MATEMATUKA U MATEMATUHECKO OBPA3OBAHWE, 2011
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011
Proceedings of the Fortieth Jubilee Spring Conference

of the Union of Bulgarian Mathematicians
Borovetz, April 5-9, 2011

A SOFTWARE PLATFORM FOR TEACHING
PROGRAMMING WITH GRADING SYSTEMS®

Krassimir Manev, Miloslav Sredkov, Petar Armyanov

Grading systems (GS) are inevitable component of the programming contests. Re-
cently some projects are developed for using GS in education of programming. This
paper describes a software platform aimed to integrate different GS created or used
by the authors in order to provide simple and efficient environment for supporting
the educational process. The main elements of the platform extracted in preliminary
analysis are listed and one possible architecture of a platform is specified.

1. Introduction. The usage of computing systems (computers and corresponding
software) in modern education is inevitable — for preparing and distributing teaching
materials, for searching the necessary for elaborating of assignments information, for
examination, for maintaining the contact among the teacher and students, and for other
educational activities. These usages of computing systems are universal, i.e. intrinsic for
all educational subjects.

There are more possibilities for using computing system for a teaching Informatics ad
especially for teaching programming and algorithms. The extracurricular activity that
is closest to teaching programming and algorithms is the competitive programming.

Programming contests have more than 30 years of history [1,2]. That is why a huge
amount of resources — tasks, test cases, methodology, software tools, etc. — are created
by organizers of programming contests. Among the software tools for organization of
programming contest the most important are grading systems (GS) aimed to collect and
evaluate contestants’ solutions. Description of the functionality of GS and examples of
such systems are given in [3].

Recently some attempts was made to adapt GS for teaching programming in uni-
versities as well as in secondary schools [4]. In [5] the challenges that education of
programmers put in front of the teachers was outlined and for each challenge was shown
how GS could help.

In this paper we present the fundamentals for development of a software platform
for teaching programming and algorithms based on the existing GS. In Section 2 pro-
gramming contests and GS are presented. In Section 3 the challenges of education in
programming, outlined in [5], are listed. Section 4 describes the elements of a software

*2000 Mathematics Subject Classification: 68N99.
Key words: education in programming, programming contests, grading systems.
This work is partly supported by Scientific Research Fund of Sofia University under the Contract
247/2010.

300

platform for education in programming and algorithms. In Section 5 one possible archi-
tecture of such platform is given and in Section 6 — some conclusions are shared.

2. Programming contests and grading systems. 2.1. Programming con-
tests. In 1977 the Association of Computing Machinery starts its Collegiate Program-
ming Contest for students in the American universities. Nowadays the ACM ICPC is
a world contest [1]. The first contests for school students in Bulgaria were organized in
the early 80-th of the past century. In May 1989, Bulgaria organized and hosted the
First International Olympiad in Informatics (IOI) for school students [2]. Recently, dif-
ferent programming contests are organized by some professional organizations ([6, 7]).
Many web sites propose a continuous on-line training process with competitive ele-
ments ([8-11]).

During a programming contest contestants have to solve one or more tasks. The
statement of the task usually contains an object with given properties called input. Con-
testants have to write a program, called solution of the task, which is able for a given
(but unknown by contestants) input, to find a new object— called output, that has to be in
prescribed relations with the input. The main features of the solution that are evaluated
are its correctness and time complexity. The correctness of the program is checked with
prepared by the author test cases. The speed of the programs is controlled by a specific
for each task time limit. If a task allows more than one correct output the correctness of
the output is checked by a special program called checker.

2.2. Grading systems. Checking of correctness and speed of computer programs
is a complex set of activities. From the end of 80’s and beginning of 90’s years of the
past century specific software systems called grading systems (GS) were introduced to
help evaluation of programming contests. Nowadays GS are inevitable part of the pro-
gramming contests and training sites. They incorporate all elements that are necessary
for organizing the contest — tasks statements, time limits, test cases, expected outputs,
checkers, contestants’ programs, results of evaluation, etc.

GS receives submitted by contestants programs, compile them, run them on the input
test cases, check the result and assign scores in accordance with defined in the system
evaluation policy. Two styles of evaluation are popular — positive score is assigned only
when all test passed successfully (ICPC-style) or scores are assigned separately for each
successfully passed test (IOI-style). Depending on the policy GS could inform the con-
testant for her/his results immediately after solution submit (ICPC) or after the end of
the contest (I01).

