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TROUGH THE MENISCUS PROFILE*

Stanimir Iliev, Nina Pesheva

We present here a real time hybrid experimental/numerical method for determination
of the macroscopic dynamic contact angle which the liquid meniscus forms with a
withdrawing/immersing at constant speed vertical solid plate partially immersed in
a thank of liquid when the system is in a stationary state. This method is based
on the full hydrodynamic model of Voinov. It allows one to obtain numerically with
high precision the stationary shape of the dynamic meniscus profile (and from there
the angle of the meniscus slope) using as boundary condition the experimentally
determined meniscus height.

1. Introduction. There are many studies in the literature devoted to the de-
finition and measurement of the dynamic contact angle (DCA). This is important for
many natural processes and industrial applications. The capillary rise on a vertical plate
(capillary rise method (CRM)) is a nice means to obtain the dynamic contact angles
[1] for small capillary numbers by measurement of the height, h, of the meniscus on a
partially immersed plate. It uses the relation between h and the contact angle known
from the static case, i.e. it is a static approximation method. In previous studies for the
determination of the DCA in the macroscopic region, also the method of matching [2, 3]
was used for obtaining the asymptotic solutions in the viscous region – in close proximity
of the contact line, and for the static-like region – sufficiently away from the contact
line. This method does not take into account the characteristic for the moving vertical
plate presence of a intermediate region (or else viscous/gravitation region) between the
viscous and the static-like regions in which both, the viscous pressure and the gravitation
pressure, are of comparable magnitude [4]. Unfortunately, asymptotic solutions are not
available for this intermediate region. However, one can obtain numerically with high
precision a solution for the dynamic meniscus profile using the full Voinov’s equation [5]
and this can help to improve significantly the accuracy of the determination of DCA.

2. Problem formulation. We consider a liquid of density ρ and dynamic viscosity
η in an open vessel. The linear sizes of the container are considered sufficiently big as
compared to the capillary length lc (lc = (γ/ρg)1/2, g is the gravity acceleration, γ is the
liquid/air surface tension). A partially immersed in the liquid bath vertical homogeneous
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solid plate is moving vertically with constant speed U as shown in Fig. 1. We assume
that a stationary state of the system is established at fixed constant speed U of the
moving plate. Due to the homogeneity of the plate, the problem of studying the liquid
meniscus S reduces to the study in Cartesian coordinate system shown in Fig.1 of the
2D projection ∂S = {X, Z(X)} of the meniscus in the (X, Z)-plane, where Z (∞) = 0.
We denote by H = Z(X) the height of the meniscus at distance X to the vertical plate.

Fig. 1. Schematic drawing of the considered
system and a typical flow field

Fig. 2. Height Z of the meniscus as function
of the distance X to the withdrawing plate

The DCA is defined as the angle of the slope of the meniscus profile ∂S at the top
of the meniscus next to the solid wall. The so defined contact angle is not unique and
depends on the distance X to the moving plate at which it is determined: θ = θ (X). In
stationary regime at distances to the plate X > Xmin, Z(X) is described by the following
equation [5]:

(1) γ
d2Z

/

dX2

(1 + dZ/dX)3/2
= ph + pv; ph = ρgZ; pv =

−2ηU sin2 θ (X)

X(θ (X) − sin θ (X) cos θ (X))
,

where θ (X) = arcctg (−dZ/dX), ph is the gravitational pressure, pv is the viscous pres-
sure term. Xmin is determined by the assumptions for the applicability of the equation
(1). We present here solutions for distances to the plate down to Xmin = 10−6 mm [5].
When X ≪ 1, from Eq. 1 one can obtain Cox-Voinov’s law (CVL)

(2) θ3 (X) = θ3 (Xi) − 9Uη/γ ln (X/Xi) ,

where θ (Xi) is the angle at some other distance Xi. When pv can be neglected (static
case) Eq. (1) has analytic solution, and the following relations hold:

(3) Z (X) = (2 − 2 sin θ (X))1/2 , θ (X) = arcsin
(

1 − Z2 (V )
/

2
)

.

Until now, the relations (3) (the static approximation – CRM) were used for the
determination of the dynamic contact angle.

Let the height H0 of the meniscus at distance to the plate X0 is measured experi-
mentally Z (X0) = H0. Our goal here is to obtain a numerical solution for the meniscus
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profile Z(X) of Eq. (1) in the interval [Xmin, 30lc], such that:

(4) Z (X0) = H0, |Z (30lc)| < 10−6lc.

