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CONVEXITY, C-CONVEXITY AND PSEUDOCONVEXITY*

Nikolai Nikolov

We discuss different characterizations of various notions of convexity as well as we
compare these notions.

1. Introduction. Geometric convexity of a domain in Cn is characterized by its
intersection with real lines, and it is invariant under real affine maps. Pseudoconvexity
is a generalization of that notion that designed, among other things, to be invariant
under all biholomorphic maps. It can be characterized by the behavior of analytic disks
(Kontinuitätsatz). Linear convexity and C-convexity are intermediate notions that bring
into play (respectively) complex hyperplanes and complex lines, and are invariant under
complex affine maps.

In this survey, we exploit the parallels between all those notions to highlight their
similarities and differences, and the crucial role played by smoothness of the domains
being considered.

The exposition is based mainly on the paper [9].

2. Balanced indicatrixes. Let D be an open set in C
n.

We say that D is balanced, centered at a if z ∈ D, ζ ∈ C with |ζ| ≤ 1, then a+ζ(z−a) ∈
D.

Denote by dD(z, X) the distance from z ∈ D to the boundary ∂D in the complex
direction X ∈ Cn (possibly dD(z, X) = ∞), i.e.:

dD(z, X) = sup{r > 0 : z + λX ∈ D if |λ| < r}.
Recall now that D is called pseudoconvex if it has a plurisubharmonic exhaustion

function. For many equivalent definitions of this notion and its role in the so-called ∂̄-
problem see e.g. [5, 2]. We only point out that D is pseudoconvex if and only if D is a
domain of holomorphy which, roughly speaking, means that there exists a holomorphic
function on D that cannot be extended outside D.

When ∂D is C2-smooth, the pseudoconvexity is equivalent to the Levi pseudoconvex-
ity (which follows, for example, by Proposition 3 below).
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If r is a C2-smooth defining function, then the restriction of the Levi form of r on the
complex tangent plane at any boundary point is semipositive definite, i.e.

(1)
n∑

j,k=1

∂2r

∂zj∂zk

(a)XjXk ≥ 0

for any a ∈ ∂D and any vector X ∈ Cn with 〈∂r(a), X〉 = 0.

Note also that if − log dD(·, X) is a plurisubharmonic function for any X ∈ Cn,
then D is pseudoconvex, and vice versa. In particular, any pseudoconvex set D admits
a continuous exhaustion function; for example, − log dist(·, ∂D) = supX − log dD(·, X)
(the function is identically −∞ if D = Cn).

Closely related to our considerations is the largest balanced domain centered at z and
contained in D, i.e. BD,z = z + ID,z , where ID,z is the balanced indicatrix of D at z :

ID,z = {X ∈ C
n : z + λX ∈ D if |λ| ≤ 1} .

Finally, consider the global version of this, the Hartogs-like domain

HD = {(z, w) ∈ D × C
n : w ∈ ID,z} .

If D is pseudoconvex, then − log dD is a plurisubharmonic function on D × Cn (cf. [5,
Proposition 2.2.21]), thus HD is pseudoconvex.

Now we consider pseudoconvexity of an open set D in Cn in terms of pseudoconvexity
of BD,z, z ∈ D, i.e. in terms of pseudoconvexity in the “vertical” directions of HD.

Theorem 1. Let D be a proper open set of Cn. Then the following properties of D
are equivalent:

(1) D is pseudoconvex.

(2) HD is pseudoconvex.

(3) BD,z is pseudoconvex, for any z ∈ D.

We have already seen that (1) implies (2), and (2) implies (3) is trivial (slice by the
sets {z} × Cn, for z ∈ D). The implication (3) ⇒ (1) follows by

Proposition 2. Let D be a proper open set of Cn and let U be a neighborhood of ∂D.
If ID,a is a pseudoconvex domain for any a ∈ D ∩ U, then D is itself pseudoconvex.

One of the main points in the proof of Proposition 2 (and other propositions below),
is [2, Theorem 4.1.25]1

Proposition 3. An open set D in Cn is not pseudoconvex if and only if there is a
point a ∈ ∂D, say the origin, and a real-valued quadratic polynomial q such that q(a) = 0,
∂q(a) 6= 0,

n∑

j,k=1

∂2q

∂zj∂zk

(a)XjXk < 0

1The first inequality on p. 242 in the proof must contains an obvious extra term. Otherwise, it is not
true in general; a counterexample is given by the domain D = {Re z < (Re w)2} in C2.
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for some vector X ∈ Cn with 〈∂q(a), X〉 = 0, and D contains the set {q < 0} near a.
Therefore, if D is not pseudoconvex, then, after an affine change of coordinates, we

may assume 0 ∈ ∂D and, near this point, D contains the set

{z ∈ C
n : 0 > Re z1 + (Im z1)

2 + |z2|2 + · · · + |zn−1|2 + c(Im zn)2 − (Re zn)2},
where c < 1.