In Bulgaria three GS are in active use nowadays:

SMOC is the GS used in all national programming competitions for school students
[12]. Starting as a modification of GS of 101’2002, now SMOC is completely rewritten.
It was used in organization of four international contests (including I0I'2009) and many
on-lines. The main advantage of SMOC is the safety evaluation process and the precise
time measurement developed in cooperation with the Technical Committee of IOI. It is
closely coupled with IOI-like contests and does not support an archive of used tasks.

spoj0 is a GS designed to work continuously and to run several contests in ICPC-style
at a time [13]. It was used for organizing internal contests, exams, and homework as-
signments in several university courses. The system contains collection of tasks, archived
in groups as they were proposed for training, homework or examination contests. The
system has an exporter for plagiarism checkers. spojO uses only tools of the operating

301

system to provide secure execution and has no precise time measuring. System adminis-
tration is performed by command line scripts on the hosting machine and is not easy for
not experienced users.

Maycamp Arena is a site dedicated especially to training and organizing on-line
programming contests [14]. The GS of the site is a cloning of spoj0, maintaining an
evaluation in IOI-style. Archived tasks are classified by the domain of the used algorithm.
Very important feature of Maycamp Arena is the collection of statistical data about
performance of contestants and hardness of the tasks.

3. Challenges of teaching programming. Analyzing in [5] the education in pro-
gramming and algorithms, in order to identify how GS could help the process, we outlined
the following main challenges:

3.1. Preparing samples and etudes is really hard even for experienced teachers.
A huge amount of programming etudes could be taken from archives of programming
contests. For this purpose the archived tasks have to be appropriately classified by
domain and hardness, and the solutions — by their effectiveness. Above mentioned GS
have some elements of the necessary functionality but they are not developed enough.

3.2. Checking large amount of assignments is the greatest challenge for the
teacher. To read the program code and to understand the idea of the program is quite
difficult. And here is the greatest advantage of using GS. They are able to check au-
tomatically assignments, to evaluate them and to produce the corresponding reports
within a minute.

3.3. Depending on the stage of the educational process, different kind of evalu-
ations should be applied. For exercises in class it will be helpful for the student to
receive from the system the inputs and the correct output too, in order to debug the
program. When the student is not able to solve the task then GS could provide a trivial
solution and recommend more easy tasks to be solved as a preparation, etc.

3.4. Evaluation of students manually is very rough — usually the teacher assigns
and checks 2-3 home works and 1-2 quizzes that cover part of the material. Using GS,
teachers could check practically each of the studied topics, providing more flexible and
adequate grading.

3.5. Despite the efforts of the teachers, the plagiarism still exists in education.
Embedding in GS a tool for discovering of plagiarism is a possibility to eliminate this
negative phenomenon.

4. Elements of the platform. The main element of the platform is the Task. One
attempt to formalize the presentation of competitive tasks was described in [15]. We are
giving an alternative formalization below:

Task { ID; Domain; Kind; Evaluation;
Formulation { Statement;Input format; Output format;
Constraints; Example; Illustration; Explanation; }

}

Solutions {

Solution { Source; Explanation; Complexity; }

}
Test set { Time limit; Checker;
Test cases {

302

Test case { Input; Output; Auxiliary; Max score; }
Test case { Input; Output; Auxiliary; Max score; }

}
Statistics { ... };

Most of the subelements of the Task are self-explanatory. Possible values of the
Domain are the subjects of the tasks — sorting, searching, graphs, etc. The element Kind
describes the content of the student submit — output only, usual program, main () function
to communicate with module(s) of the author, module(s) to communicate with main ()
function of the author or program fragment. In Evaluation the style of evaluation will
be marked — ICPC-style, I0I-style or not so strong styles (open input, open input and
output, etc.)

The element:

User { ID { Login; Password; } Role;
Personals { Name; Nick; e-mail; ... } Statistics { ... }

}

is for identification of users. Possible roles are Administrator, Teacher and Student.
A person will be able to register in two roles. For example, a Student will be able to
enter as a Teacher, to compose a training assignment and then to enter as a Student
and to try to solve it.

