MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2011 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 5–9, 2011

ON SOME JACOBI SERIES*

Georgi Boychev

The paper presents properties of some Jacobi series.

Suppose that $\alpha + 1$, $\beta + 1$ and $\alpha + \beta + 2$ are not equal to 0, -1, -2, The polynomials $\{P_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ defined by equalities

$$P_n^{(\alpha,\beta)}(z) = \binom{n+\alpha}{n} F\left(-n, n+\alpha+\beta+1, \alpha+1; \frac{1-z}{2}\right), \quad n = 0, 1, 2, \dots; \ z \in \mathbb{C},$$

where \mathbb{C} is the complex plane and $F(a,b,c;\zeta)$ is Gauss hypergeometric function, are called Jacobi polynomials with parameters α and β . The functions $\{Q_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ defined by equalities

$$Q_n^{(\alpha,\beta)}(z) = \frac{2^{n+\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(2n+\alpha+\beta+2)(z-1)^{n+1}}F\left(n,n+\alpha+1,2n+\alpha+\beta+2;\frac{2}{1-z}\right),$$

$$n = 0, 1, 2, \dots; \quad z \in G = \mathbb{C} \setminus [-1, 1],$$

are called Jacobi associated functions.

Let $\omega(z)$ be that inverse of Zhukovskii function in the region G for which $|\omega(z)| > 1$. Then, in the region G the Jacobi polynomials and Jacobi associated functions have respectively the representations $(n \ge 1)$ [1, Chapter III, (1.9), (1.30)]

(1)
$$P_n^{(\alpha,\beta)}(z) = P^{(\alpha,\beta)}(z)n^{-\frac{1}{2}}[\omega(z)]^n \{1 + p_n^{(\alpha,\beta)}(z)\},$$

and

(2)
$$Q_n^{(\alpha,\beta)}(z) = Q^{(\alpha,\beta)}(z)n^{-\frac{1}{2}}[\omega(z)]^{-n-1}\{1 + q_n^{(\alpha,\beta)}(z)\}$$

where $P^{(\alpha,\beta)}(z) \neq 0$, $Q^{(\alpha,\beta)}(z) \neq 0$, $\{p_n^{(\alpha,\beta)}(z)\}_{n=1}^{+\infty}$, and $\{q_n^{(\alpha,\beta)}(z)\}_{n=1}^{+\infty}$ are holomorphic functions in the region G.

If $n \to +\infty$, then

(3)
$$p_n^{(\alpha,\beta)}(z) = O(n^{-1})$$

^{*2000} Mathematics Subject Classification: 33C45, 40G05.

Key words: Jacobi polynomials, Jacobi series.

The second author is partially supported by the Research Sector of FMI-SU, contract number: 028/2009.

and

$$q_n^{(\alpha,\beta)}(z) = O(n^{-1})$$

uniformly on every compact subset of G.

We call the series of the kind

(5)
$$\sum_{n=0}^{+\infty} a_n P_n^{(\alpha,\beta)}(z)$$

Jacobi series.

If

$$0 < r^{-1} = \lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}} < 1,$$

then the series (5) is absolutely and uniformly convergent on every compact subset of the region $E(r) = \{z \in \mathbb{C} : |z+1| + |z-1| < r + r^{-1}\}$ and divergent in $\mathbb{C} \setminus \overline{E(r)}$ [1, (IV.1.1),(b)]. Let $\gamma(r) = \partial E(r)$ for r > 1.

Theorem 1 [1, (V.1.3)]. Let f(z) be a complex function holomorphic in E(R), where R > 1. Then, the function f(z) is representable in E(R) by a series of the kind (1), i.e.

$$f(z) = \sum_{n=0}^{+\infty} a_n P_n^{(\alpha,\beta)}(z), \ z \in E(R), \ with \ coefficients$$

$$a_n = \frac{1}{2i\pi I_n^{(\alpha,\beta)}} \int_{\gamma(r)} f(\varsigma) Q_n^{(\alpha,\beta)}(\varsigma) d\varsigma, 1 < r < R, n = 0, 1, 2, \dots,$$

where

$$I_n^{(\alpha,\beta)} = \left\{ \begin{array}{l} \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}, & n=0 \\ \\ \frac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}, & n \geq 1 \end{array} \right..$$

Now we shall prove the following

Theorem 2. Let $1 < R < +\infty$, $\alpha, \beta, \alpha + \beta + 1 \neq -1, -2, \ldots$ and f(z) be a complex function holomorphic and bounded in the region E(R). Let $\{S_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ be the partial sums of Jacobi's series, representing the function f(z) in E(R). Then,

(6)
$$S_n^{(\alpha,\beta)}(z) = O(\ln n), \quad n \to +\infty, \quad z \in E(R).$$

Proof. Let M be a constant for which

$$|f(z)| \le M, \quad z \in E(R).$$

We assume that $r \in \Delta(R) = \left[\frac{R+1}{2}, R\right)$.

