
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2011

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 5–9, 2011

LOSS OF ACCURACY IN NUMERICAL COMPUTATIONS*

Mihail M. Konstantinov, Petko H. Petkov

In this tutorial paper we consider possible catastrophic effects of improper use of
finite machine arithmetic. Unfortunately, this topic is not well understood even by
students in applied and computational mathematics. The situation in engineering
and economic specialities is by no means better. To overcome this educational gap
we describe the main reasons for loss of accuracy in numerical computer calculations.
We hope that the results presented will help both students and lecturers to under-
stand better and avoid the main factors that may destroy the accuracy in computer
calculations. The latter is serious – numerical catastrophes sometimes yield real ones,
with large damages and human casualties.

Introduction. In this paper we consider some major reasons for loss of accuracy in
numerical computations. We restrict ourselves to the real case although most results are
directly applicable to computations with complex quantities (MATLAB for example uses
complex arithmetics). Often the loss of accuracy may be the result of current or past
effects of rounding of numerical data when Finite Machine Arithmetic (FMA) is used.
However, even exact computations with uncertain data may be contaminated with large
errors. The reasons for such effects must be carefully analyzed and measures to avoid
them are to be taken.

The numerical examples given below are prepared using the computer system
MATLAB1, see e.g. [8].

Elements of FMA. A FMA consists of a finite set of machine numbers M ⊂ R

together with the rules for performing operations in M, including the rules for trans-
forming (or rounding) real into machine numbers. The set M contains 0 and is sym-
metric relative to R. It depends on four parameters: the base b (usually b = 2 or
b = 10), the integer precision p > 1 and the largest and smallest allowable exponents
emax and emin. Each machine number m 6= 0 has a normal representation ±s× be, where
s = d0.d1 . . . dp−1 =

∑p−1

k=0 dkb−k is the significand (or mantissa), e ∈ [emin, emax] is the
exponent of m and 1 ≤ d0 ≤ b − 1, 0 ≤ dj ≤ b − 1, j = 1, . . . , p − 1.

In FMA a number x ∈ R is rounded to the nearest machine number x∗ ∈ M and x∗ = x
if and only if x ∈ M. If x is in the middle between two consecutive machine numbers,
then it is rounded to the machine number with an even (zero in binary floating-point

*2000 Mathematics Subject Classification: Primary 97N20.

Key words: accuracy, numerical computations, computational catastrophes.
1MATLAB c© is a trademark of MathWorks, Inc.

293



FMA) least significant digit dp−1 in s, see [9, 1]. Directed roundings toward 0, +∞ and
−∞ are also used when interval algorithms are implemented but this subject is beyond
the topic of the present tutorial paper.

We shall consider the binary floating point FMA of MATLAB which obeys the IEEE
standard [4, 5], see also [2, 3]. It is characterized by three important positive numbers,
namely

rmax = 21024 ≃ 1.7977× 10308,

rmin = 2−1022 ≃ 2.2251 × 10−308,

urnd = 2−53 ≃ 1.1102× 10−16.

They may be recovered in MATLAB by the commands realmax, realmin and eps/2.
The number urnd is said to be the rounding unit of the FMA.

A number x ∈ R is in the standard range of FMA if either x = 0, or |x| ∈ [rmin, rmax].
In this case x is rounded to the nearest machine number x∗ ∈ M (with the rule to break
ties described above) so that 0∗ = 0 and

(1)
|x∗ − x|

|x| ≤ urnd, x 6= 0.

Thus numbers from the standard range are rounded with small relative error of order
10−16, i.e. with 15-16 true decimal digits.

Suppose now that ⋄ is an arithmetic operation and that the non-zero quantities x, y
and x⋄y are in the standard range of FMA. Let (x⋄y)∗ ∈ M be the result of the machine
computation of x⋄ y. Then according to the Main Hypothesis of FMA with a guard digit
we have

(2) (x ⋄ y)∗ = (x ⋄ y)(1 + α),

where |α| is a small multiple of urnd.
What happens with numbers x ∈ R that are outside the standard range of FMA?

