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SINGULAR SOLUTIONS WITH EXPONENTIAL GROWTH
FOR THE (3+1)-D WAVE EQUATION"

Nedyu Popivanov, Todor Popov, Rudolf Scherer

Four-dimensional boundary value problems for the nonhomogeneous wave equation
are studied. They were proposed by M. Protter as multidimensional analogues of
Darboux problems in the plane. It is known that the unique generalized solution may
have a strong power-type singularity at only one boundary point. This singularity is
isolated at the vertex of the characteristic cone and does not propagate along the cone.
Another aspect is that the problem is not Fredholm, since it has infinite-dimensional
cokernel. Some known results suggest that the solution may have at most exponential
growth, but the question whether such solutions really exist was still open. We show
that the answer is positive and construct generalized solution of Protter problem with
exponential singularity.

1. Introduction. We study boundary value problems for the wave equation in R*

(1) Uy gy + Ugows + Uggwg — Utt = f(xvt)

with points (z,t) = (21,22, z3,t) in the domain

Q={(z,t):0<t<1/2,t<y[a? + 23+ 2 <11t}

bounded by the two characteristic cones

21:{(x,t):0<t<1/2,\/m:17t}’
22:{(m,t);0<t<1/2,\/m:t}

Yo = {t =04/} + 23 + 2% < 1},

centered at the origin O : x = 0,t = 0. The right-hand side function f of (1) satisfies
some smoothness conditions in €2, which will be fixed later. M. Protter [9] proposed the
following BVPs:

Problem P1. Find a solution of the wave equation (1) in  which satisfies the bound-
ary conditions

and the ball

P1: u|20 = 0, u|21 =0.
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Problem P1". Find a solution of the wave equation (1) in Q which satisfies the
adjoint boundary conditions

P1*: wulg, =0, u|g, =0.

Protter [9] formulated and studied the analogues of P1 and P1* in R? as multidimen-
sional analogues of the Darboux problem in the plane. It is known, that in contrast to the
Darboux problems, the multidimensional Problem P1 is not well-posed, because its ad-
joint homogeneous Problem P1* has an infinite number of classical solutions ([4, 8, 11]).
For recent known results concerning Protter’s problems see papers [1, 6, 8] and references
therein.

Let Y, be the orthonormal system of spherical functions in R3. Expressed in Carte-

sian coordinates here, one can define them on the unit sphere S? := {(z1,72,73) :
22 + a3 + 2% = 1} for n € NU {0} by
dk
Y2k(21, 20, 23) = C’mkWPn(acg) Im {(z2 +iz1)*}, for k=1,...,m
T3
dk
ngﬂ(zl, To,X3) = Cn,kﬂpn(lﬂzs) Re {(:EQ + ixl)k} , for k=0,...,n,
T3

where P, are the Legendre polynomials and C,, j are constants such that functions ¥,
form an orthonormal system in L3(S5?) (see [3]). For convenience in the discussions that
follow, we extend the spherical functions out of S? radially, keeping the same notation
Y™ for the extended function, i.e. Y,*(x) := Y, (z/|x|) for z € R3\O.

The known solutions of the the homogeneous Problem P1* are connected with the
following functions: for n,k € NU {0} define

k .

t(|$|2 _ t2)n—1—k—7,

Hy (z,t) = ZAZZ ||n—2i+1
=0

where the coefficients are
Jk—i+1)i(n—k—1);

ki = (1) A —i+ %)Z

with (a); :==ala+1)---(a+i—1) and (a)g := 1.

Lemma 1 ([5]). The functions

Vk’fm(ac, t) = HJ(z, )Y, ().

are classical solutions from C>=(Q) N C(Q) of the homogeneous Problem P1* for n € N,
m=1,....2n+1 and k=0,1,...,[(n—1)/2] — 2.

From this result it follows that a necessary condition for the existence of classical
solution for the Problem P1 is the orthogonality of the right-hand side function f to all
functions V", (z,t). Alternatively, to avoid an infinite number of necessary conditions

in the frame of classical solvability, in [6] we introduced generalized solutions for the
Problem P1, eventually with a singularity at the origin O.

n
’ Ak,O = ]-a

Definition 1 ([6]). A function u = u(x,t) is called a generalized solution of the
Problem P1 in Q, if the following conditions are satisfied:
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1) ue CH\0), ulspo = 0,uls, =0, and
2) the identity

/(utwt — Uy Wy — Ugy Wy — Ugy Wey — fw)dadt =0
Q
holds for all w € C*(Q) such that w =0 on Yo and in a neighborhood of Xa.

