
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2011

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 5–9, 2011

INCREASING THE CALCULATION SPEED OF AN
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In this paper we propose an optimized algorithm, which is faster compared to pre-
viously described Modified Super-Time-Stepping (Modified STS) scheme for age-
structured population models with diffusion. Keeping the accuracy of the Modified
STS algorithm, we reduce its computational time almost two times, obtaining an ad-
ditional speed-up. This makes the optimized method highly preferable for nonlinear
and higher-dimensional problems.

1. Introduction. The Super-Time-Stepping (STS) scheme is proved to be a simple
and very effective method which accelerates explicit time stepping schemes for parabolic
problems [1]. Even though the method is quite old, it is not known by most of the people
working in the computational PDE world. Pelovska [11] and Boyadzhiev [12] have applied
it on equations of age-dependent population diffusion. While the analytical properties
of such models have been extensively studied since years (see for instance [3, 4, 7] and
the references therein), only several authors have dealt with the numerical study of age
and space dependent population models. Kim [6], Kim-Park [5] and Milner [9] deal with
nonlinear diffusion models. They propose some mixed numerical algorithms combining
finite difference methods along characteristics and finite element methods in the spatial
variables. In the case of linear fertility and mortality functions, Lopez and Trigiante
[8] have developed a finite difference scheme for an age-dependent model with Dirichlet
boundary conditions and linear population flux. Ayati [2] proposes a numerical method
for a nonlinear model with nonlinear diffusion which allows the use of variable time steps
and independent age and time discretization.

The authors’ goal in this paper is to present an improved version of the Modified STS
scheme (see [11, 12]) adapted for solving an age-dependent population model with linear
spatial diffusion. Let p(a, t, x) be the density of a population having age a ∈ [0, a+], where
a+ is the maximum age; t ∈ (0, T ] denotes time, where T is the final time; x ∈ (0, 1)
denotes spatial position and D > 0 is the coefficient of diffusion. Then, following [4], a
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mathematical model describing the evolution of the population p(a, t, x) starting at time
t = 0 with initial distribution

(1.1) p(a, 0, x) = p0(a, x), a ∈ [0, a+], x ∈ (0, 1)

is:

(1.2) pt + pa + µ(a)p = Dpxx, a ∈ [0, a+], t ∈ (0, T ], x ∈ (0, 1),

where µ(a) ≥ 0 is the natural death rate of the species. We add to this model the birth
process

(1.3) p(0, t, x) =

∫ a+

0

β(a)p(a, t, x) da, t ∈ (0, T ], x ∈ (0, 1),

with β(a) ≥ 0 representing the age specific fertility, and the following Dirichlet conditions
on the boundary

(1.4) p(a, t, 0) = p(a, t, 1) = 0, a ∈ [0, a+], t ∈ (0, T ]

Aiming to present a more realistic case where the species are with a finite life span, we
assume the maximum age a+ to be finite (a ∈ [0, a+], where a+ < +∞) and we require
that the survival probability

(1.5) π(a) = e−
∫ a

0
µ(τ)dτ

vanishes at a+.

In order to approximate our model we shall use a first order method combined with
the trapezoidal rule for the integral terms. In [10] it is shown that this creates problems
every time when an evaluation of the mortality function at the right endpoint a+ of the
interval is required, since lim

a→a+

µ(a) = ∞. Following [10] we take

(1.6) u(a, t, x) = π−1(a)p(a, t, x)

and then substituting with the new variable u(a, t, x) in the equations above, we obtain
a reformulation of the discussed model

(1.7)

1)ut + ua = Duxx, a ∈ [0, a+], t ∈ (0, T ], x ∈ (0, 1)

2)u(0, t, x) =

∫ a+

0

β(a)π(a)u(a, t, x) da, t ∈ (0, T ], x ∈ (0, 1)

3)u(a, 0, x) = u0(a, x), a ∈ [0, a+], x ∈ (0, 1)

4)u(a, t, 0) = u(a, t, 1) = 0, a ∈ [0, a+], t ∈ (0, T ]

Using this form of the equations describing our model, we can apply a finite difference
scheme, since the qualitative features of the model are preserved but there are no more
problems with its numerical treatment (see [10] for details).

The aim of our article is to witness the Modified STS [11] theory on, namely to show
how a bigger acceleration of this scheme can be obtained. We use some of the properties
of its coefficients gaining more speed but preserving its accuracy, which is comparable to
the accuracy of other first and even second order schemes as shown in [11].