160

Using (1) and (2) it is easy to prove that

$$S_{n}^{(\alpha,\beta)}(z) = \frac{1}{2\pi i} \int_{\gamma(r)} \frac{1 - [\omega(z)/\omega(\varsigma)]^{n}}{\varsigma - z} f(\varsigma) d\varsigma$$

$$+ \frac{1}{2\pi i} \int_{\gamma(r)} \frac{D^{(\alpha,\beta)}(\varsigma,\varsigma) - D^{(\alpha,\beta)}(z,\varsigma)}{\varsigma - z} [\omega(z)/\omega(\varsigma)]^{n} f(\varsigma) d\varsigma$$

$$- \frac{1}{2\pi i} \int_{\gamma(r)} \frac{\delta_{n}^{(\alpha,\beta)}(z,\varsigma)}{\varsigma - z} [\omega(z)/\omega(\varsigma)]^{n} f(\varsigma) d\varsigma = J_{n,1} + J_{n,2} - J_{n,3},$$

where $D^{(\alpha,\beta)}(z,\varsigma)$ and $\{\delta_n^{(\alpha,\beta)}(z,\varsigma)\}_{n=1}^{+\infty}$ are complex-valued functions holomorphic in the region $G\times G$. Moreover, $D^{(\alpha,\beta)}(z,z)\equiv 1$ and $\delta_n^{(\alpha,\beta)}(z,z)\equiv 0$ $(n=1,2,\ldots)$ in G.

Using (3) and (4) it is not difficult to prove that

$$(z-\zeta)\delta_n^{(\alpha,\beta)}(z,\zeta) = O(n^{-1})(n \to +\infty)$$

uniformly on every compact subset of $G \times G$. Then we have

$$|J_{n,3}| \le K_1 n^{-1} \int_{\gamma(r)} |f(\varsigma)| |d\varsigma| \le K_1 n^{-1} M \int_{\gamma(r)} |d\varsigma| \le K_2 n^{-1},$$

where K_1 and K_2 are constants, which do not depend on r and n. Hence,

(8)
$$J_{n,3} = O(n^{-1})(n \to +\infty)$$

uniformly with respect to $r \in \Delta(R)$.

It is easy to prove that for $|\omega(z)|, |\omega(\zeta)| \in \Delta(R)$, we have that

$$\left| \frac{D^{(\alpha,\beta)}(\varsigma,\varsigma) - D^{(\alpha,\beta)}(z,\varsigma)}{\varsigma - z} \right| \le K_3,$$

where K_3 is constant. Then,

$$|J_{n,2}| \le \frac{1}{2\pi} K_3 \int_{\gamma(r)} |f(\varsigma)| |d\varsigma| \le \frac{1}{2\pi} K_3 M \int_{\gamma(r)} |d\varsigma| \le r K_3 M \le R K_3 M.$$

From this inequality it follows that

$$(9) J_{n,2} = O(1) (n \to +\infty)$$

uniformly with respect to $r \in \Delta(R)$.

For the integral $J_{n,1}$ we have the representation

$$J_{n,1} = \frac{1}{2\pi i} \int_{\gamma(r)} \frac{\omega(\varsigma) - \omega(z)}{\varsigma - z} \frac{1 - [\omega(z)/\omega(\varsigma)]^n}{\omega(\varsigma) - \omega(z)} f(\varsigma) d\varsigma.$$

Obviously the function $[\omega(\varsigma) - \omega(z)]/(\varsigma - z)$ is bounded for $|\omega(\varsigma)|, |\omega(z)| \in \Delta(R)$. Let $F(\zeta, z) = \frac{\omega(\varsigma) - \omega(z)}{\varsigma - z} f(z)$. Then, using (7) we get that $|F(\zeta, z)| \leq K_4$, where K_4 is a constant.