In general Problem P1 it is not classically solvable. In fact, it is known that for n €
N there exists a smooth right-hand side function f € C™(f2), such that the correspond-
ing unique generalized solution of Problem P1 has a strong power-type singularity at
the origin O and behaves like r~™(P, O) there (see [8]). This feature deviates from the
conventional belief that such BVPs are classically solvable for very smooth right-hand
side functions f. It is interesting that the singularity is isolated only at a single point —
the vertex O of the characteristic light cone, and does not propagate along the bichar-
acteristics which makes this case different from the traditional case of propagation of
singularity (see for example Hérmander [2], Chapter 24.5).

Remark 1. Notice that Lemma 1 shows that the Problem P1 is not Fredholm solvable.

To explain the situation, let us define the operator
T: wup— feCHQ),

where uy is the unique classical solution to Protter Problem P1 for the right-hand side
function f. Lemma 1 gives dimcoker T' = oo and therefore T' is mot Fredholm operator
in C*(Q) for example. However, one could expect it to be semi-Fredholm there (see [10]).
A semi-Fredholm operator is a bounded operator that has a finite dimensional kernel or
cokernel, and closed range. The results from [7] (see Theorem 2) show that the operator
T is in fact a semi-Fredholm operator in C19(Q).

Regarding to the exact behavior of the generalized solutions of Protter Problems,
solutions with power-type singularity at O were found. From the other hand, some known
estimates suggest that the solution may have at most exponential growth. However, it
was not clear whether such solutions really exist.

In Section 2 we formulate recent results concerning the exact behavior of the gene-
ralized solution and semi-Fredholm solvability for the Protter Problem P1.

In Section 3 we present results from numerical experiments performed in search of
generalized solution with exponential growth.

2. Asymptotic expansion and semi-Fredholm solvability. To study the exact
behavior of the generalized solution, we started in [6] with the case when the right-
hand side function f € C'(Q) of equation (1) is a harmonic polynomial of order [ with
l e NU {0}, ie.

l 2n+1
(2) Fat) =33 el Y (@),
n=0 m=1
Denote by g;,,, the parameters

(3) Brm = /V,Zm(x,t)f(x,t) dxdt,
Q
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n—1
2

where n =1,...,1[; k:O,...,[ ] and m = 1,...,2n + 1, then the main assertion

in [6] is as follows.

Theorem 1 ([6]). Suppose that the right-hand side function f € C*(Q) has the form
(2). Then the unique generalized solution u(z,t) of Problem P1 belongs to C*(Q\O) and
has the following asymptotic expansz'on at the singular point O : x = 0,t =0

Z (J]? +£2) "% Fy(a,t) + F(a, 1),
p=1

where:
(i) the function F € C?(Q\O) and satisfies the a priori estimate

|F(z, ) < Cllflleiq) » (@,t) €,
with constant C independent on f and ||f||crq) = >° max|D*f(z,1)[;
la|<k €

it) the functions F), satisfy the equalities
P
[(I—-p)/2] 2p+4k+1

Fp(l‘,t) = Z Z ﬁp+2ka+2k(x7t) Y p: 1)"')Z5

k=0
with functions F},, € C?(Q\0) bounded and independent on f;
(iii) if at least one of the constants ﬁp+2k (2) is different from zero, then for the cor-

responding function F,(x,t) there evists a direction (a,1) := (a1, 2, 03, 1) with (a, 1)t €
Yo for 0 <t < 1/2, such that

tlir}rlo F,(at,t) = ¢, = const # 0.

If the right-hand side function f satisfies the orthogonality conditions gy, =0 (see
(3)), then from Theorem 1 it follows that the solution is bounded. Alternatively, accord-
ing to the case (iii) each of the orthogonality condition (4) “controls” one power-type
singularity.

In [7] we considered the more general case of smooth function f(x,¢) that no longer
has the special form (2). We found some necessary and sufficient conditions for the
existence of bounded solutions.