2. Optimization of the Modified Super-Time-Stepping scheme. The Super-
Time-Stepping algorithm [1] is an acceleration method for explicit schemes for parabolic
problems. It relaxes the condition of stability at the end of each time step that is imposed
for the normal explicit scheme and demands stability at the end of each super-step ∆T ,
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consisting of K sub-steps τ1, τ2, ..., τK with different length. These sub-steps can be found
by the following explicit formula

(2.1) τk = τ

(
(−1 + ν) cos

(
(2k − 1)π

2K

)
+ 1 + ν

)
−1

, k = 1, . . . , K

where τ is the time step for the explicit scheme (2.5), calculated in such a way that the

CFL (stability) condition is satisfied; ν is a number in the interval

(
0,

λmin

λmax

]
with λmin

and λmax being the smallest and the biggest eigenvalues respectively of the matrix A in
(2.6). It implies that we can take larger time steps and consequently the total number of
steps is reduced which speeds the computations up, compared with the standard explicit
scheme. The inner steps have no approximation properties and can be chosen explicitly
in such a way that stability is ensured over the super-step and we obtain a maximum
duration of

(2.2) ∆T =
K∑

k=1

τk

Inspired by the fact that along characteristics in the age-time direction the governing
equation in (1.7) can be treated as parabolic differential equation (see [11] for details),
we proceed as follows, introducing some convenient notation. We assume the step size
in age identical to the step size in time and we choose τ > 0 to be the age and time

discretization parameter, where τ =
a+

L
(L is the number of subintervals in age). We

assume T is a multiple of a+, so that we have T = L1a+ = L1Lτ = Nτ , where L1

is an integer and N is the total number of subintervals in time. Let h =
1

M
be the

discretization step in space, where M is the number of subintervals in space. Then for
each time level tn = nτ , n = 0, . . . , N we have the following grid: Γ = {(aj , xi) : aj =
jτ, j = 0, . . . , L; xi = ih, i = 0, . . . , M}. With this notation, we approximate the

directional derivative
∂

∂t
+

∂

∂a
, setting

(2.3)

(
∂

∂t
+

∂

∂a

)
u(aj , tn, xi) ≈

Û j+1
i − U j

i

τ
,

where the discrete function U j
i is an approximation of the solution of (1.7) at time level

tn at grid point (aj , xi) and Û j+1
i – at time level tn+1 at grid point (aj+1, xi).

An approximation of the Laplace operator is given by

(2.4) Uxx =
U j

i−1 − 2U j
i + U j

i+1

h2

Consequently an approximation of problem (1.7) by an Euler explicit scheme (analogous
to the one applied to the heat equation in [1]) is given by

(2.5)

Û j+1
i =

Dτ

h2
U j

i−1 +

(
1 −

2Dτ

h2

)
U j

i +
Dτ

h2
U j

i+1,

i = 1, . . . , M − 1; j = 0, . . . , L − 1

Û j+1
0 = Û j+1

M = 0, j = 0, . . . , L − 1
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or written in a more convenient form

(2.6) Û j+1 = AU j , j = 0, . . . , L − 1

where A is an (M − 1) × (M − 1) symmetric and three-diagonal matrix.

We couple (2.5) with the trapezoidal rule for the boundary condition (1.7, 2))

(2.7) Û0
i = τ

L−1∑

j=1

βjπ(aj)Û
j
i +

τ

2

[
β0π(a0)Û

0
i + βLπ(aL)ÛL

i

]
, i = 0, . . . , M

At the initial time t = 0 we take U j
i =

p0(a
j , xi)

π(aj)
, j = 0, . . . , L, i = 0, . . . , M .

This scheme is easy to be implemented, but it is conditionally stable, i.e. it is stable

if the time step is very small, namely τ ≤
2

λmax
(λmax being the biggest eigenvalue of

the matrix A in (2.6)). In order to overcome this drawback and to increase the efficiency
of the method while keeping the accuracy at the same time, we adapt the STS scheme
for parabolic problems (see [1]) to the age-structured model as shown on the graph:

Fig. 1. One super-time-step with K = 3 intermediate steps

The figure above shows how one super-time-step looks like. The vertical and the
horizontal axis present the time and the age distributions respectively; τk, k = 1, . . . , K
are the inner-time-steps (on the graph we have taken K = 3). The similarity between
Modified STS and STS is the way to move in time, i.e. the super-time-stepping. How-
ever, while moving in time, the same steps in age have to be done. This is the basic
difference between STS for parabolic problems and the modification presented in [11].
In the modified scheme the solution at the boundary points is calculated, but not at the
intermediate time levels (since it is not needed for the approximation of the solution in
the next time levels – see Figure 1). Since there are age nodes at each time level (as
shown on Figure 1), the ”discrete solution” at the kth inner time level k = 1, . . . , K − 1
is calculated as follows