There are four possible cases. The story is interesting and not very well known. Denote

δ = rminurnd = 2−1075 ≃ 4.9407× 10−324, ∆ = rmaxurnd/2 = 2970 ≃ 9.9792× 10291

and recall that MATLAB uses the special symbol Inf to denote +∞. It corresponds to
the IEEE arithmetic representation for positive infinity [4, 5].

• If |x| ≥ rmax + ∆ then x∗ = ± Inf depending on the sign of x and the relative
rounding error is formally ∞.

• If |x| ∈ (rmax, rmax + ∆) then x∗ = ± rmax depending on the sign of x and the
relative rounding error does not exceed urnd/2.

• If |x| ∈ (δ, rmin) then x is rounded to a non-zero quantity but the rule (1) is no
more valid.

• If |x| ≤ δ then x∗ = 0 and (1) is violated since the relative rounding error is now
equal to 1.

Over- and underflows. It follows from the previous section that two major
accuracy killers are the overflow |x| ≥ rmax + ∆ with x∗ = ± Inf and relative error ∞,

294



and the underflow 0 < |x| ≤ δ with x∗ = 0 and relative error 1. Until recently computer
programs simply used to stop when overflow occurred (some of them are still doing so).
The famous division by zero may also be interpreted as an overflow. However, MATLAB
admits division by zero without stopping the computations. For example the commands
1/0 and -2/0 give Inf and -Inf respectively.

In MATLAB according to the IEEE standards the symbol NaN (from Not a Number)
denotes mathematically undefined quantities, e.g. Inf-Inf = NaN, Inf/Inf = NaN, 0/0
= NaN, 1^Inf = NaN. Note however that Inf^0 = 1.

Loss of exact left–most digits in subtraction. This phenomenon is known
as cancellation or even catastrophic cancellation in view of the destructive effect it may
have on the accuracy. This main accuracy killer in computer calculations arises when
close positive numbers, say x > y > 0, are subtracted and the information coded in
their left-most digits is lost. However, the effects and the nature of cancellation are
often underestimated and/or misunderstood. The reason for loss of accuracy is not the
error done in the machine subtraction (x − y)∗ itself (when guard digit is used, see [1]).
Moreover, when x < 2y (which is usually the case) and x, y ∈ M, then the machine
subtraction is exact, i.e. (x − y)∗ = x − y.

Suppose that x = d0.d1 . . . dn−1ξ and y = d0.d1 . . . dn−1η are two machine numbers in
a b–base FMA, where the first n digits in the significands are true whilst the digits ξ > η ≥
0 are uncertain. If we subtract these very exact numbers the result x− y = (ξ − η)b−n−1

will contain no true significant digit! Note that no errors during the subtraction have
been made.

It may be observed that in school and even in some university courses the solution of
the quadratic equation AX2 + BX + C = 0, A 6= 0, is represented as

x1,2 =
−B ±

√
B2 − 4AC

2A
.

Due to roundings and possible cancellations, this is probably the worst way to solve the
equation in FMA.

Another instructive example of cancellation (known in the past as a test to evalu-
ate the rounding unit) is computing the quantity (1 - 3*(4/3 - 1))/eps. The exact
answer is 0 but the computed result is 1!

Loss of exact right–most digits in summation. In some cases a loss of dis-
tant true right-most digits may occur with catastrophic consequences similar to these
described in the previous section. This accuracy killer arises when positive numbers x,
y of very different size are added. Here all digits to the left of the cancelled ones should
be exact. The right–most digits are cancelled due to rounding. If x > y and y/x ≪ 1
then in the computed sum (x + y)∗ (being itself rounded with small relative error of
order urnd) the information about y may be partially or completely lost. In particular,
if y/x ≤ urnd then (x + y)∗ = x∗ and no trace of y remains in the computed sum. This
may be dangerous.

