ON SOME PROPERTIES OF BOOLEAN FUNCTIONS AND THEIR BINARY DECISION DIAGRAMS*

Ivo Damyanov

Boolean functions manipulation is an essential component of computer science, including logic optimization, logic verification and logic synthesis. In this paper some initial results about dependency of the graph based presentation of the Boolean functions and the properties of their variables are obtained.

1. Introduction. The synthesis of Decision Diagrams and the theory of essential variables and separable sets of variables are two fields of the theoretical computer science which have been intensively (but separately) developed during the last decades.

Let \mathbb{B} be two-element set, $\mathbb{B}=\{0,1\}$. A Boolean function of n variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a function $f(x): \mathbb{B}^{n} \rightarrow \mathbb{B}$, where $x=\left[x_{1}, \ldots, x_{n}\right]$ denotes its arguments. The set of all Boolean functions $f(x): \mathbb{B}^{n} \rightarrow \mathbb{B}$, is denoted by $F\left[x_{1}, \ldots, x_{n}\right]$, or by $F(n)$ if variables are not being considered.

The function $f\left(x_{1}, \ldots, x_{n}\right)$ can be decomposed with respect to (w.r.t.) variable x_{i} using Shannon expansion [7] such as:

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\bar{x}_{i} f_{1} \oplus x_{i} f_{2} \tag{1}
\end{equation*}
$$

The functions $f_{1}:=f\left(x_{i}=0\right) \in F(n-1)$ and $f_{2}:=f\left(x_{i}=1\right) \in F(n-1)$ are called subfunctions of $f\left(x_{1}, \ldots, x_{n}\right)$.

Various representations of Boolean functions in theory and practice are used, including truth-table, formulae, binary decision trees, etc. In practice, Ordered Binary Decision Diagrams (OBDD) are considered to be the state of the art in data structures for Boolean functions. The OBDD minimization problem is one of the deeply studied since OBDD was introduced by R. Bryant [1].

Definition 1. Let π be a total order on the set of variables x_{1}, \ldots, x_{n}. An Ordered Binary Decision Diagram (OBDD) with respect to the variable order π ($\pi-O B D D$) is a directed acyclic graph with exactly one root which satisfies the following properties:

- There are exactly two nodes without outgoing edges. These two nodes are labeled by the constants 1 and 0, respectively, and are called terminal nodes.
- Each non-terminal node is labeled by a variable x_{i}, and has two outgoing edges, which are labeled by 1 and 0 , respectively. These edges are called 1-edge (represented by solid line in the graph) and 0-edge (dashed line).

[^0]- The order, in which the variables appear in a graph's path, is consistent with the variable order π, i.e., for each edge leading from node x_{i} to node x_{j} holds that $x_{i}<_{\pi} x_{j}$.

Definition 2. An $O B D D$ with root node v denotes a function f_{v}, defined recursively as:
(1) If v is a terminal node, then $f_{v}=\operatorname{val}(v)$, where $\operatorname{val}(v) \in\{0,1\}$.
(2) If v is a non-terminal node labeled with x_{i}, then

$$
f_{v}\left(x_{1}, \ldots, x_{n}\right)=\overline{x_{i}} f\left(x_{i}=0\right)+x_{i} f\left(x_{i}=1\right) .
$$

Fig. 1. OBDD for $f=\overline{x_{i}} f_{0}+x_{i} f_{i}$

A path in an OBDD is a sequence of connected nodes starting from the root of the OBDD and ending with a terminal node. The arguments associated with all nodes in the path form a product term.

The function represented by an OBDD is the sum of the product terms associated with all paths ending with the 1 terminal node.

Because compact representation is important two reduction rules are introduced.

Fig. 2. Reduction Rules

OBDD with applied all possible reductions is called Reduced OBDD (ROBDD) and in [1] R. Bryant shows that ROBDD forms canonical representation of the Boolean function with respect to the given variable ordering π (π-ROBDD).
2. Main result. The complexity of the Boolean functions is affected by properties of their essential (supporting) variables. Some main results about that properties were obtained by J. Breitbart [6], K. Chimev [8], Sl. Shtrakov [3] and others. The properties of essential variables were studied also for Universal algebra by Shtrakov and Denecke [4] and for Tree automata by Damyanov and Shtrakov [2].

Definition 3. The function $f\left(x_{1}, \ldots, x_{n}\right) \in F(n)$ depends essentially on $x_{i} \quad(1 \leq i \leq$ n), if two n-tuples

$$
\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \quad \text { and } \quad\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)
$$

exist, such that

$$
f\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \neq f\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)
$$

In other words, the variable x_{i} is essential for $f \in F(n)$ if $f\left(x_{i}=1\right) \neq f\left(x_{i}=0\right)$.
When the variable x_{i} is not essential, it is called fictive.
The set of all essential for f variables is denoted by $\operatorname{Ess}(f)$ and the set of all fictive variables - Fic (f).

