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9

Direct algebraic operational calculi for functions u(z, y, t), continuous in a domain
of the form D = [0, a] x [0, b] X [0, co), are proposed. Along with the classical
Duhamel convolution, the construction uses also two non-classical convolutions for
the operators 92 and 85 . These three one-dimensional convolutions are combined
into one three-dimensional convolution u * v in C(D). Instead of J. Mikusinski’s
approach, based on convolution fractions, we develop systematically an alternative
approach, based on the multiplier fractions of the convolution algebra (C(D), ).

1. Introductions. Till recently, most of the existing operational calculi were in-
tended to deal with initial value problems. In Gutterman [8], direct operational calculi
for functions of several real variables are proposed, applicable for solution of Cauchy
problems for linear partial differential equations with constant coefficients. As for mixed
problems, i.e. problems, containing both boundary and initial conditions, Gutterman an-
nounced that his method is unpractical, and its extension to them would need essentially
new ideas and approaches. Not to speak about nonlocal boundary value problems. Here
we extend the direct operational calculus approach to nonlocal boundary value problems
for functions of one, two, and three real variables. It is intended to cope with BVPs of
the form

P(0))u = Q(d*)u + R(@j)u + F(z,y,t), 0<z<a, 0<y<b 0<t,

5‘tku(:c,y,0) = fr(z,y), k=0,1,...degP —1,
ailu(ovyat) = @l(yat)v (I)g{azlu(g,:%ﬁ)} = gz(y,t), [=0,1,... degQ -1,

ajmu(x, 0,t) = Ym(z,t), ‘I/n{ajmu(x,n,t)} = hp(z,t), m=0,1,... deg R—1.
Here P, ), R are polynomials and & and ¥ are supposed to be non-zero linear
functionals on C*[0, a] and C'[0, b], correspondingly. These linear functionals have
Stieltjes-type representations of the form:

(1)

) B{f} = Af(a) + / F(€)da(€), feC'0,a] and
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b
3) w{g} = By(b) + / d(dBn), g€ C0,1],

where a(z) and B(y) are function with bounded variation, A and B being constants.
For technical reasons, we suppose that

(4) Pe{¢} =1 and ¥, {n}=1.

These restrictions may be ousted by some non-essential involvements.
Our operational calculi are connected with the right inverse operators L, and L, of

d\° d\’
(d_> and <—) in C[0, a] and C]0, b], correspondingly defined by:
x

dy
z 13
(5) L. f(x) =/O (x = &) f(€)dE — a2 {/O (€—77)f(77)dn}7
(6) Lyg(y) = /Oy(y —n)g(m)dn —y¥, {/On(n - <)g(<)d<} :

2. Three one-dimensional convolutions.

2.1. The Duhamel convolution. This is the operation
t

(7) (pru)t) = / ot — TYp(r)dr, . 1€ C[0,00).

It bears the name of Duhamel, but sometimes it is called either Borel, or Laplace
convolution. It is connected with the integration operator
t

(8) lolt) = / o(7) dr,

0

since l;p(t) = {1}>tk ©. To say it differently, I; is the convolution operator {1} ]

2.2. A family of convolutions in C|[0,a] and C|0,b].
Theorem 1 (Dimovski [2], p. 119). The operations

) (F20)(w) = —50e (h(2, O} and (FE9)(y) = 5Ty (hiwm)},
with ®¢ = ®¢ole, ¥, =V, ol, and
3 3
ha.€) = [ 6+ ae)ds ~ [ £~ - allshsgns( =~ <) ds

—T
are bilinear, commutative and associative operations in C[0,a] and C[0,b], correspond-
ingly, such that

Lof ={z}%f and L,g={y}*g.
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3. A two-dimensional convolution in C([0,a] X [0, b]).
Theorem 2 (Dimovski [3]). Let u, v € C([0,a] x [0,b]). Then,
(z,y) 1. -
(10) u(@,y) * v(z,y) = 7 Pe¥n{h(z,y, & m)},
with

3
oo = [ [ ule o= oty =role)doir
13 n o
—/ /u(|£—x—U|,n+y—7)v(|a|,7)sgn(€—a:—a)adadr
et
[ wtera—odn—y-rhotolrsen -y - r)rdods
z J—y

&
[ [ =z =alln—y-rhulol rhsen (¢ ~ 2~ o)y -y - r)ordo dr
—a oy
is a bilinear, commutative and associative operation in C([0,a] x [0,b]), such that

LoLyu(z,y.t) = {zy} " u(z,y,1).

4. A three-dimensional convolution in C(D).

Theorem 3. Let u, v e C = C([0,a] x [0,b] x [0,00)) = C(D). Then,
t

(12 (o) o) = [awget =) W oty r) ar
0

is a bilinear, commutative and associative operation in C(D), such that

(13) le Lo Ly u(z,y,t) = {zy} * u(z,y,1).

