MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2011 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 5–9, 2011

ON THE SEMIGROUP OF ALL INCREASING FULL TRANSFORMATIONS*

Ilinka Dimitrova

Let T_n be the full transformation semigroup on an n-element set and let Inc_n be the subsemigroup of T_n consisting of all increasing transformations. This paper considers some algebraic and rank properties of the semigroup Inc_n . It is shown that the semigroup Inc_n is an \mathcal{R} -trivial idempotent-generated semigroup. Finally, the maximal subsemigroups of Inc_n are characterized.

For $n \in \mathbb{N}$ let $X_n = \{1 < 2 < \cdots < n\}$ be a finite n-element chain and let T_n denote the full transformation semigroup, i.e. the semigroup of all mappings $\alpha: X_n \to X_n$ under composition. We say that a transformation $\alpha \in T_n$ is increasing (decreasing) if $x \leq x\alpha$ ($x \geq x\alpha$) for all $x \in X_n$. This paper investigates algebraic and rank properties of the semigroup Inc_n of all increasing mappings of X_n . Algebraic and rank properties of T_n have been studied over a long period and many interesting results have emerged (see, for example [2], [4], [7]). In [6], Umar considered algebraic and rank properties of the semigroup D_n of all decreasing transformations. Moreover, Umar ([5]) showed that the semigroups Inc_n and D_n are isomorphic. Finally, we characterize all maximal subsemigroups of Inc_n .

We begin by recalling some notations and definitions that are used in the paper. For the standard terms and concepts in semigroup theory we refer to [3]. For every transformation $\alpha \in T_n$, we denote by $\ker \alpha$ and $\operatorname{im} \alpha$ the kernel and the image of α , respectively. The number $\operatorname{rank} \alpha := |X_n/\ker \alpha| = |\operatorname{im} \alpha|$ is called the rank of α . Let U be a subset of T_n , we denote by E(U) the set of all idempotents in the set U.

Let $A \subseteq X_n$ and let π be an equivalence relation on X_n . We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \bar{x}| = 1$ for every equivalence class $\bar{x} \in X_n/\pi$.

Now, for $0 \le r \le n$, we consider the two-sided ideals of Inc_n and D_n

$$K^+(n,r) := \{ \alpha \in Inc_n : |\operatorname{im} \alpha| \le r \},$$

$$K^-(n,r) := \{ \alpha \in D_n : |\operatorname{im} \alpha| \le r \}$$

respectively. Also, for $2 \le r \le n$, we consider the Rees quotient semigroups of Inc_n and D_n

$$P_r^+ := K^+(n,r)/K^+(n,r-1),$$

 $P_r^- := K^-(n,r)/K^-(n,r-1),$

^{*2000} Mathematics Subject Classification: 20M20.

Key words: transformation semigroup, increasing transformation, rank, idempotent rank, maximal subsemigroup.

respectively. The elements of P_r^+ (P_r^-) may be thought as the elements of Inc_n (D_n) of rank r precisely. The product of two elements of P_r^+ (P_r^-) is 0 whenever their product in Inc_n (D_n) is of rank strictly less than r. The set $P_n^+ = P_n^-$ contains exactly one element, namely the identity, which we denote by ϵ .

Now, we recall some results for the semigroup D_n that are useful in what follows.

Proposition 1 ([6]). Let $0 \le r \le n$. Then, every $\alpha \in P_r^-$ is expressible as a product of idempotents in P_r^- .

Proposition 2 ([6]). Let $0 \le k \le n-1$ and let $\varepsilon \in E(K^-(n,r))$. Then, ε is expressible as a product of idempotents in P_r^- .

Therefore, from the isomorphism between Inc_n and D_n , it follows:

Proposition 3. Let $0 \le r \le n$. Then every $\alpha \in P_r^+$ is expressible as a product of idempotents in P_r^+ .

Proposition 4. Let $0 \le k \le n-1$ and let $\varepsilon \in E(K^+(n,r))$. Then, ε is expressible as a product of idempotents in P_r^+ .

From Proposition 3 and Proposition 4, we have:

Corollary 1. Let $0 \le r \le n-1$. Then, $K^+(n,r) = \langle E(P_r^+) \rangle$ as well as $Inc_n = \langle E(P_{n-1}^+), \epsilon \rangle$.

