
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2011

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 5–9, 2011

ON SOME PROPERTIES OF BOOLEAN FUNCTIONS AND

THEIR BINARY DECISION DIAGRAMS*

Ivo Damyanov

Boolean functions manipulation is an essential component of computer science, in-
cluding logic optimization, logic verification and logic synthesis. In this paper some
initial results about dependency of the graph based presentation of the Boolean func-
tions and the properties of their variables are obtained.

1. Introduction. The synthesis of Decision Diagrams and the theory of essential
variables and separable sets of variables are two fields of the theoretical computer science
which have been intensively (but separately) developed during the last decades.

Let B be two-element set, B = {0, 1}. A Boolean function of n variables {x1, x2, . . . , xn}
is a function f(x) : B

n → B, where x = [x1, . . . , xn] denotes its arguments. The set of
all Boolean functions f(x) : B

n → B, is denoted by F [x1, . . . , xn], or by F (n) if variables
are not being considered.

The function f(x1, . . . , xn) can be decomposed with respect to (w.r.t.) variable xi

using Shannon expansion [7] such as:

(1) f(x1, . . . , xn) = xif1 ⊕ xif2.

The functions f1 := f(xi = 0) ∈ F (n − 1) and f2 := f(xi = 1) ∈ F (n − 1) are called
subfunctions of f(x1, . . . , xn).

Various representations of Boolean functions in theory and practice are used, including
truth-table, formulae, binary decision trees, etc. In practice, Ordered Binary Decision
Diagrams (OBDD) are considered to be the state of the art in data structures for Boolean
functions. The OBDD minimization problem is one of the deeply studied since OBDD
was introduced by R. Bryant [1].

Definition 1. Let π be a total order on the set of variables x1, . . . , xn. An Ordered
Binary Decision Diagram (OBDD) with respect to the variable order π (π-OBDD) is a
directed acyclic graph with exactly one root which satisfies the following properties:

• There are exactly two nodes without outgoing edges. These two nodes are labeled
by the constants 1 and 0, respectively, and are called terminal nodes.

• Each non-terminal node is labeled by a variable xi, and has two outgoing edges,
which are labeled by 1 and 0, respectively. These edges are called 1-edge (represented
by solid line in the graph) and 0-edge (dashed line).
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• The order, in which the variables appear in a graph’s path, is consistent with the
variable order π, i.e., for each edge leading from node xi to node xj holds that
xi <π xj .

Definition 2. An OBDD with root node v denotes a function fv, defined recursively
as:

(1) If v is a terminal node, then fv = val(v), where val(v) ∈ {0, 1}.

(2) If v is a non-terminal node labeled with xi, then

fv(x1, . . . , xn) = xif(xi = 0) + xif(xi = 1).
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Fig. 1. OBDD for f = xif0 + xifi

A path in an OBDD is a sequence of connected nodes starting from the root of the
OBDD and ending with a terminal node. The arguments associated with all nodes in
the path form a product term.

The function represented by an OBDD is the sum of the product terms associated
with all paths ending with the 1 terminal node.

Because compact representation is important two reduction rules are introduced.

k

k

k

k

? ?

? k

k

k

?

?

PPPPq

Type I
-

	 R 	 R 	 R 	 R

v v v

^?� �

k

k

?

k

Type S
-

	 R 	

?

v

v′

v′

R

?

Fig. 2. Reduction Rules

OBDD with applied all possible reductions is called Reduced OBDD (ROBDD) and in
[1] R. Bryant shows that ROBDD forms canonical representation of the Boolean function
with respect to the given variable ordering π (π−ROBDD).

2. Main result. The complexity of the Boolean functions is affected by properties
of their essential (supporting) variables. Some main results about that properties were
obtained by J. Breitbart [6], K. Chimev [8], Sl. Shtrakov [3] and others. The properties
of essential variables were studied also for Universal algebra by Shtrakov and Denecke
[4] and for Tree automata by Damyanov and Shtrakov [2].
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Definition 3. The function f(x1, . . . , xn) ∈ F (n) depends essentially on xi (1 ≤ i ≤
n), if two n−tuples

(a1, . . . , ai−1, a, ai+1, . . . , an) and (a1, . . . , ai−1, b, ai+1, . . . , an)

exist, such that

f(a1, . . . , ai−1, a, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

In other words, the variable xi is essential for f ∈ F (n) if f(xi = 1) 6= f(xi = 0).

When the variable xi is not essential, it is called fictive.

The set of all essential for f variables is denoted by Ess(f) and the set of all fictive
variables – Fic(f).

Proposition 1. For the Boolean function f ∈ F (n) if xi ∈ Ess(f) then there exists
at least one node labeled with xi in it ROBDD regardless to the given variable ordering
π.

If the variable is fictive for the function f , then there is no any node labeled with it
in ROBDD regardless to the given variable ordering.

Definition 4. If f ∈ F (n), n ≥ 1 and ∅ 6= M ⊆ Ess(f), N ⊆ Ess(f), M ∩ N = ∅,
then we say that the set N is separable for f w.r.t. M , i.e. if for the variables from M

there exist values such that when replacing them by constants, then the new subfunction
g obtained from f satisfies N ⊆ Ess(g). This is denoted by N ∈ Sep(f, M).

Definition 5. For the Boolean function f we say that the set M (M ⊆ Ess(f)) is
separable for f, if M is separable for f w.r.t. Ess(f)\M . We denote this by M ∈ Sep(f).