(2.8)

Û j
i =

Dτk

h2
(U j

i−1 + U j
i+1) +

(
1 −

2Dτk

h2

)
U j

i ,

i = 1, . . . , M − 1; j = 0, . . . , s − 1

Û j
0 = Û j

M = 0, j = 0, . . . , s − 1,

where U j
i is the “discrete solution” at the (k − 1)st time level and it is considered as
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known; s =
a+K

T
is the number of age-nodes (see Figure 2), which depends on K, i.e. on

the length of one super-step ∆T . The ”discrete solution”, calculated at these inner steps
has no approximation properties and it is not outputted. The approximation only at the
end level – K corresponding to tn+1 time level is used. It is found by formula (2.5), but
with time step τK , i.e. τ = τK . As we mentioned before at this level the solution at the
boundary point is calculated as well, by formula (2.7) and time step ∆T . This procedure
is repeated until the end of the time interval.

In [11] it is proved that in some cases the Modified STS algorithm can speed up the
explicit scheme more than K2 times. Additional acceleration of the Modified STS can be
achieved when using some of the properties of its coefficients, namely that the coefficients
ck
l , k = 1, . . . , K, l = 0, . . . , k of the kth inner level, can be obtained by the coefficients

ck−1
l of the previous, (k−1)st intermediate time level by the following recursive formulas

(2.9)

ck
0 = (1 − 2σk) ck−1

0 + 2σkck−1
1 ,

ck
l = σk

(
ck−1
l−1 + ck−1

l+1

)
+ (1 − 2σk) ck−1

l , l = 1, . . . , k − 1,

ck
k = σkck−1

k−1,

where σk =
Dτk

h2
, ck−1

l = 0 for l ≥ k and we assume that in the beginning c0
0 = 1, c0

l = 0,

l ≥ 1.
Using this dependence between ck

l , k = 1, . . . , K, l = 0, . . . , k and ck−1
l and the fact,

that the inner steps have no approximation properties (for the discrete solution), we can
make only steps with length ∆T . Moreover, after one super step we have the following
form of the Modified STS scheme

(2.10) Û j+1
i = cK

0 U j
i +






i∑

l=1

cK
l (U j

i+l + U j
i−l) +

K∑

l=i+1

cK
l (U j

i+l − U j
l−i),

1 ≤ i ≤ K − 1
k∑

l=1

ck
l (U j

i−l + U j
i+l), K ≤ i ≤ M − K

M−i∑

l=1

cK
l (U j

i+l + U j
i−l) +

K∑

l=M−i+1

cK
l (U j

i−l − U j
2M−l−i),

M − K + 1 ≤ i ≤ M − 1,

where j = 0, . . . , s− 1 and cK
k , k = 0, . . . , K can be obtained explicitly by formula (2.9).

In this way we present the solution at the new time level tn+1 as a linear combination of
2K + 1 nodes of the previous time level and we reduce the number of the arithmetical
operations we do. As it is shown in [12] the number of multiplications is reduced from 2K
for the Modified STS to K +1 for the optimized algorithm. Thus we save computational
time while keeping the accuracy of the Modified STS scheme.

3. Performance on a linear test problem. In this section we investigate the
performance of the optimized scheme on one exactly solvable test problem proposed in
[11]. We consider a population with a finite age and for simplicity we take the maximum
age of the individuals a+ = 1. The mortality and the survival probability are µ(a) =
1/(1 − a), π(a) = 1 − a respectively. The initial conditions are given as follows

(3.1) p0(a, x) = e−α∗a(1 − a) sin(πx),
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where α∗ is the intrinsic Malthusian parameter which determines the population growth.
We assume the fertility β(a) = β and by choosing an appropriate value of α∗ = 2, we
calculate it by the following formula

(3.2) p0(0, x) =

∫ a+

0

β(a)p0(a, x)da,

which provides continuity of the solution p(a, t, x). The solution of system (1.7) is given
by

(3.3) p(a, t, x) = eα∗(t−a)(1 − a)e−π2Dt sin(πx),

where p(a, t, x) satisfies Dirichlet conditions on the boundary. We assume the diffusion
constant D = 1 for simplicity. We vary the number of steps in space – M (we calculate τ

in such a way that the CFL condition τ ≤
h2

2D
for the explicit scheme to be satisfied – see

(2.1) and the text below), the number of sub-steps – K and the value of the parameter
ν, chosen as a random number in the interval (0,1) (see [11]). We trace the efficiency of
the optimized algorithm and the Modified STS. We ran simulations on an ACER Aspire
M3610 in double precision arithmetic and we took as final time T = 3.