For the definition of Green's relations, see for example [3].

Proposition 5 ([6]). The semigroup D_n is \mathcal{R} -trivial.

Again, using the isomorphism between Inc_n and D_n , we obtain:

Proposition 6. The semigroup Inc_n is \mathcal{R} -trivial.

To identify the classes of semigroups to which Inc_n belongs, we consider the starred Green's relations studied in [1]. Recall that on a semigroup S the relation \mathcal{L}^* (\mathcal{R}^*) is defined by the rule that $\alpha \mathcal{L}^*\beta$ ($\alpha \mathcal{R}^*\beta$) if and only if the elements α, β are related by the Green's relation \mathcal{L} (\mathcal{R}) in some oversemigroup of S. The intersection of the equivalences \mathcal{L}^* and \mathcal{R}^* is denoted by \mathcal{H}^* . To define \mathcal{J}^* we first denote the \mathcal{L}^* -class containing the element α of the semigroup S by L^*_{α} . (The corresponding notation is used for the classes of the other relations.) Then, a left (right) *-ideal of a semigroup S is defined to be a left (right) ideal I of S such that $L^*_{\alpha} \subseteq I$ ($R^*_{\alpha} \subseteq I$), for all $\alpha \in I$. A subset I of S is a *-ideal of S if it is both a left *-ideal and a right *-ideal. We also recall from [1], that the principal *-ideal $J^*(\alpha)$ generated by the element α of S is the intersection of all *-ideals of S to which α belongs. The relation \mathcal{J}^* is defined by the rule that $\alpha \mathcal{J}^*\beta$ if and only if $J^*(\alpha) = J^*(\beta)$.

We begin our investigations by the observation that $K^+(n,r)$ is a *-ideal of Inc_n and for $\alpha, \beta \in Inc_n$ it holds

$$\alpha \mathcal{L}^* \beta \iff \operatorname{im} \alpha = \operatorname{im} \beta$$

$$\alpha \mathcal{R}^* \beta \iff \ker \alpha = \ker \beta$$

$$\alpha \mathcal{J}^* \beta \iff \operatorname{rank} \alpha = \operatorname{rank} \beta$$

$$\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*.$$

Thus the semigroup Inc_n , like T_n itself, is the union of \mathcal{J}^* -classes $J_0^*, J_1^*, \ldots, J_n^*$, where

$$J_r^* := \{ \alpha \in Inc_n : \operatorname{rank} \alpha = r \} \text{ for } r = 0, \dots, n.$$

The \mathcal{J}^* -class J_n^* contains exactly one element, namely ϵ .

For $0 \le r \le n$, we denote by E_r the set of all idempotents in J_r^* .

Further, we pay attention to the \mathcal{J}^* -class J_{n-1}^* . The \mathcal{R}^* -, \mathcal{L}^* - and \mathcal{H}^* -classes in J_{n-1}^* have the following form

 $R^*_{(i,j)} := \{\alpha \in J^*_{n-1}: \text{ the sole non-singleton class of } \ker \alpha \text{ is } \{i,j\}\},$ $1 \le i < j \le n.$

$$L_k^* := \{ \alpha \in J_{n-1}^* : \operatorname{im} \alpha = X_n \setminus \{k\} \}, \quad 1 \le k \le n-1.$$

$$H_{(i,j),k}^* := R_{(i,j)}^* \cap L_k^*, \quad 1 \le k \le i < j \le n.$$

Clearly, $|H^*_{(i,j),k}| = 1$ for k = i - 1, i. Moreover, J^*_{n-1} has exactly $\frac{n(n-1)}{2}$ different \mathcal{R}^* -classes and exactly n-1 different \mathcal{L}^* -classes. It is obvious that an element α in the \mathcal{H}^* -class $H^*_{(i,j),k}$ is idempotent if and only if im $\alpha \# \ker \alpha$, i.e. if and only if k = i. We denote by $\varepsilon_{(i,j)}$ the idempotent of the class $H^*_{(i,j),i}$. Therefore, we have that

Lemma 1. Every \mathbb{R}^* -class of J_{n-1}^* contains a unique idempotent.