Consider the following (obviously bad but possible) algorithm for computing the Euler
constant e ≃ 2.7183 . . . , based on the well known expression

e = lim
h→+0

eh, eh := (1 + h)
1/h

.

295



Omitting the details, there exists an optimal value h0 ≃ u
1/2

rnd for h such that the com-

puted e∗h0
is true with the least possible relative error of order u

1/2

rnd. This is not a
coincidence: usually the relative step in computational processes such as computing nu-

merically derivatives and solving numerically ODE’s, is of order u
1/2

rnd. Accordingly, the
overall relative error is at best of the same order. Attempts to reduce the step may result
in a catastrophe.

What happens when h decreases below h0? The results is a blow up of the relative
error |e∗h−e|/e which, for h ≤ urnd, reaches 0.6321 since for this value of h the computed
e∗h is equal to 1. The reason is that the quantity 1 + h is rounded to 1 and the whole
information coded in h disappeared.

Another simple example is the computation of the expression y given by the command
y = (1 + x*eps/2 - 1)/(x*eps/2) for x ∈ (0, 2). Instead of the correct answer y = 1
the computed result is y∗ = 0 for x ∈ (0, 1] and y∗ = 2/x for x ∈ (1, 2). The reason is
that (1 + z)∗ = 1 for z ∈ (0, eps/2] and (1 + z)∗ = 1 + eps for z ∈ (eps/2, eps).

Also very interesting is the computation of the expressions

y1 =
(1 + x)2 − 1 − 2x

x2
, y2 =

(1 + x)2 − (1 + 2x)

x2

for small x > 0. Of course, y1 = y2 = 1. But in FMA y1 6= y2 and both y1, y2 may
be quite different from 1. It is useful to make these computations with x close to 10−8

with both binary and non-binary values. Now at least some of the students will be
slightly surprised and ready to do their own experiments in order to “cheat” the FMA
of MATLAB.

High sensitivity of computational problems. Any numerical computational
problem (including an infinitely dimensional one) may be formulated as a function eval-
uation x = f(a), where the data a and the result x are elements of finite-dimensional
spaces. Consider for simplicity the case when both a and x are non-zero scalars and the
function f is differentiable. Then we have an inevitable error in the function evaluation
which may be estimated as follows.

In general a /∈ M and, hence, we may only compute f(a∗), where a∗ is the rounded
value of a, i.e. a∗ = a(1 + δa), where |δa| ≤ urnd. Even if there are no errors in the
computation of f(a∗) (a very rare idealistic case!), then within first order terms in urnd

we have f(a∗) = f(a) + f ′(a)aδa and, hence,

|f(a∗) − f(a)|
|f(a)| ≤ urnd K, K :=

|a| |f ′(a)|
|f(a)| .

The constant K = K(f, a) is the relative condition number of the computational problem
x = f(a) and is a measure of its sensitivity. If urnd K < 1 (otherwise there may be no
true digits in the computed result f(a∗)) then we may expect about − lg(urnd K) true
decimal digits in the computed solution.

A large value of K is an indicator for possible loss of accuracy. Thus we identify the
following three potential accuracy killers when solving computational problems in FMA:
large arguments, large derivatives of the evaluated function and small function values.
The first one may eventually be neutralized by scaling and shifting of the argument.
Examples of evaluation of simple trigonometric functions (such as sine and cosine) with
large arguments clearly demonstrate the above conclusions.

296



An instructive observation here is that the catastrophic cancellation in subtraction of
close positive numbers in the implementation of a computational algorithm also leads to
small intermediate results.

Large intermediate results. When large intermediate results occur in the imple-
mentation of a computational algorithm and the final result is small then large relative
errors in the computed solution should be expected. A classical example here is the
improper computation of the exponential x = e−a for a > 0 by truncation of the Taylor
series for this function in the neighborhood of a = 0, namely

x = e−a ≃
n∑

k=0

(−1)kak

k!
.

