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The cylindrical Couette flow of a rarefied gas is studied in the case of both rotat-
ing cylinders with equal velocities but with opposite direction. The purpose of this
study is to determine the influence of small speeds on macro-characteristics — p, V', T'.
The numerical results are obtained using the Direct Simulation Monte Carlo (DSMC)
method and numerical solution of Navier-Stokes equations for relatively small (sub-
sonic) speeds. The results obtained by both methods are in an excellent agreement
for a small Knudsen number Kn = 0.02. It was found that there was “fixed” point
for density and velocity. These results are important for applications in non-planar
microfluidic problems.

1. Introduction. Fluid transport in micro and macro channels yields the necessity
to study flow in a cylindrical coordinate system. Note that Couette cylindrical flow is a
fundamental problem in the rarefied gas dynamics [1, 6, 9, 10, 11, 12, 13, 15]. As such,
its modeling and numerical solving is of a great importance for the microfluidics, which
is the theoretical background for analysis of new emerging Micro Electro Mechanical
Systems MEMS [2, 3, 14].

The design of adequate mathematical models of gaseous flows in micro devices is one
of the most important tasks of the studies. We consider both molecular and continuum
models treating the gaseous flow by using different level of mathematical description.
Both models take into account the specific microfluidic effects of gas rarefaction and
slip-velocity regime at the solid boundaries.

In the present paper we compare results obtained by using the molecular Direct
Simulation Monte Carlo (DSMC) method with those produced by a numerical solution
of the continuum Navier-Stokes equations for compressible flow (NS) [7, 8].

Both methods are used to model the cylindrical Couette flow for Knudsen number
0.02, 0.06, 0.1. Cylinder velocities are relative small (subsonic) with the same value but
with opposite directions. The aim of the present paper is to study the gas conduction in
the gape depending on the variety subsonic velocity boundary conditions and to establish
the field of matching decisions in the two methods in terms of number of Knudsen and
cylinder velocities.
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2. Formulation of the problem and methods of solution. We study a rarefied
gas flow between two coaxial cylinders (one dimensional, axis-symmetrical problem) with
equal temperatures 77 = T5. The inner cylinder has radius R; and the outer — Ro. The
outer cylinder rotates with a constant velocity Vo and the inner one — with constant
velocity V;. Figure 1 shows a three-dimensional version, but the real studies are one-
dimensional along axis 7.

Fig. 1. Flow geometry

3. Continuous Model and Numerical Simulation. The continuous model is
based on the Navier-Stokes equations for compressible fluid, completed with the equations
of continuity and energy transport. The governing equations are written as follows:
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where V is the velocity vector, u and v are the velocity components along axis r and ¢.
A rather standard notation is used in Eqs (1)—(5): p is density and T is the temperature.
p, P, T, u, v=f(rt). 7, are the stress tensor components and & is the dissipation
function [16]. For a perfect monatomic gas, the viscosity and the coefficient heat transfer
read as [13]:

5
(6) p=p(T) = CuploVoVT.  Cu= 15/

15
(7) A=A (T) = CapoloVoVT, C\ = 3—2ﬁ

The above written equations are normalized by using the following scales: for density,
po = mng (m — is the molecular mass, ny — the average number density), for velocity
Vo = V2R1y — R is the gas constant, for length — the distance between the cylinders
L = Ry — Ry, for time tg = L/V}, for temperature Ty = Ty, — the wall temperature of
both cylinders. The Knudsen number is Kn = [yL, where the mean free path is [, and
v=cp/cy =5/3 (cp and cy. are the heat capacities at constant pressure and constant
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volume respectively). In this way in the dimensionless model the characteristic number
Kn and the constants C), and C) take part. After the scaling, the same symbols for the
dimensionless r, t, p, P, T, u, v and R; are used.

For the problem (1)—(4), first-order slip boundary conditions are imposed at both
walls, which can be written directly in dimensionless form as follows [14, 15]:

v w
1.1466Kn [ =% — ) = 4,
(8) vF 66 n(@r r> v
(9) u=0,
T _
(10) T+ 2.1904Kn66— =1,
r

at r = R;, i=1, 2. In Egs. (8)-(10) v; = V;/Vp and T; = Ty;/Tp = 1 are the dimension-
less wall velocity and temperature for both cylinders. The equations of transfer (1)—(4),
together with the boundary conditions (8)—(10), and zero initial distributions for u,v
and T, formulate the initial unsteady state boundary-value problem. A second order of
approximation, implicit finite difference scheme to solve numerically the formulated prob-
lem is used [17]. Thus the difference value problem, for a given time ¢ is reduced to the
solution of 4 linearized systems of M algebraic equations. The obtained algebraic system
has a diagonal and weakly filled matrix. Due to the problem non-linearity, additionally
an internal iteration process is used.