Since the product $\alpha\beta$, for all $\alpha, \beta \in J_{n-1}^*$, belongs to the class J_{n-1}^* (if and only if $\alpha\beta \in R_{\alpha}^* \cap L_{\beta}^*$) if and only if im $\alpha \# \ker \beta$, it is easy to show:

Lemma 2. Let $\alpha, \beta \in J_{n-1}^*$. Then,

$$H_{(i,j),k}^*H_{(p,q),l}^* = \left\{ \begin{array}{ll} H_{(i,j),l}^*, & \textit{if} \ \ k=p, k=q \\ 0, & \textit{otherwise}. \end{array} \right.$$

We say that the element $\alpha \in Inc_n$ is undecomposable in Inc_n if there are no elements $\beta, \gamma \in Inc_n \setminus \{\alpha\}$ such that $\alpha = \beta\gamma$.

Proposition 7. Idempotents of the class J_{n-1}^* are undecomposable in Inc_n .

Proof. Let $\varepsilon_{(i,j)} \in E_{n-1}$ for some $1 \leq i < j \leq n$. Suppose that there exist transformations $\beta, \gamma \in Inc_n \setminus \{\varepsilon_{(i,j)}\}$ such that $\varepsilon_{(i,j)} = \beta \gamma$. Clearly, the elements β and γ have to be contained in J_{n-1}^* or in $J_n^* = \{\epsilon\}$. But ϵ can be excluded as factor. Then, $R_{\beta}^* = R_{(i,j)}^*$, $L_{\gamma}^* = L_i^*$, im $\beta \# \ker \gamma$, and $\beta \in L_q^*$ for some $1 \leq q \leq n$. Thus $\beta \in H_{(i,j),q}^*$ with $q \leq i < j$. Since im $\beta \# \ker \gamma$, it follows that $\gamma \in H_{(p,q),i}^*$ for some $1 \leq p < q \leq n$ or $\gamma \in H_{(q,s),i}^*$ for some $1 \leq q < s \leq n$. If $\gamma \in H_{(p,q),i}^*$ then $i \leq p < q$, which contradicts $q \leq i < j$. Thus $\gamma \in H_{(q,s),i}^*$ with $i \leq q < s$ and from $q \leq i < j$ we obtain q = i. Therefore, $\beta \in H_{(i,j),i}^*$ and since $|H_{(i,j),i}^*| = 1$, we have $\beta = \varepsilon_{(i,j)}$, a contradiction. \square

From Corollary 1 and Proposition 7 we have

Corollary 2. If $M \subset E_{n-1}$ then $\langle M \rangle \subset K^+(n, n-1)$, i.e. no proper subset of E_{n-1} can generate $K^+(n, n-1)$.

The rank of a finite semigroup S is usually defined by

$$rank S = min\{|A| : A \subseteq S, \langle A \rangle = S\}.$$

If S is idempotent generated, then the idempotent rank of S is defined by

idrank
$$S = \min\{|A| : A \subseteq E(S), \langle A \rangle = S\}.$$

Since there are exactly $\frac{n(n-1)}{2}$ different \mathcal{R}^* -classes in J_{n-1}^* and each \mathcal{R}^* -class contains a unique idempotent (see Lemma 1), we have $|E_{n-1} \cup \{\epsilon\}| = \frac{n(n-1)}{2} + 1$. Then, Corollary 1 and Corollary 2 provide

$$rank Inc_n = idrank Inc_n = \frac{n(n-1)}{2} + 1.$$

Now we are able to characterize the maximal subsemigroups of Inc_n .

Lemma 3. Every maximal subsemigroup of Inc_n contains the ideal $K^+(n, n-2)$.

Proof. Let S be a maximal subsemigroup of Inc_n . Assume that $J_{n-1}^* \subset S$, then $K^+(n,n-2) \subset K^+(n,n-1) = \langle J_{n-1}^* \rangle \subset S$. If $J_{n-1}^* \not\subseteq S$, then $S \cup K^+(n,n-2)$ is a proper subsemigroup of Inc_n since $K^+(n,n-2)$ is an ideal, and, hence, $S \cup K^+(n,n-2) = S$ by maximality of S. This implies $K^+(n,n-2) \subset S$. \square

Theorem 1. A subsemigroup S of Inc_n is maximal if and only if it belongs to one of the following types:

- 1) $S_{\epsilon} = Inc_n \setminus \{\epsilon\};$
- 2) $S_{(i,j)} = Inc_n \setminus \{\varepsilon_{(i,j)}\}, \text{ for } 1 \le i < j \le n.$

Proof. It is clear that both S_{ϵ} and $S_{(i,j)}$ are maximal subsemigroups of Inc_n , since $S_{\epsilon} \cup \{\epsilon\} = S_{(i,j)} \cup \{\varepsilon_{(i,j)}\} = Inc_n$.