Proposition 1. For the Boolean function $f \in F(n)$ if $x_{i} \in E s s(f)$ then there exists at least one node labeled with x_{i} in it $R O B D D$ regardless to the given variable ordering π.

If the variable is fictive for the function f, then there is no any node labeled with it in $R O B D D$ regardless to the given variable ordering.

Definition 4. If $f \in F(n), n \geq 1$ and $\emptyset \neq M \subseteq \operatorname{Ess}(f), N \subseteq \operatorname{Ess}(f), M \cap N=\emptyset$, then we say that the set N is separable for f w.r.t. M, i.e. if for the variables from M there exist values such that when replacing them by constants, then the new subfunction g obtained from f satisfies $N \subseteq E s s(g)$. This is denoted by $N \in \operatorname{Sep}(f, M)$.

Definition 5. For the Boolean function f we say that the set $M(M \subseteq \operatorname{Ess}(f))$ is separable for f, if M is separable for f w.r.t. Ess $(f) \backslash M$. We denote this by $\bar{M} \in \operatorname{Sep}(f)$.

By separable pair we mean separable set with cardinality equal to 2 .
Definition 6. Let M and N be two non-empty sets of essential variables for the Boolean function $f \in F(n)$ and $N=\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$. Then the set N is distributor for variables in M if for any boolean values $c_{i_{1}}, \ldots, c_{i_{s}}$ of variables in N

$$
M \nsubseteq \operatorname{Ess}\left(f\left(x_{i_{1}}=c_{i_{1}}, \ldots, x_{i_{s}}=c_{i_{s}}\right)\right)
$$

holds true and N is minimal w.r.t. this property.
We denote the set of all distributors of M for f with $\operatorname{Ann}(M, f)$.
Theorem 1. Let $f \in F(n),|E s s(f)|=n$ and $N \in \operatorname{Ann}(M, f)$, where $N \subset E s s(f)$, $M \subset E s s(f)$ and $N \cap M=\emptyset$. For any variable ordering π, where $\forall x_{i} \in N, \forall x_{j} \in M$ $x_{i}<_{\pi} x_{j}$ holds that in any of $\pi-R O B D D$ there is no path containing all variables from M.

Proof. From Definition 6 it follows that $M \cap \operatorname{Fic}\left(f\left(x_{s_{1}}=c_{s_{1}}, \ldots, x_{s_{k}}=c_{s_{k}}\right)\right) \neq \emptyset$.
Let us assume that there is a path from the root of π-ROBDD to the terminal node containing nodes labeled with all variables from the set M.

Since the path actually represents a given assignment of variables at some point, we reach node labeled with $x_{s_{j}}$, where $x_{s_{j}} \in M \cap \operatorname{Fic}\left(f\left(x_{s_{1}}=c_{s_{1}}, \ldots, x_{s_{k}}=x_{s_{k}}\right)\right)$. Then outgoing edges from node labeled with $x_{s_{j}}$ point one and the same next node. This means that we are able to apply reduction rule S which contradicts to the assumption that the π-OBDD is reduced.

Corollary 1. If for the Boolean function $f \in F(n),|E s s(f)|=n$ and the variables x_{i} and x_{j} do not form separable pair, then there exists variable ordering π, such that for $\pi-R O B D D$ of f there is no path containing both variables x_{i} and x_{j}.

Corollary 2. If $f \in F(3),|E s s(f)|=n$ and $\left\{x_{1}\right\}=\operatorname{Ann}\left(\left\{x_{2}, x_{3}\right\}, f\right)$, then the minimal ROBDD is obtained for variable ordering π such that $x_{1}<_{\pi} x_{2}$ and $x_{1}<_{\pi} x_{3}$.

The number of different subfunctions that continue to depend essentially on variables reflects on the OBDD complexity. Decision Diagrams complexity is expressed by the number of non-terminal nodes. Connection between number of subfunctions that depend essentially on a given variable and non-terminal nodes labeled with that variable was shown by D. Sieling and I. Wegener in [5].

Lemma 1 ([5]). Let S_{i} be the set of subfunctions $f\left(x_{1}=c_{1}, \ldots, x_{i-1}=c_{i-1}\right)$ that essentially depend on x_{i} and where $c_{1}, \ldots, c_{i-1} \in\{0,1\}$. $A \pi-R O B D D$ for f according to the variable ordering $x_{1}<_{\pi} x_{2}<_{\pi} \cdots<_{\pi} x_{n}$ contains exactly $\left|S_{i}\right|$ nodes labeled by x_{i}.

In a search of connection between distributor sets and complexity the following proposition can be stated.

Proposition 2. Let $f \in F(n),|E s s(f)|=n$ and $\left\{x_{1}\right\}=\operatorname{Ann}\left(\left\{x_{2}, \ldots, x_{n}\right\}, f\right)$. If S be the set of all subfunctions of f with respect to the variable $x_{k} \in\left\{x_{2}, \ldots, x_{n}\right\}$ that depend essentially on x_{1}, then it holds that $|S|>1$.