We use the following convenient notation: K – number of intermediate steps per one
super-step; M – number of discrete subintervals in space; CPU – time (in seconds); Eabs

– the maximum L∞ error; OS – optimized scheme; MSTS – Modified STS scheme

The data reported in this table show, that the performance of the optimized scheme
is better as CPU-time than the one of the Modified STS algorithm while their accuracy

Table 1. Efficiency comparison of OS and MSTS

M K ν Eabs(OS) CPU(OS) Eabs(MSTS) CPU(MSTS)
CPU(MSTS)

CPU(OS)
20 3 0.004 2.62E-002 0.062 2.62E-002 0.078 1.25

20 5 0.06 1.75E-002 0.059 1.75E-002 0.089 1.51

20 10 0.07 1.50E-002 0.031 1.50E-002 0.048 1.55

20 10 0.7 1.12E-003 0.25 1.12E-003 0.41 1.64

40 5 0.004 1.62E-002 0.36 1.62E-002 0.50 1.39

40 5 0.07 3.13E-003 18.41 3.13E-003 26.16 1.42

40 10 0.06 4.61E-003 0.71 4.61E-003 1.05 1.48

40 20 0.7 2.79E-004 3.51 2.79E-004 6.94 1.69

60 10 0.004 1.07E-002 0.48 1.07E-002 0.76 1.58

60 20 0.06 2.01E-003 2.33 2.01E-003 3.88 1.67

60 25 0.7 1.29E-004 21.18 1.29E-004 36.55 1.73

60 30 0.2 5.40E-004 4.58 5.40E-004 8.11 1.77

60 30 0.88 8.98E-005 21.48 8.98E-005 38.49 1.80

100 20 0.004 1.07E-002 2.13 1.07E-002 3.68 1.73

100 20 0.06 7.41E-004 31.04 7.41E-004 54.82 1.77

100 40 0.7 4.66E-005 170.8 4.66E-005 328.32 1.92

100 50 0.4 8.95E-005 73.82 8.95E-005 141.738 1.92

200 5 0.004 6.45E-004 1190.55 6.45E-004 2309.68 1.94

200 20 0.06 1.87E-004 1357.34 1.87E-004 2646.82 1.95

200 50 0.7 1.22E-005 1408.94 1.22E-005 2775.61 1.97
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is the same. Taking less space nodes and sub-steps, and choosing ν comparatively small
number (see M = 20, K = 3, ν = 0.004 and M = 40, K = 5, ν = 0.004) we do
not improve much the efficiency of the Modified STS scheme. But we see that in this
case the accuracy of the schemes is not good enough. Reducing the step size in x and
increasing the number of the intermediate steps and the value of the damping factor ν,
we obtain better accuracy (compare results for M = 60, K = 30, ν = 0.88; M = 100,
K = 40, ν = 0.7; M = 100, K = 50, ν = 0.4 and M = 200) and nearly two times
bigger acceleration given by the optimized scheme. The conclusion is that the optimized
algorithm [12] has several advantages – it is easy to implement, it preserves the good
accuracy of the Modified STS [11] and it speeds this scheme up. Consequently, when we
deal with higher-dimensional and nonlinear problems, when we run simulations with a
large time span or we simply wish to gain high accuracy for less time, the application of
the optimized algorithm is preferable.

Remark. The CPU-time of the Modified STS scheme given in the table above differs
from the CPU-time of the same scheme presented in [11] (for the same values of the
parameters) since the simulations were ran on different computers (an ACER TravelMate
6003LMi was used in [11]).
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ПОВИШАВАНЕ НА ИЗЧИСЛИТЕЛНАТА СКОРОСТ НА УСКОРЕНА

СХЕМА ЗА ВЪЗРАСТОВО СТРУКТУРИРАН ДИФУЗИОНЕН МОДЕЛ

Дойчин Бояджиев, Галена Пеловска

В статията се предлага оптимизиран алгоритъм, който е по-бърз в сравнение с по-
рано описаната ускорена (модифицирана STS) диференчна схема за възрастово
структуриран популационен модел с дифузия. Запазвайки апроксимацията на
модифицирания STS алгоритъм, изчислителното времето се намаля почти два
пъти. Това прави оптимизирания метод по-предпочитан за задачи с нелинейност
или с по-висока размерност.
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