Proof. If u(z, y, t) = fi(z)g1(y)h1(t) and v(x,y,t) = fa2(x)ga(y)ha(t), then we have
uk = (fr ¥ f2)(g1 igﬂ(hl ihg). The commutativity and associativity of (12) for product
functions follow from the corresponding properties of one-dimensional convolutions i, ¥

and { In order to elucidate the transition from the one-dimensional case to the three-
dimensional, let us prove (13). First we take u(z, y, t) = f(x) g(y) h(t) and get

lt LzLyu(za Y, t) = lt LzLy [f(l‘)g(y)h(t)] = sz(l‘) . Lyg(y) lth(t) =
= [{1}*h(®)[[{z} * F@]H{u} o) = {my} +{F@)g@)h(®)} = {wy}* u(z,y,1).

Then, we conclude that (13) is true for linear combinations of products. But every
function u(z,y,t) € C(D) can be approximated by linear combinations of products func-
tions f(z)g(y)h(t) where f(x) € C[0,al, g(y) € C[0,b] and h(t) € C[0,00), e.g. by
polynomials of the variables x, y, t. Hence, (13) is true for arbitrary u € C(D) since (12)
is a continuous operation.
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5. Multipliers of (C,*). Further, we consider the ring of the multipliers of the
convolutional algebra (C, ).

Definition 1. A linear operator M : C' — C' is said to be a multiplier of the algebra

(C, %), iff the relation
M(ux*v) = (Mu) v
holds for all u, v € C.

If f € C[0, al, then the convolution operator f ¥in C, = C'[0, a) may be considered also
as an operator on the space C(D) : (f *x){u(x,y,t)} = {f(x)} *{u(z,y,t)}, considering
the variables y and t as parameters. The same is true for the convolution operators g ﬂ’
where g = g(y) € Cy, = C[0,b]; ()Oi, v = p(t) € C[0,00) and G+ where G = G(z,y) €
C(]0, a] x [0,b]), correspondingly.

Lemma 1. The convolution operators
Yy x,y

¢l = fe} [, = {F@} % [g], = Lg% 6, = {Gley) .

are multipliers of the convolution algebra (C, ).

The proof follows the lines of the proof of relation (13) from Theorem 3.
Let us denote the set of the multipliers of (C,*) by 9. As it is well-known, 9 is a
commutative ring (see [9]).

Definition. The elements [¢lt, [flz, 9]y and [Glz,y of M are said to be numerical
operator with respect to x, y to y, t to x, t and to t, correspondingly.

Remark. Here we deviate slightly from the notations, accepted in [6].

5.1. Ring of the multiplier fractions of (C,*). In the commutative ring 9
there are elements, which are not divisors of 0. Indeed, such elements are the multipliers
{2} % = [2], and {y}i = [y]y, i.e. the operators L, and L,.

Denote by 91 the set of the non-zero non-divisors of zero on 9. The set M is a
multiplicative subset on 91, i.e. such that p, ¢ € DM implies pg € N.

M
Further, we consider the multiplier fractions of the form ~ with M € M and N € N.
They are introduced in a standard manner, using the well-known method of “localisation”
from the general algebra (see [10]).
Let M = N~19M be the set of multiplier fractions of (C,*). It is a commutative ring,

T

containing the basic field (R or C), the algebras (C]0,al, *), (C|O0, b], ﬂ), (C[0, 00), i),
C([0,a] x [0,8], %), (C,*) and M, due to the embeddings:

i) R—M or C— M by a»—»OLLL17
T Yy
z Yy
t
iii) (C[O,oo),i) M by o [lt;@]t _ (lt;p)*,
t t
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. z,y [LEG]x,y _ [LyG]x,y _ (LoL,G) 5
W) (0 < 0.6).F) = M by 6o e e (e
L,L
V) (C(0,0] x [0,8] x [0,00)), %)+ M by ur Lbzlymle _ue
I LoL, 1

where 1 is the unit of M.
Further, we consider all numbers, functions, multiplier and multiplier fractions as
elements of a single algebraic system: the ring M of the multiplier fractions.

1
5.2. Elements of M. In the ring M we introduce the algebraic inverses s = o
t
1 1
Sy = I and Sy = - of the multipliers l; , L, and L,, correspondingly.
z Y
sin )\f sin . . . .
Let E(\) = @ 3 and F(p) = U, {%} be the sine-indicatrices of the

functionals ® and V.

Theorem 4. If E(\) # 0 and F(u) # 0, then S, + A* and Sy, + p* are non-divisors
of zero in M, and

1 _{sin)\x}i and 1 _{sinuy}z
Sy + A2 | AE(N) Sy+p2 \pBEp) [

For a proof see [2].