Computing e−a in this disastrous way may lead to very large intermediate terms com-
puted with large absolute errors. This may produce large relative error in the computed
result for exp(−a). In this case the large intermediate results are combined with subtrac-
tive cancellations (disasters rarely come alone). If we insist to compute the exponential
by Taylor series we should at least first find y = ea and then determine x as 1/y.

Improper use of residuals in solving equations. Consider the problem of
solving the (generally non-linear) equation f(x) = 0, where x ∈ R

n and f : R
n → R

n is
a given continuous function. Suppose that there is a solution x0 ∈ R

n, i.e. f(x0) = 0.
One approach to solve the equation is to minimize the scalar expression (the residual)
F (x) = ‖f(x)‖ since F (x) ≥ 0 and F (x) = 0 if and only if f(x) = 0.

Usually to find x0 exactly is impossible and we look for an approximation ξ such that
‖ξ−x0‖ is of order urnd. This may also mean that F (ξ) is of order urnd as well. But if we
have two approximations ξ1 and ξ2 then which one to choose? Can we use the residuals
Fk = F (ξk) for this purpose?

Two facts, namely that the function F : R
n → R+ is continuous and that F (x0) = 0

had contributed to the creation of the next harmful and (unfortunately!) wide spread
misconception.

Myth about residuals. If F2 < F1 then approximation ξ2 should be better than ξ1 in
the sense that ‖ξ − ξ2‖ < ‖ξ − ξ1‖.

This is a wrong receipt with potentially disastrous consequences. The only case when
this assertion is always true is for scalar affine functions f , i.e. for trivial equations. The
myth obviously fails for non-linear scalar and vector equations, see [7]. But it also fails
for linear vector equations Ax = b with A ∈ R

n×n invertible for all n > 1. It is easy to
find an example in which A(t) ∈ R

2×2 depends on a small parameter t > 0, the solution
x0 = A−1(t)b does not depend on t and there are two vectors ξ1(t), ξ2 ∈ R

2 such that

‖ξ1(t) − x0‖ = t‖ξ2 − x0‖, ‖A(t)ξ2 − b‖ = t‖A(t)ξ1(t) − b‖.
Thus for t → 0 the accuracy test based on residua is completely misleading. As may be
expected, here the condition number ‖A(t)‖ ‖A−1(t)‖ of A(t) tends to ∞ as t → 0.

So there is a paradox with this myth about residuals. It may be working properly
for well conditioned linear equations when the solution is computed with high accuracy
and no check is needed. And it may be severely misleading when the equation is ill
conditioned and an accuracy check is necessary.

297



Inappropriate decomposition of computational problems. Let a computa-
tional problem x = f(a) be decomposed as f = f1 ◦ f2 ◦ · · · ◦ fn, where some of the
functions fk is very sensitive while the original one is not. Then this is an inappropriate
decomposition which may destroy the accuracy of the computed result. The mastership
of the numerical analyst is to detect and avoid such decompositions.

Consider for example the problem of finding some (or all) of the eigenvalues of the
square matrix A. For many years in the past the method was first to compute the
coefficients of the characteristic polynomial pA(λ) = det(λI − A) of A and then apply
some of the (sometimes very sophisticated) numerical algorithms for solving algebraic
equations. The above two subproblems (to determine the coefficients of pA(λ) and to
solve the equation pA(λ) = 0) may be very sensitive even if the eigenvalues of A are not
so sensitive relative to perturbations in the elements of A. This may lead to unnecessary
large errors in the computed eigenvalues.