4. Direct Simulation Monte Carlo (DSMC) Method. The gas considered is
simulated as a stochastic system of N particles [4, 5]. All quantities used are non-
dimensional, so that the mean free path at equilibrium is equal to 1. The basic steps of
simulation are as follows:

A. The time interval [0; ﬂ over which the solution is found, is subdivided into subin-
tervals with step At.
B. The space domain is subdivided into cells with sides Az, Ar. For one-dimensional
problem along the axis z is one cell, (z is the axial direction on Fig. 1).
C. Gas molecules are simulated in gap G using a stochastic system of N points (par-
ticles) having position z; (¢), r; (t) and velocities fz—(t))
D. N,, particles are located in the m-th cell at any given time. This number varies
during the computer simulation by the following two stages:
Stage 1. Binary collisions in each cell are calculated, whereas particles do not move.
Collision modeling is realized using Bird’s scheme “no time counter”.
Stage 2. Particles move with new initial velocities acquired after collisions, and no
external forces act on particles. No collisions are accounted for at this stage.
E. Stage 1 and Stage 2 are repeated until ¢ = £.
F. Flow macro-characteristics (density, velocity, temperature) are calculated as time-
averaged when steady regime is attained.
G. Boundary conditions are diffusive over the cylinders and periodical along axis Oy.

All magnitudes used are non-dimensional so that the mean free path in equilibrium
state is equal to 1. The modeling particles number for DSMC method is 4000000.

5. Numerical results. We study the fife typical cases of rarefied gas between rotat-
ing cylinder:

Case 1: ‘/1 = 01, ‘/2 = —0.1, T1 =T2 = 1, R1 = 17 R2 = 2,
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Fig. 2. Density profile in the cases 1, 3, 5 and

Kn=0.02
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Fig. 4. Temperature profile in the cases 1, 3, 5 and 6
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Case 2: ‘/1 = 02, ‘/2 = —0.2, T1 =T2 = 1, R1 = 17 R2 = 2,

Case 3: ‘/1 = 03, ‘/2 = —0.3, T1 =T2 = 1, R1 = 17 R2 = 2,

Case 4: ‘/1 = 04, ‘/2 = —0.4, T1 =T2 = 1, R1 = 17 R2 = 2,

Case 5: V1 =05, Vo=—-05,T1 =15 =1, Ry =1, Ry = 2;

Case 6: V1 =0.2, Vo = —-04,Ty =15 =1, Ry = 1000, R, = 1001
for Kn=0.02, 0.06, 0.01.

The results obtained by both methods are: in an excellent agreement at a small
Knudsen number Kn = 0.02 — Figure 2A, 3A and 4A and Kn = 0.06; in a satisfactory
agreement at 0.1 — Figure 2B, 3B and 4B. The flow character is maintained at increasing
the Knudsen number while the differences are in the macro-characteristics value. Very
good matching results are calculated for velocities less than 0.3 and for all studied values
of Knudsen number.

Planar case is studied to determine the curvature influence on the flow macro-cha-
racteristics — Figure 2A, 3A and 4A. Planar case is studied only for Kn = 0.02 because
there the two methods show very good match.

There is a “fixed” point for density and velocity in all cases investigated in a fixed
number of Knudsen — Figure 2 and 3. “Stationary” point for the density is 1, and the
velocity is 0. This value for the studied cases have the same coordinate r. Typical of this
point is that with increasing number of Kn, r coordinate decreases (closer to the inner
cylinder). This fact can be used in MEMS designing.
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CPABHUTEJIEH AHAJIN3 HA BJINAHWUETO
HA CPEIIYIIOJIO2KHO B'bPTAINNV CE HWNJINH/ 1PN
3A TEYHEHVE HA KYET 3A PABPE/IEH T'A3

ITersp TI'ocnoauuos, Jdobpu Jdaukos, Banagumup Pycunos,
Credan Credanon

Ucnensano e nuauHpuaHO Tedenne Ha Kyer Ha pa3pejieH ra3 B ciydasi Ha BbpTeHE
Ha JIBa KOAKCHAJHU IUJINHIbPA C €JHAKBU IO TOJIEMUHA CKOPOCTH, HO B pa3IUYHU
rocoku. Ilesra Ha M3caeaBaHETO € Jia Ce YCTAHOBU BJIMSIHMETO Ha MAJIKU CKOPOCTH Ha
BbpPTEHE BbPXY MaKpoxapakTepuctukure — p, V, . Huciienure pe3ynraru ca mosyde-
Hu upe3 u3noszBane Ha DSMC u yncieno pernienre Ha ypasHeHusita Ha Hasue-CTokc
32 OTHOCHUTEIHO MaJIKU (JJ03BYKOBH) CKOPOCTH Ha BbPTEHE. YCTAHOBEHO € J06PO ChB-
IajJieHue Ha pe3yJITAaTHTe IOJIydeHU 1o asaTa MeToma 3a Kn = 0.02. YcranoseHO e,
4Je ChINECTBYBa ‘‘CTallMOHApHA’ TOYKa 3a IJIBTHOCTTa M CKopocTTa. Ilomyuenure pe-
3yJITATH Ca BaXXHU MPU PellaBaHeTO Ha HEPABHUHM, 3aJ1a9d OT MUKPOMJIIYHUIUKATA C
oTunTaHe Ha ePEKTUTE HA KPUBUHATA.

Kuarouosun mymm: Mexanuka Ha duayuaure, Kunernuna rteopusi, Paspenen ras,
DSMC
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