It is interesting to note that a similar statement holds for linear convexity. Recall that
(cf. [1, 2]) an open set D in Cn is called weakly linearly convex (resp. linearly convex) if
for any a ∈ ∂D (resp. a ∈ Cn \D) there exists a complex hyperplane Ta through a which
does not intersect D (such a set is necessarily pseudoconvex). We call Ta a supporting
complex hyperplane.

A domain D in C
n is said to be C-convex if any nonempty intersection of D with

a complex line is connected and simply connected. It clear that convexity implies C-
convexity. On the other hand, C-convexity implies linearly convexity and this notation
is tightly related to the linear partial differential equations in the class of holomorphic
functions.

All three notions mentioned above coincide for C1-smooth open sets. There is a simple
differential characterization of C-convexity in the C2 case which is similar, but stronger
to that of pseudoconvexity given by (1):

Hess rD(a)|T C
a
≥ 0, a ∈ ∂D.

Of course, convexity is characterized by the strongest similar conditions, namely

Hess sD(a)|T R
a
≥ 0, a ∈ ∂D.

The next two propositions demonstrate the role of circularity in the (weakly) linearly
convexity.

Proposition 4. (i) (cf. [7]) An open balanced set is weakly linearly convex if and only
if it is convex.

(ii) (cf. [8]) If D is a weakly linearly convex open set, then BD,z is a convex domain
for any z ∈ D (i.e. the Minkowski function 1/dD(z, ·) of ID,z is convex).

Theorem 5. Consider the following three properties:

(1) D is weakly linearly convex (resp. linearly convex).

(2) HD is weakly linearly convex (resp. linearly convex).

(3) BD,z is (weakly linearly) convex, for any z ∈ D.

Then, (1) and (2) are equivalent, and imply (3). If D is a C1,1-smooth bounded domain,
then (3) implies (1).

The last statement follows from [8]. Note that in this case, the domain D is in fact
C-convex. The domain HD, however, does not share the smoothness of D, and may fail
to be C-convex.

Example 6. If D = {z ∈ C : |z − 1| < 2 or |z + 1| < 2}, then HD is not C-convex.

If we turn to the third, and more usual notion of convexity, it is clear that a domain
D in Rn is convex if and only if HD is convex in Rn × Rn.
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3. Defining functions.

We point out that proof that the convexity of BD,z implies linear convexity for C1,1

domains [8, Proposition 1 & introduction] is based on the following result which can be
easily deduced from [3]. Let sD stand for the signed distance to ∂D.

Proposition 7. If D is a C1,1-smooth bounded domain in Cn and

lim inf
T C

a
∋z→a

sD(z)

|z − a|2 ≥ 0

for a ∈ ∂D almost everywhere, then D is linearly convex.

Proposition 7 has an obvious convex analog.

Proposition 8. A proper domain D in Rn is convex if and only if for any a ∈ ∂D
there exists a (real) hyperplane Sa through a such that

lim inf
Sa∋x→a

sD(x)

|x − a|2 ≥ 0.

If D is convex, then obviously Sa is a (real) supporting hyperplane.
Note that these two propositions are known in the C2-smooth case, since the limits

are equal to the minimal eigenvalue of 2HesssD
(a)|T C

a
, respectively 2HesssD

(a)|T R
a
.

We also point out that the proof of Proposition 8 is based on the “convex” version of
Proposition 3. This version implies the following simple, but useful characterization of
(non)convexity:

A domain D is not convex if and only there exists a segment in D such that only its
midpoint lies on ∂D.

Clearly, the relationship between a domain and its defining function is not symmetric,
as convexity of one sublevel set (or indeed, of all of them) cannot imply convexity of the
function: simply compose by a monotone increasing function from the real line to itself.
Given a convex domain, the question arises of how to choose a convex defining function,
and of how much choice one may have.

By [4, Proposition], a smooth bounded domain D is convex if and only if − log sD is
convex near ∂D. Thanks to [2, Theorem 2.1.27], this result can be easily generalized.

Proposition 9. Let f : R+ → R be a nonconstant decreasing and convex function.
Let U be a neighborhood of the boundary of a proper domain D in Rn. Then, D is convex
if and only if f ◦ sD is a convex function on D ∩ U .

In particular, if one of the defining functions given above is convex on a neighborhood
of ∂D, then all the others are convex too.

Note that the conditions the function f to be decreasing and convex are necessary as
the following example shows.