The modern approach to find the eigenvalues is to apply the QR algorithm for reduc-
tion of A into its upper triangular Schur form S by unitary similarity transformations [2].
Then the eigenvalues of A are the diagonal elements of S. But this is not the end of the
story. If for some reason we have to solve numerically an algebraic equation p(λ) = 0 we
no more use the sophisticated algorithms from the past. Rather, we construct the accom-
panying matrix H of p such that pH(λ) = p(λ) and apply the QR algorithm to find the
eigenvalues of H . Thus the paradigm of spectral calculations has been radically reversed
– an interesting fact that has not yet obtained the necessary treatment in textbooks.

Conclusions. In this tutorial paper we disclose the main accuracy killers in com-
puter calculations performed in floating-point FMA. In order of appearance they are: 1.
Over– and underflows, 2. Loss of left-most true digits, 3. Loss of right-most true digits, 4.
High sensitivity in function evaluation (incl. 4.1. Large argument, 4.2. Large derivative

of the evaluated function and 4.3. Small function value), 5. Intermediate results which

are large compared to the final result, 6. Improper use of residuals in solving linear and

non-linear finite equations and 7. Inappropriate decomposition of computational prob-

lems. Only taking into account these and other possible destroyers of accuracy in the
computed result, one may develop reliable numerical procedures in FMA.

The action of these factors is easily demonstrated by simple examples realized in
MATLAB environment.

REFERENCES

[1] D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Comp. Surveys, 23 (1991), No 1, 5–48,
http://www.validlab.com/goldberg/paper.pdf.

[2] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2002.

[3] N. Higham, M. Konstantinov, V. Mehrmann, P. Petkov. The sensitivity of compu-
tational control problems. IEEE Control Systems Magazine, 24 (2004), 28–43 (PDF text
available at http://ieeexplore.ieee.org).

[4] IEEE Standards for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985,
IEEE, New York, 1985 [Repr. in SIGPLAN Not., 22 (1987), No 2, 9–25].

298



[5] IEEE Standard for Floating-Point Arithmetic 754-2008, IEEE, New York, 2008, ISBN
978-0-7381-5753-5,
http://ieeexplore.ieee.org/ xpl/mostRecentIssue.jsp?punumber=4610933

[6] M. Konstantinov, P. Petkov. Effects of finite arithmetic in numerical computations. In:
Topics Contemp. Diff. Geometry, Complex Anal. and Math. Physics. World Sci., Singapore,
2007, 146–157.

[7] M. Konstantinov, P. Petkov, Z. Gancheva. Thirteen myths in numerical analysis.
Math. and Education in Math., 34 (2005), 237–242.

[8] C. Moler. Numerical Computing with MATLAB. The MathWorks, Inc., 2004 (PDF text
available at http://www.mathworks.com/moler).

[9] J. Reiser, D. Knuth. Evaluating the drift in floating-point addition. Inform. Proc. Lett.,
3 (1975), No 3, 84–87.

Mihail M. Konstantinov
Department of Mathematics
University of Architecture, Civil Engineering and Geodesy
1046 Sofia, Bulgaria
e-mail: mmk fte@uacg.bg

Petko H. Petkov
Department of Automatics
Technical University of Sofia
1756 Sofia, Bulgaria
e-mail: php@tu-sofia.bg

ЗАГУБА НА ТОЧНОСТ В ЧИСЛЕНИТЕ ПРЕСМЯТАНИЯ

Михаил М. Константинов, Петко Х. Петков

Разгледани са възможните катастрофални ефекти от неправилното използване

на крайна машинна аритметика с плаваща точка. За съжаление, тази тема не

винаги се разбира достатъчно добре от студентите по приложна и изчислителна

математика, като положението в инженерните и икономическите специалности в

никакъв случай не е по-добро. За преодоляване на този образователен пропуск

тук сме разгледали главните виновници за загубата на точност при числените

компютърни пресмятания. Надяваме се, че представените резултати ще помог-

нат на студентите и лекторите за по-добро разбиране и съответно за избягване

на основните фактори, които могат да разрушат точността при компютърни-

те числени пресмятания. Последното не е маловажно – числените катастрофи

понякога стават истински, с големи щети и човешки жертви.

299