Proof. Subfunctions $f\left(x_{i_{1}}=c_{j_{1}}, x_{i_{2}}=c_{j_{2}}, \ldots, x_{i_{k}}=c_{j_{k}}\right)$ we denote by $f_{i_{1} i_{2} \ldots i_{k}}^{c_{j_{2}} c_{j_{2}} \ldots c_{j_{k}}}$. W.l.o.g. let we get $k=2$, then $f=\overline{x_{2}} f_{2}^{0}+x_{2} f_{2}^{1}$. Since x_{2} is essential for f, it follows that $f_{2}^{0} \neq f_{2}^{1}$.

Let we assume that one of the subfunctions $\left(f_{2}^{0}\right)$ does not depend essentially on x_{1}. Then, $f_{2}^{0}=x_{1} f_{21}^{01}+\overline{x_{1}} f_{21}^{00}$ and $f_{21}^{01}=f_{21}^{00}=f_{21}^{0-}$, i.e. $f_{2}^{0}=f_{21}^{0-}$.

It follows that f can be represented as $f=\overline{x_{2}} f_{21}^{0-}+x_{2} \overline{x_{1}} f_{21}^{10}+x_{2} x_{1} f_{21}^{11}$.
Consequently, if we represent f as decomposition on x_{1}, then

$$
f=\overline{x_{1}}\left(x_{2} f_{21}^{10}+\overline{x_{2}} f_{21}^{0-}\right)+x_{1}\left(x_{2} f_{21}^{11}+\overline{x_{2}} f_{21}^{0-}\right)=\overline{x_{1}} f_{1}^{0}+x_{1} f_{1}^{1}
$$

Since $\left\{x_{1}\right\}=\operatorname{Ann}\left(\left\{x_{2}, \ldots, x_{n}\right\}, f\right)$, one of the subfunctions f_{1}^{0}, f_{1}^{1} does not depend on x_{2}. Without loose of generality we can assume that this is f_{1}^{1}.

Then, from $f_{1}^{1}=x_{1}\left(x_{2} f_{21}^{11}+\overline{x_{2}} f_{21}^{0-}\right)$ and $f_{21}^{11}=f_{21}^{0-}$ it follows that

$$
f=\overline{x_{1}}\left(x_{2} f_{21}^{10}+\overline{x_{2}} f_{21}^{11}\right)+x_{1}\left(f_{21}^{11}\right)=\overline{x_{1}} f_{1}^{0}+x_{1} f_{1}^{1} .
$$

Since x_{1} is distributor it must "distribute" variables between subfunctions. This means if $x_{2} \in E s s\left(f_{1}^{1}\right)$, then $x_{2} \notin E s s\left(f_{1}^{0}\right)$. From here it follows that $f_{21}^{10}=f_{21}^{11}$, i.e. $f=\overline{x_{2}} f_{21}^{0-}+x_{2} f_{21}^{10}$ which means that $x_{1} \notin E s s(f)$.

REFERENCES

[1] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35/8, (1986), 677--691.
[2] I. Damyanov, Sl. Shtrakov. Essential inputs and minimal tree automata. Discrete mathematics and applications, (2002), 77-85.
[3] Sl. Shtrakov. Dominating and Anuling Sets of Variables for the Functions. Blagoevgrad, 1987.
[4] Sl. Shtrakov, K. Denecke. Essential Variables and Separable Sets in Universal Algebra. Multiple-Valued Logic, An International Journal 8/2, (2002), 165-181.
[5] D. Sieling, I. Wegener. Reduction of OBDDs in Linear Time. Information Processing Letters 48, (1993), 139--144.
[6] Ю. Я. БрейтБарт. О существенных переменных функций алгебры логики. Доклады АН СССР, 172, (1967), 9-10.
[7] Й. Д. ДЕнев. Върху едно обобщение на понятието подфункция. Математика и математическо образование, 4 (1978), 98-104.
[8] K. Чимев. Върху зависимостта на функциите от P_{k} от аргументите им. Год. на ВТУЗ, 4-3, (1967), 5-13.

Ivo Damyanov
Department of Computer Sciences
South-West University "Neofit Rilski
66, Ivan Michailov Str.
2700 Blagoevgrad, Bulgaria
e-mail: damianov@swu.bg

ВЪРХУ НЯКОИ СВОЙСТВА НА БУЛЕВИТЕ ФУНКЦИИ И ТЕХНИТЕ ДИАГРАМИ ЗА ДВОИЧНО РЕШАВАНЕ

Иво Й. Дамянов

Манипулирането на булеви функции е основно за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 68R01, 68R10, 68U07.
 Key words: decision diagrams, essential variables, separable sets.