Example 10. Let D = R+ ×R+ and let f : R+ → R be a nonconstant function such
that f ◦ sD is a convex function on D. Then f is decreasing and convex.

The pseudoconvex analog of Proposition 9 is the following

Proposition 11. Let f : R → R be a nonconstant increasing and convex function.
Let U be a neighborhood of the boundary of a proper domain D in Cn. Then, D is

57



pseudoconvex if and only if f ◦ qD is a plurisubharmonic function on D ∩ U, where
qD = − log sD.

Note that there is a smooth bounded pseudoconvex domain in C2 having no defining
function which is plurisubharmonic on a two-sided neighborhood of the boundary. We
do not know under which general conditions on f the plurisubharmonicity of f ◦ sD is
equivalent to the pseudoconvexity of D.

We also point out that the proofs of Propositions 8 and 11 imply a result similar to
Propositions 7 and 8 in the pseudoconvex case:

Proposition 12. If D is a proper open set in Cn and for any a ∈ ∂D there exists a
complex hyperplane Sa through a such that

lim inf
Sa∋z→a

sD(z) + sD(a + J(z − a))

|z − a|2 ≥ 0,

where J is the standard complex structure, then D is pseudoconvex.

The converse is also true if D is a C2-smooth open set. We do not know if the
smoothness can be weakened.

4. Slicing. It is known that an open set D in Cn (n ≥ 3) is pseudoconvex if and
only if any two-dimensional slice of D is pseudoconvex [6]. We would like to restrict the
family of slices that has to be used in order to detect pseudoconvexity, namely we would
like to consider the family of complex planes passing through a point a ∈ Cn. As the
next results show, it will be enough generically. Given an open non-pseudoconvex set D
in Cn, call a exceptional with respect to D if for any 2-dimensional complex plane P ∋ a,
P ∩ D is pseudoconvex. The next proposition shows that the set of exceptional points
has to be contained in a complex hyperplane.

Proposition 13. Let D be an open non-pseudoconvex set in Cn (n ≥ 3). Let S be
the union of all 2-dimensional complex planes with non-empty and non-pseudoconvex
intersections with D, so the set of exceptional points is C

n \ S. Then, there exists a
complex hyperplane T such that Cn \ S ⊂ T.

If D is C2-smooth, then we have more for the set of exceptional points with respect
to D.

Proposition 14. Let D and S be as in Proposition 13. If D is C2-smooth, then there
is a complex plane T of codimension 3 such that Cn \ S ⊂ T.

The proof of this proposition is based on the following lemma of independent interest.

Lemma 15. Let M be a C1-smooth hypersurface in C2. Then, the complex tangent
line at some point of M does not contain the origin.

The following example shows that there can be an exceptional point even in the
C∞-smooth 3-dimensional case.

Example 16. There exists a bounded, C∞-smooth domain Ω in C3 such that the set
of non-pseudoconvex points is a nonempty relatively open subset of ∂Ω, but such that
P ∩ Ω is pseudoconvex for any complex plane P containing the origin.
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In the non-smooth 3-dimensional case we may have more than one exceptional point.

Example 17. Let a ∈ C3, G be a pseudoconvex set in C3, and let l1, l2 be distinct
complex lines in C3 that intersect G. Then:

(i) the intersection of G \ l1 with any 2-dimensional complex plane through a is
pseudoconvex if and only if a ∈ l1 \ G.

(ii) the intersection of G \ (l1 ∪ l2) with any 2-dimensional complex plane through a
is pseudoconvex if and only if G 6∋ a = l1 ∩ l2.

Using Proposition 7, similar arguments as in the proof of Proposition 13 imply that
if a is a point in C2-smooth domain D such that any non-empty intersection of D with
a 2-dimensional complex plane through a is weakly linearly convex, then D is C-convex.

The following example shows that we have no such a phenomenon in general.

Example 18. Let

D = {z ∈ C
3 : |z| <

√
2max{|z1|, |z2|, |z3|}}.

Then, D is a union of three disjoint linearly convex domains and D has a non-empty
linearly convex intersection with any complex plane through 0 (in particular, D is pseudo-
convex and not weakly linearly convex).

In spite of Example 18, one may also conjecture the following:

If D is an open set in Cn such that any non-empty intersection with 2-dimensional
complex plane is (weakly) linearly convex, then D is (weakly) linearly convex.
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ИЗПЪКНАЛОСТ, C-ИЗПЪКНАЛОСТ И ПСЕВДОИЗПЪКНАЛОСТ

Николай М. Николов

Разгледани са характеризации на различни понятия за изпъкналост, като тези

понятия са сравнени.
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