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In this work we consider the Pareto solutions in continuous multi-criteria optimization
problem. We discuss the role of some assumptions that affect the characteristics of
Pareto sets. We have tried to remove the assumptions for concavity of the objective
functions and convexity of the feasible domain which are usually used in multi-criteria
optimization problems. The results are based on the construction of a retraction from
the feasible domain onto the Pareto-optimal set.

1. Introduction. The topological properties of the Pareto sets in multi-criteria
optimization problems have attracted much attention of the researchers. The topological
properties are studied in [1–5], [8–9], [11], [13–18], [20], [22]. Information about these
properties is very important for computational algorithms generating Pareto solutions
[19].

The aim of this work is to present some new topological properties of Pareto-optimal
and Pareto-front sets, shortly Pareto sets, in a multi-criteria optimization problem. The
author has tried to remove the assumptions for concavity of the objective functions and
convexity of the feasible domain usually using in this optimization problem.

The standard form of the multi-criteria optimization problem is to find a variable
x(x1, x2, . . . , xm) ∈ R

m, m ≥ 1, so that to maximize f (x) = (f1 (x) , f2 (x) , . . . , fn (x))
subject to x ∈ X , where the feasible domain X is nonempty, Jn = {1, 2, . . . , n} is the
index set, n ≥ 2, fi : X → R is a given continuous function for all i ∈ Jn.

Since the objective functions {fi}
n
i=1 may conflict with each other, it is usually difficult

to obtain the global maximum for each objective function at the same time. Therefore,
the target of the maximization problem is to achieve a set of solutions that are Pareto-
optimal. Historically, the first reference to address such situations of conflicting objectives
is usually attributed to Vilfredo Pareto (1848–1923).

Definition 1. (a) A point x ∈ X is called Pareto-optimal solution if and only if there

does not exist a point y ∈ X such that fi (y) ≥ fi (x) for all i ∈ Jn and fk (y) > fk (x) for

some k ∈ Jn. The set of the Pareto-optimal solutions of X is denoted by PO (X, f) and

is called Pareto-optimal set. Its image f(PO (X, f)) = PF (X, f) is called Pareto-front

set.

(b) A point x ∈ X is called strictly Pareto-optimal solution if and only if there does

not exist a point y ∈ X such that fi (y) ≥ fi (x) for all i ∈ Jn and x 6= y. The set of
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the strictly Pareto-optimal solutions of X is denoted by SPO (X, f) and is called strictly

Pareto-optimal set.

The strictly Pareto-optimal solutions are the multi-objective analogue of unique op-
timal solutions in the scalar optimization.

In this work let the feasible domain X be compact. It is well-known that PO (X, f)
and PF (X, f) are nonempty, SPO (X, f) ⊂ PO (X, f) and PF (X, f) ⊂ bdf(X) [10].

Definition 2. (a) The set Y ⊂ X is a retract of X if and only if there exists a

continuous function r : X → Y such that r(x) = x for all x ∈ Y . The function r is called

a retraction.

(b) The set Y is a deformation retract of X if and only if there exist a retraction

r : X → Y and a homotopy H : X× [0; 1] → X such that H(x, 0) = x and H(x, 1) = r(x)
for all x ∈ X.

Remark 1. Let X and Y be two topological spaces. A homotopy between two
continuous functions f, g : X → Y is defined to be a continuous function H : X× [0; 1] →
Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X . Note that we can consider
the homotopy H as a continuously deformation of f to g [7].

Remark 2. From a more formal viewpoint, a retraction is a function r : X → Y such
that r ◦ r(x) = r(x) for all x ∈ X , since this equation says exactly that r is the identity
on its image. Retractions are the topological analogs of projection operators in other
parts of mathematics. Clearly, every deformation retract is a retract, but the converse
does not hold in generally [7].

Remark 3. A property is called a topological property if and only if an arbitrary
topological space X has this property, then Y has this property too, where Y is homeo-
morphic to X .

Of course, the topological properties of the Pareto-optimal set related to the topolo-
gical properties of the Pareto-front set, respectively.

We introduce the following notations: for every two vectors x, y ∈ R
n, x(x1, x2, . . . , xn)

= y(y1, y2, . . . , yn) means xi = yi for all i ∈ Jn, x(x1, x2, . . . , xn)≥y(y1, y2, . . . , yn) means
xi ≥ yi for all i ∈ Jn (weakly componentwise order), x(x1, x2, . . . , xn) > y(y1, y2, . . . , yn)
means xi > yi for all i ∈ Jn (strictly componentwise order), and x(x1, x2, . . . , xn) ≥
y(y1, y2, . . . , yn) means xi ≥ yi for all i ∈ Jn and xk > yk for some k ∈ Jn (component-
wise order).