Let $\omega(z) = r \exp i\theta$, where $\theta \in [-\pi, \pi]$ and $r \in \Delta(R)$. Putting $\omega(\zeta) = r \exp i\tau$ $(\tau \in [-\pi + \theta, \pi + \theta], r \in \Delta(R))$, we obtain that

$$J_{n,1} = \frac{1}{2\pi} \int_{-1.0}^{\pi+\theta} F_1(\tau,\theta) \frac{1 - \exp(in(\tau-\theta))}{1 - \exp(i(\tau-\theta))} (1 - r^{-2} \exp(-2i\tau)) d\tau,$$

where $F_1(\tau,\theta) = F[(\omega(\zeta) + \omega^{-1}(\zeta))/2, (\omega(z) + \omega^{-1}(z))/2]$ is a periodical function with respect to τ and θ . Using substitution $t = \theta - \tau$ in integral $J_{n,1}$ we get

$$J_{n,1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_1(\theta - \tau, \theta) \frac{1 - \exp nti}{1 - \exp ti} [r^{-2} \exp 2i(t - \tau) - 1] dt.$$

Obviously, $|F_1(\tau,\theta)| \leq K_4$. Then, using the inequality r > 1 we obtain that

$$|J_{n,1}| \le K_5 \int_{-\pi}^{\pi} \frac{|\sin(nt/2)|}{|\sin(t/2)|} dt \le K_6 \int_{0}^{\pi/2} \frac{|\sin nu|}{\sin u} du,$$

where K_5 and K_6 are constants.

Let
$$I = \int_0^{\pi/2} \frac{|\sin nu|}{\sin u} du$$
. Then $I = \int_0^{1/n} \frac{\sin nu}{\sin u} du + \int_{1/n}^{\pi/2} \frac{|\sin nu|}{\sin u} du = I_1 + I_2$.

Using the inequality $|\sin nu| \le n \sin u$ we obtain that $I_1 \le n \int_0^{1/n} du = 1$. Therefore,

$$(10) I_1 = O(1)(n \to +\infty).$$

Using that $\sin u \geq 2u/\pi$ for $u \in (0, \pi/2)$, we get

$$I_2 \le \frac{\pi}{2} \int_{1/n}^{\pi/2} \frac{|\sin nu|}{u} du \le \frac{\pi}{2} \int_{1/n}^{\pi/2} \frac{1}{u} du = \frac{\pi}{2} \left(\ln \frac{\pi}{2} - \ln \frac{1}{n} \right) = \frac{\pi}{2} \left(\ln \frac{\pi}{2} + \ln n \right).$$

Hence,

(11)
$$I_2 = O(\ln n)(n \to +\infty).$$

From (10) and (11) it follows that

$$(12) J_{n,1} = O(\ln n)(n \to +\infty).$$

Using asymptotic formulas (12), (9) and (8), we get the asymptotic formula (6) for these z for which $|\omega(z)| \in \Delta(R)$. Then, it is not difficult to prove that (6) is valid for every $z \in E(R)$. Thus Theorem 2 is proved. \square

As a corollary of Theorem 2 we can state the following proposition:

Theorem 3. Let $1 < R < +\infty$, $\alpha, \beta, \alpha + \beta + 1 \neq -1, -2, \ldots$ and f(z) be a complex function holomorphic and bounded in the region E(R). Let $\{S_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ be the partial 162

sums of the Jacobi series, representing the function f(z) in E(R). If

$$\sigma_n^{(\alpha,\beta)}(z) = \frac{1}{n+1} \sum_{j=0}^n S_j^{(\alpha,\beta)}(z) \quad (n=0,1,2,\ldots),$$

then $\{\sigma_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ are bounded in the region E(R). Conversely, if $\{\sigma_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ are bounded in the region E(R), then f(z) is bounded in E(R).

REFERENCES

[1] P. Russev. Classical Orthogonal Polynomials and Their Associated Functions in Complex Plane. Sofia, 2005.

Georgi S. Boychev 42, Irechek Str. 6000 Stara Zagora, Bulgaria e-mail: GBoychev@hotmail.com

ВЪРХУ НЯКОИ РЕДОВЕ НА ЯКОБИ

Георги С. Бойчев

Настоящата статия съдържа свойства на някои редове на Якоби.