By separable pair we mean separable set with cardinality equal to 2.

Definition 6. Let M and N be two non-empty sets of essential variables for the
Boolean function f ∈ F (n) and N = {xi1 , . . . , xis

}. Then the set N is distributor for
variables in M if for any boolean values ci1 , . . . , cis

of variables in N

M 6⊆ Ess(f(xi1 = ci1 , . . . , xis
= cis

))

holds true and N is minimal w.r.t. this property.

We denote the set of all distributors of M for f with Ann(M, f).

Theorem 1. Let f ∈ F (n), |Ess(f)| = n and N ∈ Ann(M, f), where N ⊂ Ess(f),
M ⊂ Ess(f) and N ∩ M = ∅. For any variable ordering π, where ∀xi ∈ N, ∀xj ∈ M

xi <π xj holds that in any of π-ROBDD there is no path containing all variables from
M .

Proof. From Definition 6 it follows that M ∩ Fic(f(xs1
= cs1

, . . . , xsk
= csk

)) 6= ∅.

Let us assume that there is a path from the root of π-ROBDD to the terminal node
containing nodes labeled with all variables from the set M .

Since the path actually represents a given assignment of variables at some point, we
reach node labeled with xsj

, where xsj
∈ M ∩ Fic(f(xs1

= cs1
, . . . , xsk

= xsk
)). Then

outgoing edges from node labeled with xsj
point one and the same next node. This

means that we are able to apply reduction rule S which contradicts to the assumption
that the π-OBDD is reduced. �
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Corollary 1. If for the Boolean function f ∈ F (n), |Ess(f)| = n and the variables
xi and xj do not form separable pair, then there exists variable ordering π, such that for
π-ROBDD of f there is no path containing both variables xi and xj.

Corollary 2. If f ∈ F (3), |Ess(f)| = n and {x1} = Ann({x2, x3}, f), then the mini-
mal ROBDD is obtained for variable ordering π such that x1 <π x2 and x1 <π x3.

The number of different subfunctions that continue to depend essentially on variables
reflects on the OBDD complexity. Decision Diagrams complexity is expressed by the
number of non-terminal nodes. Connection between number of subfunctions that depend
essentially on a given variable and non-terminal nodes labeled with that variable was
shown by D. Sieling and I. Wegener in [5].

Lemma 1 ([5]). Let Si be the set of subfunctions f(x1 = c1, . . . , xi−1 = ci−1) that
essentially depend on xi and where c1, . . . , ci−1 ∈ {0, 1}. A π-ROBDD for f according
to the variable ordering x1 <π x2 <π · · · <π xn contains exactly |Si| nodes labeled by xi.

In a search of connection between distributor sets and complexity the following propo-
sition can be stated.

Proposition 2. Let f ∈ F (n), |Ess(f)| = n and {x1} = Ann({x2, . . . , xn}, f). If
S be the set of all subfunctions of f with respect to the variable xk ∈ {x2, . . . , xn} that
depend essentially on x1, then it holds that |S| > 1.

Proof. Subfunctions f(xi1 = cj1 , xi2 = cj2 , . . . , xik
= cjk

) we denote by f
cj1

cj2
...cjk

i1i2...ik
.

W.l.o.g. let we get k = 2, then f = x2f
0
2 + x2f

1
2 . Since x2 is essential for f , it follows

that f0
2 6= f1

2 .
Let we assume that one of the subfunctions (f0

2 ) does not depend essentially on x1.
Then, f0

2 = x1f
01
21 + x1f

00
21 and f01

21 = f00
21 = f0−

21 , i.e. f0
2 = f0−

21 .
It follows that f can be represented as f = x2f

0−
21 + x2x1f

10
21 + x2x1f

11
21 .

Consequently, if we represent f as decomposition on x1, then

f = x1(x2f
10
21 + x2f

0−
21 ) + x1(x2f

11
21 + x2f

0−
21 ) = x1f

0
1 + x1f

1
1 .

Since {x1} = Ann({x2, . . . , xn}, f), one of the subfunctions f0
1 , f1

1 does not depend
on x2. Without loose of generality we can assume that this is f1

1 .
Then, from f1

1 = x1(x2f
11
21 + x2f

0−
21 ) and f11

21 = f0−
21 it follows that

f = x1(x2f
10
21 + x2f

11
21 ) + x1(f

11
21 ) = x1f

0
1 + x1f

1
1 .

Since x1 is distributor it must “distribute” variables between subfunctions. This
means if x2 ∈ Ess(f1

1 ), then x2 6∈ Ess(f0
1 ). From here it follows that f10

21 = f11
21 , i.e.

f = x2f
0−
21 + x2f

10
21 which means that x1 6∈ Ess(f). �
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ВЪРХУ НЯКОИ СВОЙСТВА НА БУЛЕВИТЕ ФУНКЦИИ И
ТЕХНИТЕ ДИАГРАМИ ЗА ДВОИЧНО РЕШАВАНЕ

Иво Й. Дамянов

Манипулирането на булеви функции е основнo за теоретичната информатика, в
това число логическата оптимизация, валидирането и синтеза на схеми. В тази
статия се разглеждат някои първоначални резултати относно връзката между
граф-базираното представяне на булевите функции и свойствата на техните про-
менливи.
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