2. Main result. As usually, the key idea is to transfer our multi-objective opti-
mization problem to mono-objective optimization problem by defining a unique objective
function.

First of all, begin with the following definition: define a multifunction ψ : X ⇒ X
by ψ (x) =

{

y ∈ X |f(y)≥f(x)
}

for all x ∈ X ; define a function s : X → R by s (x) =
n
∑

j=1

fj (x) for all x ∈ X .

Let choose x ∈ X and consider an optimization problem with single objective function
as follows: maximize s(y) subject to y ∈ ψ(x). By choosing different x ∈ X we can
identify different Pareto-optimal solutions. This optimization technique allow us to find
the whole Pareto-optimal solutions [6].
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In this work, we discus the role of the following assumptions:

Assumption 1. f is bijective.

Assumption 2. |Argmax(s, ψ(x))| = 1 for all x ∈ X.

Assumption 3. If d is a metric in R
m, {xi}

∞

i=0 ⊂ X and lim
k→∞

d(xk, x0) = 0, then

lim
k→∞

d(y0, ψ(xk)) = 0 for all y0 ∈ ψ(x0).

Remark 4. Let Cl(X) be a set of all nonempty compact subset of X . A sequence
of sets {Ak}

∞

k=1 ⊂ Cl(X) is called to be Wijsman convergence to A ∈ Cl(X) if and only
if for each x ∈ X , lim

k→∞

d(x,Ak) = d(x,A) (Assumption 3).

These definitions and assumptions allow us the presentation of the main theorem of
this work.

Theorem 1. If Assumptions 1, 2 and 3 hold, then:

(a) PO (X, f) = SPO (X, f).
(b) PO (X, f) is a retract of X.

(c) PF (X, f) is a retract of f(X).
(d) PO (X, f) is homeomorphic to PF (X, f).

In order to give the proof of Theorem 1, we prove some lemmas.

Lemma 1. If x ∈ X, x ∈ PO (X, f) is equivalent to {x} = ψ(x).

Proof. Let x ∈ PO (X, f) and assume that {x} 6= ψ(x). From both conditions x ∈
ψ(x) and {x} 6= ψ(x), it follows that there exists y ∈ ψ(x)\{x} such that f(y)≥f(x). As
a result we get that s(y) ≥ s(x), but x ∈ PO (X, f) implies s(y) = s(x) and f(y) = f(x).
We assumed that f is bijective (Assumption 1), therefore x = y which contradicts the
condition y ∈ ψ(x) \ {x}. Thus we obtain {x} = ψ(x).

Conversely, let {x} = ψ(x) and assume that x /∈ PO (X, f). From the assumption
x /∈ PO (X, f), it follows that there exists y ∈ X\{x} such that f(y) ≥ f(x). Thus we
deduce that y ∈ ψ(x) and x 6= y which contradicts the condition {x} = ψ(x). Therefore,
we obtain x ∈ PO (X, f). The lemma is proved. �

Lemma 2. If x ∈ X, then Argmax(s, ψ(x)) ⊂ PO(X, f).

Proof. Let us choose y ∈ Argmax(s, ψ(x)) and assume that y /∈ PO(X, f). From the
assumption y /∈ PO(X, f) it follows that there exists z ∈ X\{y} such that f(z) ≥ f(y).
As a result we derive z ∈ ψ(x) and s(z) > s(y). This leads to a contradiction, hence
y ∈ PO(X, f). The lemma is proved. �

Lemma 3. There exists a function r : X → PO(X, f) such that r (x) =
Argmax (s, ψ(x)) for all x ∈ X and r (X) = PO (X, f).

Proof. Using Argmax(s, ψ(x)) ⊂ PO(X, f) (Lemma 2) and |Argmax(s, ψ(x))| = 1
(Assumption 2), we are in a position to construct a function r : X → PO(X, f) such
that r (x) = Argmax (s, ψ(x)) for all x ∈ X .

From Lemmas 1 and 2 it follows that: if x ∈ PO (X, f), then x = r(x); if x ∈
X\PO (X, f), then x 6= r(x). This means that r (X) = PO (X, f). The lemma is
proved. �

209



Lemma 4.ψ is continuous on X.

Proof. First, we prove that if {xk}
∞

k=1,{yk}
∞

k=1 ⊂ X is a pair of sequences such
that lim

k→∞

xk = x0 ∈ X and yk ∈ ψ (xk) for all k ∈ N , then there exists a convergent

subsequence of {yk}
∞

k=1 whose limit belongs to ψ (x0).
The assumption yk ∈ ψ (xk) for all k ∈ N implies f (yk)≥f (xk) for all k ∈ N .