The elements S;, Sy, s are connected with the differential operators, 0—3022’ ;—; and
5% but are not identical with them.

Theorem 5. Let u € C(D) and gy, Uyy and u; exist and continuous in D. Then,
(15) gz = Syt + Sp{ (2@ {1} — Du(0,y,1) — 2®e{u(é,y,1)}},
(16) tyy = Syu+ Sy{ (y Up{l} = Du(z,0,t) —y ¥, {u(z,n,t)}},
(17) ur = su—[u(z,y,0)]e,y

Proof. Relation (17) is similar to one in Mikusiniski [11]. As for (15) and (16), they
can be proved in one and the same way. Let us prove (15). It is easy to verify the identity

Ly {uge} = u(z,y,t) + (2P {1} — 1) u(0,y,t) — = Pe{u(&,y,t)}.

It remains simply to multiply this relation by S, . O

Relations (15)—(17) allow to algebraise our BVP, i.e. to reduces (1) to the single
algebraic equation in M:

[P(s) = Q(Sz) — R(Sy)Ju = F

where F is a known element of M.

The problem of uniqueness of the solution of (1) reduces to the algebraic problem,
whether P(s) — Q(S;) — R(Sy) is a divisor of zero or not.

Example. For definiteness, let us consider the general nonlocal BVP for the two-

173



dimensional heat equation
(18) Ut = Ugg + Uyy + F(z,9,t), 0<t, 0<z<a, 0<y<b,
determined by the initial and boundary conditions
u(@,y,0) = f(z,y), uw0,y,t) =0, Pefu(&,y, 1)} =ply, 1),
u(z,0,t) =0, U {u(z,n,t)}=q(z,1).
Using (15)—(17), the BVP (18)—(19) reduces to the following algebraic equation in M:
(20) (s = S = Sy)u=[f(@,Y)]ay — [P, Oyt — la(a, ]es + F(z,y,1).
The problems of uniqueness of the solution of BVP (18)—(19) in C(D) reduces to
the problem of uniqueness of the solution of (20) in M i.e. to the question, when the

elements s — S, — 8y is a non-divisor of zero in M. The following lemma supplies a
necessary condition.

(19)

Lemma 3. Leta € supp® and b € supp V. Then, the element s — S, — Sy is a
non-divisor of zero in M.

The proof follows the lines of the proof for uniqueness in the one-dimensional problem
(see [4])
Ut = Uz + F(z,9,t), 0<t, 0<ax<a, 0<y<b
U(:L',O) = f(z)a
u(0,t) =0, Pe{u( 1)} = p(t)
with essential used of a theorem of N. Bozhinov [1].

Theorem 6. Boundary value problem (18)—(19) has a unique solution, provided a
€ supp® and b € suppV¥.

Proof. Assume the contrary, i.e. that there are two different solutions u; and us of
(18)—(19). Then, u = u; — uz satisfy the homogeneous BVP

Ut = Ugy T Uyy, 0<t, 0<z<a, 0<y<bh,
u(z,y,0) =0,  u(0,y,t) =0, Pe{u(&,y,t)} =0,
u(z,0,t) =0, ¥,{u(z,n,t)} =0.
By (15)—(17) the problem reduces to the equation
(s =8z —S)u=0
in M. But, by Lemma 3, s — S; — 9, is a non-divisor of zero in M. Hence u = 0, i.e.
U] = usg. [l
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TPUMEPHUN OIIEPAIIMOHHUN CMATAHNS 3A HEJIOKAJIHUA
EBOJIIOIIMOHHU I'PAHMNYHU 3AJAYN

Nean XpucroB JdumoBcku, FOsman IMankosB IlankoB

ITocrpoenu ca JUPEKTHH ONEPAIMOHHU CMsiTaHust 3a (pyHKuuu u(z,y,t), HEIPeKbc-
HaTH B obisact or Buga D = [0, a] x [0, b] x [0, c0). Hapes ¢ kiacuueckara jroamesosa
KOHBOJIIOLHsI, IOCTPOEHUETO U3IOI3BA U J[Be HEKJIACHYECKH KOHBOJIIOIMN 33 OIIepaTo-
pute 02 u ;. Tean TPW eHOMEDHH KOHBOJIOIMM Ce KOMOUHMDAT B €/THa TPHMEPHA
kouBosnonus u * v B C(D). Bmecro mogxona na 1. MukycuHCcKH, OCHOBaBaI ce Ha
KOHBOJIIOIMOHHY YaCTHH, Cé Pa3BUBA AJTEPHATUBEH II0/X0O/L C U3II0JI3BAaHE Ha MyJITHI-
JINKAQTOPHUTE YaCTHU Ha KOHBOJIIOIMOHHATa ainrebpa (C(D), *).
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