First, we find numerically a solution Z(X) in the interval [X0, 30lc] of Eq. (1) subject
to the boundary conditions (4). Using this solution we obtain the angle θ0 = θ (X0) This
condition allows one to obtain the solution of Eq. (1) at distances to the plate [Xmin, X0)
smaller than X0. For the numerical determination of the meniscus profile we apply the
Runge-Kutta algorithm. For solving Eq. (1) for distances to the plate X ≥ X0 this
method is modified for solving ordinary differential equations with Dirichlet boundary
conditions. For the realization of the Runge-Kutta algorithm we use the subroutine
RKF45 given in Ref. [6].

3. Results. We will demonstrate the effectiveness of the suggested procedure for
the system studied experimentally in [3] – a withdrawing plate and meniscus in rise.
For the example we use the experimentally obtained profiles of the dynamic meniscus
shown in Fig. 8d in Ref. [3] for the silicon oil with viscosity η = 50 mPa·s and density
ρ = 970 kg/m3 and the highest plate speed 1.2 mm/s. For convenience the same data
are reproduced here in the interval [10 µm, 0.5 mm] in Fig. 2 with empty triangles.

A. Dynamic meniscus profile. Taking into account that in the experiment in Ref.
[3] the resolution of the images is 20 µm, we take first as X0 the center of the first
pixel, i.e., X0 = 10 µm. The numerically obtained solution of the full Eq. (1) with
boundary condition Z (X0) = 1.548 mm at X0 = 10 µm is shown with a solid line in
Fig. 2. The numerical analysis shows that all the solutions of the full Eq. (1) using
as boundary conditions Z(X0) where X0 varies in the whole interval [10 µm, 0.5 mm]
shown in Fig. 2 agree very well with the experimental results. For comparison, also
the static approximation solution (CRM) for the meniscus profile is shown in Fig. 2
with a dashed line. We obtain here this solution numerically using the same numerical
algorithm as for the dynamic meniscus profile, but we set pv = 0 in Eq. (1). One can
see that the dynamic numerical solution of Eq. (1) (when the viscous pressure term is
taken into account) agrees much better with the experimental data as compared to the
numerical static approximation solution (CRM). This good agreement is the basis for
the more accurate determination of the dynamic contact angle.

As explained in Section 2, one can find the dynamic meniscus profile and the angle of
the meniscus slope at distances to the plate smaller than the experimentally observed.
For the analysis and the matching of the solution of Eq. (1) with solutions of the inner
region, it is of interest to find the solution of Eq. (1) up to the distance Xmin. The
numerical solutions for the DMPM and CRM are shown in Fig. 3a in the interval [10−6

mm, 0.01 mm] with solid line and dashed line respectively. Though these solutions look
close to each other in Fig. 2, one can see that the solutions for the dynamic meniscus
(DMPM) and the static approximation (CRM) of the meniscus have a fairly different
behavior in the region closer to the solid plate shown in Fig. 3a and this is reflected in
the quite different values of the DCA they produce – Fig. 3b.

B. Dynamic contact angle. Since the solutions of the full Eq. (1) give a good approx-
imation of the experimental data on the meniscus profile, one can expect that the angle
of the meniscus slope, obtained from these solutions also approximates well the slope
of the experimental meniscus profile. The angles of the meniscus slope in the interval
[10−6 mm, 0.055 mm] are shown in Fig. 3b with a solid line for the dynamic meniscus
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(a) (b)

Fig. 3. (a) The height Z of the meniscus and (b) the angle θ of the meniscus slope as functions
of the distance to the plate in the interval (a) [10−6 mm, 0.01 mm] and (b) [10−6 mm, 0.055
mm]: solid line – the numerical solution of the full Eq. (1) (DMPM); dashed line – the static

approximation solution (CRM)

solution (DMPM) and with a dashed line for the static approximation solution (CRM).
One can see that close to the plate (X < 0.01 mm) the angle which arises from the
dynamic solution increases fast. However, there is an interval ([0.01 mm, 0.055 mm])
where the angle changes slowly and all the angles corresponding to this interval differ
with less than 1◦. The slow variation of the meniscus slope in this relatively big interval
allows one to define unique observable macroscopic dynamic contact angle. We find that
the angle of inclination at a distance X0 = 10 µm to the plate is 33◦ (the averaged angle
in the interval [10 µm, 40 µm] is 32.8◦). These angles are very close to the angle of 32.6◦

obtained from the fitting of the first few points of the experimental profile with a line,
which is an analog of the Tangent line method [3]. The values of the DCA, which follow
from the DMPM differ significantly from the value obtained by the static approximation
solution (CRM) for the meniscus profile leading to a difference of 5◦. The CRM gives an
angle of 27.87◦ at X0 = 10 µm, known in the literature as apparent [7] DCA. That is, in
close proximity of the plate, the static approximation (CRM) underestimates the angle
of the slope as compared to the value which follows from the dynamic meniscus solution
obtained by taking into account the viscous pressure term.