For the converse part, let S be a maximal subsemigroup of Inc_n . Then, $S = K^+(n, n-2) \cup T$, where $T \subset (J_{n-1}^* \cup J_n^*)$ (see Lemma 3). If $J_n^* \not\subseteq T$ then $S \subseteq S_\epsilon$ since $J_n^* = \{\epsilon\}$ and thus $S = S_\epsilon$ by the maximality of S. Let $J_n^* \subseteq T$. Then, $J_{n-1}^* \not\subseteq T$. Since $J_{n-1}^* \subseteq \langle E_{n-1} \rangle$, by Proposition 3, the set T does not contain at least one idempotent $\delta \in E_{n-1}$. Assume that there exists an element $\alpha \in J_{n-1}^* \setminus T$ and $\alpha \neq \delta$. Then, from $\epsilon \alpha = \alpha \epsilon = \alpha$ and Proposition 7, it follows that $\delta \notin \langle S, \alpha \rangle$. This contradicts the maximality of S and thus we have $T = J_n^* \cup (J_{n-1}^* \setminus \{\delta\})$. Therefore, $S = S_{(i,j)}$ for a suitable $1 \leq i < j \leq n$. \square

Since the idempotents in J_{n-1}^* are exactly $\frac{n(n-1)}{2}$, we have

Corollary 3. The semigroup Inc_n contains exactly $\frac{n(n-1)}{2} + 1$ maximal subsemigroups.

REFERENCES

- J. B. FOUNTAIN. Abundant semigroups. Proc. London. Math. Soc., 44 (1982), No 3, 103– 129.
- [2] G. M. S. Gomes, J. M. Howie. On the ranks of certain finite semigroups of transformations. *Math. Proc. Cambridge Phil. Soc.*, **101** (1987), 395–403.
- [3] J. M. Howie. Fundamentals of Semigroup Theory, Oxford, Clarendon Press, 1995.
- [4] J. M. HOWIE, R. B. McFadden. Idempotent rank in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 161–167.

- [5] A. UMAR. Semigroups of order-decreasing transformations: The isomorphism theorem. Semigroup Forum, **53** (1996), 220–224.
- [6] A. UMAR. On the semigroups of order-decreasing finite full transformations. *Proc. Roy. Soc. Edinburgh Sect. A*, **120** (1992), 129—142.
- [7] H. Yang, X. Yang. Maximal subsemigroups of finite transformation semigroups K(n,r). Acta Mathematica Sinica, English Series, **20** (2004), 475–482.

Ilinka Dimitrova
Faculty of Mathematics and Natural Science
South-West University "Neofit Rilski"
2700 Blagoevgrad, Bulgaria
e-mail: ilinka_dimitrova@yahoo.com

ВЪРХУ ПОЛУГРУПАТА ОТ ВСИЧКИ НАРАСТВАЩИ ПЪЛНИ ПРЕОБРАЗУВАНИЯ

Илинка А. Димитрова

Полугрупата T_n от всички пълни преобразувания върху едно n-елементно множество е изучавана в различни аспекти ог редица автори. Обект на разглеждане в настоящата работа е полугрупата Inc_n състояща се от всички нарастващи пълни преобразувания. Очевидно Inc_n е подполугрупа на T_n . Доказано е, че всеки елемент на полугрупата Inc_n от ранг r може да се представи като произведение на идемпотенти от същия ранг и всеки идемпотент от ранг по-малък или равен на r може да се представи като произведение на идемпотенти от ранг r. С помощта на тези твърдения е показано, че полугрупата Inc_n се поражда от множеството на всички идемпотенти от ранг n-1 и тъждественото преобразувание. Освен това е доказано, че идемпотентите от ранг n-1 са неразложими в полугрупата Inc_n . В резултат на това е получено, че рангът и идемпотичниат ранг на разглежданата полугрупа са равни. Като са използвани тези твърдения е направена пълна класификация на маскималните подполугрупи на полугрупата Inc_n .