent.
1

1
We also know that /
T

— --- We know that by Leibniz’s criterion the series

[ =

+

n 1da:, defined as a limit of integral sums, is equal to the
0
shaded area in Figure 2.

We interpret each partial sum of A as a certain area approximation of Area 1.
1

1
Then we prove that the integral /
z+1

dx is the limit of the partial sums of the

0
series A.
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£()=1/(1+x)
N\ 1.667
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T =8.333

1

1
Fig. 2. Area 1 representing —
o T+1

We approximate Area 1 using disjoint rectangles, the union of whose bases cover the
1

dx.

interval [0, 1], i.e. some special Riemann Sums for / 1

0

Let us begin by approximating the area using just one rectangle — [0,1] x [0,1] (L1).
Note that its upper-left corner lies on the graph, i.e. our sample point is the left-hand
end of the interval of division.

The area S(L;) is equal to 1.

The next approximation is with a rectangle Ry with a base [0, 1] whose upper-right
corner lies on the graph, i.e. the sample point is on the right-hand end of the interval of
division:

Yoo 1.4 Yoo 1.4
F{x)=1/(1+x) F{x)=1/{1+x)
N .
+ B
+0.6 -+ 8.6
—— 0.5
__3'2 —_B.E
a.6 =-8.2 a.2 8.6 1 8.6 -8.2 8.2 8.6 1
I I I I I I I I
T=8.2 T =8.2
Fig. 3. Rectangle L1 Fig. 4. Rectangle R
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S(Ry) is equal to /.
One can think of S(L1) and S(R;) as respectively a left-handed and a right-handed
1

1
Riemann sum for / . 1da:, with trivial division of [0, 1] of subintervals.
0
On the other hand, S(L1) and S(R;) are respectively equal to the first and the second
partial sum of series A, i.e: 1,1 —-1/2=1/2.
Now, let Ly be [0,1/2] x [0, F(0)]U [1/2,1] x [0, F(1/2)].
We go on with constructions as in Figure 5 ((a) and (b)).

POO=17(14%) POO=17(14%)
+1.667 +1.667
\\‘ \\‘
kY kY
Y 41,333 Y 41,333
e e

+ =

48.333 T 48.333

-0.5 1 a5 1 1.5 | u -0.5 1 al5 1 1.5 | u
T=-8.333 - =8.333
T -8,667 T -8,667
(a) (b)
Fig. 5

We use left-hand points in Figure 5 (a) and right-hand points on the Figure 5 (b) —
as sample points at which we evaluate f(z).

Let the Riemann Sum to the left be S(Ls2) and the Riemann Sum to the right be
S(Rz2). We have that S(Lg) is 5/6, and S(Rz) is 7/12.

1 1 ) 1 1
The thi ial FA—Ssisl—=+= = 2. like S(L 141t
e third partial sum o Ss is 2+3 ol e S(L2), and Sy is 2+3 1

—_

7
12’ like S(R2).
We continue with this process and for a given n and a division o,, of [0, 1] into n equal
1
1

sub-intervals. Let S(L,) and S(R,) be the Riemann Sums for / 1 dx with left-hand
x

0
end-points and right-hand end-points, respectively.

We prove by induction that
(2) S(Ln) = SQn_l and
(3) S(Ry) = Son.

We have shown that they are true for n =1 and n = 2.
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Suppose (2) is true for an arbitrary positive integer n. Let us prove that it is true for
n+ 1.

Let S =1 1—1—1 1—|— 1 + ! 1+ !
L B m—2 2n—1 2n 2nt1
Further,
1 1 2 n 1
Q) o)
n n n
o (N
- - 5 ..
n n+1 ‘4
R
T n n+1l n+2 2n—1 n n+1 n+2 2n71
1 1 1 1
ie. S(L,) = — ... )
i 5(Ln) n+n+1+n+2+ +2n71
By the inductive hypothesis S(L,) =1 1+1 1+ ! + !
y the inductive hypothesis n) = 5T371 55 T o 1
So, we have that:
(4) 1+ 1 1 n n 1 _q 1+1 1+ 1 n 1
n n+l n+2 2n—1 2 3 4 2n—2  2n—1
1 1 1 1 1 1
he other h L, = T T T
On the other hand, §(In+1) = Smg +7ms 4 mm + o H oy F o+ o0
Let us note that:
S(Lpt1) = S(Ln) 1+1+ !
e e N YD R |
But, fi (4) k that S(L,) = 1 l—i—l 1—|— ! + !
ut, from Wi nolw 1a " 1 13 41 1 ~ 55 T o1
L, =1—-—=—4+=-—=-4+ ... = - = 4+ — . H ,
So S(Lp+1) 1 12+13 4+ 1 2n—2+2n—1 - 2n+2n+1 ence
L, | - = .
Sni) =1=-g5+3-7+ m—2 am—1 2n o+l
Let us now prove (3). We have already proved that
1 1 1 1 1
L)=1-=+4=— =gz .
S(Ln) 2 t3 1t m—2 21
1 1
hi h =1—-=-4+-——-+...— — 1
We use this to prove that S(R,,) 2+3 4—|— 5 ndeed,
1 n—1
b o) o)
n n
1 2 n—1
- 2)o(2) s (52) o).
n n n
So,
1 1 1 1 1 1 1
) = S(Ly,)+— 1)—— L)+———=SL,)——=1-—=+=-—- -
S(Ra) = S(La)+ = (f (D)= = 8(Ln)+ 5= = S(Ln)— 5 = 1= 53—+ =5
O
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1

1
Since the integral /
z+1

dzx is a limit of some particular sequence of its Riemann

0
sums (e.g. S(Ly)) and the sum of the series defining A is a limit of its partial sums,
1

1
we have that /
T

0
lim S, = A. So we have proved (1).

n—oo
In that way we see that different formulation of basically one and the same mathemati-

cal problem can make it achievable at different stages of a course development as well as
make its solution easy or difficult.

1d:c = lim S(R,) = lim S(L,) = lim S9,—1 = lim Sy, =

n—oo n—oo n—o0 n—0o0

REFERENCES

[1] M. Sprvak. Calculus, Cambridge University Press, 1994.

Petra Staynova

Pembroke College

Oxford University, UK

0OX1 1DW

e-mail: petra.staynova@pmb.ox.ac.uk
petra.staynova@gmail.com

EJVH ITPOBJIEM 3A BE3KPAVHU PEJIOBE: TPYIEH WUJIN
JIECEH?

Ilerpa CraiinoBa

Pasriiexxa ce einH cTaHIapTEH BBIPOC 38 HAMUPAHE HA CyMaTa Ha pejia Ha JlaiOHuII.
JlaBaT ce ABe pa3IMYHU PEIICHUs, U3IOJI3BAINN 3HAHUS OT pasjnden marepuas. Cien
npedopMyIupaHe Ha MpobieMa ce OKa3Ba, Ue PEIIEHNETO My € Bb3MOXKHO C JIUPEKTHO
M3I0JI3BaHe CAMO Ha OCHOBHU MOHSATHs. 110 TO3M HAYMH € IMOKa3aHo, Ye Bb3 OCHOBA Ha
eJIHa W CbINa 0a3MCHA MaTeMaTHYecKa Hes MoraT Jjia ObiaaT popMyIupaHu 3a/1adu,
JIOITYyCKAIIU KAKTO CTAHJAPTHU, TaKa M HECTAHJAPTHU PEIEHUsI.
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