We have shown above why it is preferable to use the DMPM over the static approxi-
mation method (CRM) for determining the DCA. Now we show also that it is better to
use the DMPM instead of the method of matching [3] of the viscous asymptotic solution
(2) (CVL) with the static approximation solution (3) (derived for the “gravitation” re-
gion far away from the contact line) especially when one wants to obtain the DCA in the
intermediate region which is usually used to define the DCA. Note, the static approxi-
mation solution in the gravitation region is another variant of the static approximation
for the meniscus profile different from the CRM. It is obtained again from Eq. (1) (ne-
glecting the viscous pressure term pv) and assuming that at distance far away from the
plate (e.g., at lc) the height of the static solution coincides with the height of the solution
of the full Eq. (1) (DMPM). This static approximation solution is termed in Ref. [3] as
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“Fitting the whole profile”(FWP).

One can determine the regions of applicability (for determination of the meniscus
slope) of the viscous approximation solution and the static approximation solution (FWP)
by comparing them with the solution of the full Eq. (1) (DMPM). It is very informative
to compare the magnitudes of the gravitational pressure ph and the viscous pressure term
pv which are obtained when solving the full Eq. (1).

Fig. 4a. Magnitudes of the gravita-
tional pressure |ph| – solid line; and the
viscous pressure |pv| – dashed line as
functions of the distance to the plate x

in the interval [10−6 mm, 1 mm]

Fig. 4b. Angle of the meniscus slope as
function of the distance to the plate in
the interval [10−6 mm, 0.3 mm], solid
line – DMPM; dashed line – viscous
approximation – Eq. (2) (CVL), dot-
ted line – static approximation solution

(FWP)

The behavior of the two terms, ph and −pv, are shown in Fig. 4a as functions of
the distance to the plate in the interval [10−6 mm, 1 mm]. At distance X = 0.002 mm,
−pv is 10 times bigger than ph. For smaller distances to the plate the ratio −pv/ph

increases very fast. At the other end of the interval shown, i.e., at X = 1 mm, ph

dominates and it is approximately 46 times bigger than −pv. This shows that indeed
very close to the plate one can use CVL and far away from the plate one can use the
static approximation for the meniscus profile (FWP). The angle of the meniscus slope
as function of the distance to the plate is shown in Fig. 4b in the interval [10−6 mm,
0.3 mm], DMPM is shown with solid line, CVL with dashed line and FWP with dotted
line. The CVL is obtained from Eq. (2) by assuming that at X = 10−6 mm the angle of
the meniscus slope coincides with the angle of the meniscus slope of the solution of the
full Eq. (1) at the same distance. The static approximation solution (FWP) is obtained
assuming that at distance lc to the plate the height of the static solution coincides with
the height of the dynamic solution of the full Eq. (1). However, as one can see from
Fig. 4b, the angle of this solution at X0 = 10 µm is 23.2◦ (extrapolated DCA) while the
solution of the DMPM at the same distance has an angle of 33◦. The CVL differs from
the solution of the DMPM with no more than 0.5◦ up to X = 1 µm and the FWP differs
from the solution of the full Eq. (1) with no more than 0.5◦ down to X = 0.69 mm.
This means that the viscous approximation is a good approximation while in Eq. (1) the
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magnitude of the gravitation term is less than 5% from the viscous pressure term. The
static approximation (FWP) of the meniscus profile and of the meniscus slope is a good
approximation while the magnitude of the viscous pressure term is less than 2% of the
magnitude of the gravitation term. Therefore, it remains an interval, i.e., [1 µm,0.69 mm]
where the asymptotic solutions do not approximate so well the solution of the full Eq. (1).
Thus in this case one has three distinct regions: a viscous region, a viscous/gravitation
region and a gravitational region. The above analysis shows why it is preferable to use
the DMPM over the method of matching of the approximate solutions.
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[3] M. Maleki, E. Reyssat, D. Quéré, R. Golestanian. On the Landau-Levich Transition.
Langmuir, 23 (2007), 10116–10122.
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ОПРЕДЕЛЯНЕ НА ДИНАМИЧНИЯ КОНТАКТЕН ЪГЪЛ ЧРЕЗ

ПРОФИЛА НА МЕНИСКУСА

Станимир Д. Илиев, Нина Хр. Пешева

Представен е хибриден експериментално-числен метод, работещ в реално време,
за определяне на макроскопичния динамичен контактен ъгъл, който менискусът
на течност в съд формира с вертикална пластина, която се потапя или издър-
пва с постоянна скорост от съда с течността. Този метод е приложим, когато
системата е в стационарно състояние. Методът се базира на пълния хидродина-
мичен модел на Войнов. Той позволява да се получи числено с висока точност
стационарната форма на профила на динамичния менискус (и от там ъгълът на
наклон на менискуса) като се използва като гранично условие експериментално
определената височина на менискуса на пластината.
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