Theorem 2 ([7]). Let the function f(z,t) belong to C1°(Q). Then, the necessary and
sufficient conditions for existence of bounded generalized solution u(x,t) of the Protter
Problem P1 are

@) / Vi () f () dadt = 0,
Q
—1
forallmeN, k=0,..., {nT} m=1,...,2n+ 1. The generalized solution u(z,t) €

CY(Q\O) and satisfies the a priori estimates

u(z, )] < Clfllro@)
203



and

3
St @8] + e (@, )] < Cl2f2 + )7 [ Fll oy
=1
where the constant C' is independent of the function f(x,t).

3. Generalized solution with exponential growth. The generalized solutions
have singularities at the point O if the orthogonality conditions (4) are not fulfilled.
According to Theorem 1 only power type singularities are possible in the case when the
right-hand side function is a harmonic polynomial. As for the general case, some previous
results suggest that the solution may have at most exponential growth, but the question
whether such solutions really exist was still open.

We performed numerical experiments in search of generalized solution u with expo-
nential growth by suitably choice of the right-hand side function f. To achieve this,
f breaches appropriately selected infinite subset of the orthogonal conditions (4). Us-
ing the asymptotic expansion formula from Theorem 1 and the properties of the special
functions involved, the right-hand side function f is accordingly constructed so that
1(0,0,t,t) behaves like e'/* for small positive t.

05 05

Fig. 1. Generalized solution with exponential growth

Figure 1 was created using MatLab and illustrates the behavior of the found gen-
eralized solution u of Protter Problem P1 with exponential growth. It represents the
graphic of u on the part of the characteristic boundary cone ¥3 N {x; = 0}. The singu-
lar point O is at the center and the outer age of the graphic corresponds to the circle
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S :=3%;NY3N{z; = 0}. Notice that O also lies on the noncharacteristic part of the
boundary — the ball ¥3. Thus according to the homogenous boundary conditions any
classical solution of the Problem P1 should vanish both on S and at the center O. On
the other hand, although the constructed generalized solution u is zero on S, it has sin-
gularity at O. In fact, the computations show that the ridge on the left has exponential
growth. Away from the point O, u is smooth — it belongs to C'*(Q\O) and the singularity
is isolated at O and does not propagate along the characteristic cone 5. Let us mention
some other interesting features of the graphic in the Figure 1. It looks like that « changes
its sign infinitely many times near the point of singularity O, while on the other hand
there are some directions on 5 on which the solution is bounded at O.
As a result we formulate the following theorem.

Theorem 3. There exists function f € CY(Q) and a positive number § € (0,1/2),
such that the corresponding unique generalized solution u(x1,r2,23,t) € CHQ\O) of
Problem P1 with right-hand function f satisfies the estimate

1
1(0,0,t,t) > exp (;) for 0<t<d.
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CUHIVJ/IAPHU PEINTEHNSA C EKCITOHEHIIMAJIEH P'bCT 3A
YETUPNMEPHOTO B'bJIHOBO YPABHEHUE

Henro U. IlonuBanos, Tomop II. ITonos, Pymond Illepep

Pasriiexxiar ce yermpuMepHHM TpAaHUYHN 33/1a9H 33 HEXOMOT€HHOTO BBJHOBO YPaB-
HeHue. Te ca npemynoxxern or M. IIporep KaTo MHOrOMepHHM aHAJIO3U Ha 3aJa4YaTa
na Jlapby B paBHuHarta. VI3BecTHO €, Ue eMHCTBEHOTO ODODIIEHO pEIIeHre MOXKE J1a
“Ma CHJIHA CTEIeHHa OCOOEHOCT CAMO B €Ha IPAHUYHA TOYKA. 1a3W CHHTYISPHOCT
€ M30/IMpaHa BbB BbpXa Ha XapaKTEPUCTUYHUs KOHYC U HE Ce Pa3IpPOCTPAHsIBA II0
konyca. Ipyr acrekT Ha npobsemMa e, de 3ajadaTa He € (ppeaxo/IMOBa, Thil KaTo uMa
Ge3kpaiinomepHo Kosaapo. [Ipegumniam pesyaraTtu codar, Ye PENIeHneTo MOXKe J[a MMa
Hali-MHOI'0 €KCIIOHEHIIMAJIEH P'BCT, HO OCTaBAT OTKPUT BbIIPOCA JIAJIM HANCTHHA ChIIEC-
TBYBaT TakKuBa pereHusi. [lokazBame, 1€ OTTOBOpa HA TO3U BBIPOC € TMOJIOKUTEJIEH 1
crpouM 0DODIEHO pelleHne Ha 3ajadaTa Ha [IpoTep ¢ eKCroHoIraHa 0COOEHOCT.
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