From the condition {yk}
∞

k=1 ⊂ X it follows that there exists a convergent subsequence
{qk}

∞

k=1 ⊂ {yk}
∞

k=1 such that lim
k→∞

qk = y0 ∈ X . Hence, there exists a convergent

subsequence {pk}
∞

k=1 ⊂ {xk}
∞

k=1 such that qk ∈ ψ (pk) and lim
k→∞

pk = x0. Thus we find

that f (qk)≥f (pk) for all k ∈ N . Taking the limit as k → ∞ we obtain f (y0) ≥ f (x0).
This implies y0 ∈ ψ (x0). This means that ψ is upper semi-continuous on X [12].

Second, we prove that if {xk}
∞

k=1 ⊂ X is a convergent sequence to x0 ∈ X and
y0 ∈ ψ (x0), then there exists a sequence {yk}

∞

k=1 ⊂ X such that yk ∈ ψ (xk) for all
k ∈ N and lim

k→∞

yk = y0.

As usually, the distance between the point y0 ∈ X and the set ψ (xk) ⊂ X is denoted
by dk = inf {dis (y0, x) |x ∈ ψ (xk)}. Clearly, ψ (xk) is a nonempty compact; therefore, if
y0 /∈ ψ (xk), then there exists ŷ ∈ ψ (xk) such that dk = d (ŷ, yk). There are two cases
as follows: if y0 ∈ ψ (xk), then dk = 0 and set yk = y0; if y0 /∈ ψ (xk), then dk > 0 and
set yk = ŷ. So that, we get a sequence {dk}

∞

k=1 ⊂ R+ and a sequence {yk}
∞

k=1 ⊂ X such
that yk ∈ ψ (xk) for all k ∈ N and dk = d (y0, yk). Since lim

k→∞

xk = x0 (Assumption 3)

the sequence {dk}
∞

k=1 is convergent and lim
k→∞

dk = 0. Finally, we obtain lim
k→∞

yk = y0.

This means that ψ is lower semi-continuous on X [12]. Hence, ψ is continuous on X .
The lemma is proved. �

Lemma 5 [21, Theorem 9.14].Let S ⊂ R
n, Θ ⊂ R

m, h : S ×Θ → R be a continuous

function, and D : Θ ⇒ S be a compact-valued and continuous multifunction. Then, the

function h∗ : Θ → R defined by h∗ (θ) = max {h (x, θ) |x ∈ D (θ)} is continuous on Θ,

and the multifunction D∗ : Θ ⇒ S defined by D ∗ (θ) = {x ∈ D (θ) |h (x, θ) = h ∗ (θ)} is

compact-valued and upper semi-continuous on Θ.

Lemma 6. r is continuous on X.

Proof. The multifunction ψ is compact-valued and continuous on X . Now, applying
Lemma 5 for S = Θ = X and D = ψ, we deduce that r is an upper semi-continuous
multifunction on X . Obviously, an upper semi-continuous multifunction is continuous
when viewed as a function. This shows that r is continuous on X . The lemma is
proved. �

Proof of Theorem 1. (a) Applying Lemma 1 we get that PO (X, f) = SPO(X, f).
(b) From Lemmas 3 and 6 it follows that there exists a continuous function r : X →

PO (X, f) such that r (X) = PO (X, f) and r (x) = Argmax (s, ψ(x)) for all x ∈ X . This
means that PO (X, f) is a retract of X .

(c) We already know that f is homeomorphism. It is easy to prove that f ◦ r ◦ f−1 :
f(X) → PF (X, f) is retraction. This means that PF (X, f) is a retract of f(X).

(d) It is well-known that every continuous image of the compact set is compact.
In fact, the set X is compact and the function r is continuous on X . Hence, the set
PO (X, f) = r(X) is compact. Recalling that the function f : X → R

n is continuous,
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we deduce that the restriction h : PO(X, f) → PF (X, f) of f is continuous too. We
know that the function h is bijective. Consider the inverse function h−1 : PF (X, f) →
PO(X, f) of h. As it was proved before, the set PO (X, f) is compact, therefore h−1

is continuous too [23]. As a result we find that the function h is homeomorphism. The
theorem is proved. �
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ВЪРХУ ПАРЕТОВСКИТЕ МНОЖЕСТВА В

МНОГОКРИТЕРИАЛНАТА ОПТИМИЗАЦИЯ

Здравко Д. Славов

В тази работа се разглеждат Паретовските решения в непрекъсната многокрите-

риална оптимизация. Обсъжда се ролята на някои предположения, които влияят

на характеристиките на Паретовските множества. Авторът се е опитал да пре-

махне предположенията за вдлъбнатост на целевите функции и изпъкналост на

допустимата област, които обикновено се използват в многокритериалната опти-

мизация. Резултатите са на базата на конструирането на ретракция от допусти-

мата област върху Парето-оптималното множество.
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