The GS of the platform will be described with the element Grader { ID; Address;
... }. Beside the ID and the address of the server some additional subelements will
be provided depending of GS.

The main activity of the platform will be implemented through the elements:
Contest { ID; User; Date; Start; End; Tasks { Task; ... } }

Submit { ID; Contest; User; Task; Language; Source; Date; Time;}

Grading request { ID; Grader, Submit; Result; }

where Contest.User identifies the Teacher that defined the contest and Submit.User
identifies the Student that sent the Submit

Some other elements will be necessary that could not be specified so strictly, for
example different kind of Reports, Rankings and Statistics.

5. Architecture of the platform. One possible architecture of the platform that
incorporates the existing GS is shown in Figure 1.

The Repository will contain all necessary for the functionality of the platform data —
classified Tasks, registered Users, planned Contests, Submits of the Students, Grading
requests, Statistics, etc. The data will be stored in the Repository through the Web-
based Teacher's/Student's interface, presented with some language for data structuring
(XML, for example). The necessary Reports and Statistics will be extracted from the
Repository and visualized through the Teacher's/Student’s interface, too.

The active component of the platform is the Scheduler. It continuously scans the
list of the stored Contests and Submits. For each actual Submit the Scheduler forms
the corresponding Grading request, sends it to the appropriate Grader and stores the
obtained Result back in the Repository. For the purpose, a specific communication
protocol for each of the existing Graders has to be included in the Scheduler in order

303

Teacher/Student Administrator
T T L
—
Teacher’s/Student’s Administrator’s
interface interface
1L
Y . Scheduler
. 1 4 %
Repository L ¥ L J
[smoc || spojo |[Arena|

Fig. 1. Architecture of the platform

to be able to transform Grading requests from the specified above format to formats
different Graders.

Because of the specific character of administration of the Repository, Scheduler and
Graders, the corresponding functionality is concentrated in the Administrator’s interface.

6. Conclusion. The implementation of the specified platform is in progress and
should be relatively easy. The three mentioned above GS are used in many national and
international contest and proved their quality. Something more, each of these GS has
own scheduler so the Scheduler of the platform could be implemented as an extension
of some of the existing schedulers.

Some parts of the necessary Teacher’s/Student’s interface are also implemented in
the existing GS, as well as the reporting of the Results. But Teacher’s/Student’s
interface of the platform has more functionality which have to be built from scratch.
Unfortunately, existing GS have no Administrator’s interface at all and this interface
has to be built from scratch too.

The most difficult for implementation part of the platform is the implementation of
the Repository — to collect tasks, to classify them and to store them in the specified
format. Hundreds of tasks created for national contests are spread in different places
and are not completely documented. Preparing these tasks for usage within the platform
will need a huge amount of manual work.

The main advantage of proposed platform is the integration of all positive elements
of existing GS. We expect that it will lead to intensification of the teaching process and
preparation of more qualified programmers.

REFERENCES

[1] International Collegiate Programming Contest. http://cm.baylor.edu/welcome.icpc
[2] International Olympiad in Informatics. http://ioinformatics.org
[3] Kr. MaNEV, M. SrREDKOV, Ts. Boapanov. Grading Systems for Competitions in

304

Programming, Mathematics and Education in Mathematics, Proc. of 38-th Spring Con-

ference of UBM, Borovetz, 2009.

P. RiBEIRO, P. GUERREIRO. Early Introduction of Competitive Programming. Olympiads

in Informatics, vol. 2, 149-162, 2008.

Kr. MANEV, M. SREDKOV, Ts. Bogpanov, V. Minov. Grading Systems in Teaching of

Programming, to appear.

Top Coder Competitions. http://www.topcoder.com/tc

Google Code Jam. http://code.google.com/codejam

USACO Training Gateway. http://train.usaco.org/usacogate
UVa Online Judge. http://uva.onlinejudge.org

Timus Online Judge. http://acm.timus.ru/

OrkpuTslit KyOoK 110 IporpaMupoBaHuio. http://opencup.ru/
SMOC grading system. http://openfmi.net/projects/pcms
SPOJO0 grading system. http://judge.openfmi.net

Maycamp Arena. http://arena.maycamp.com

T. VERHOEFF. Programming Task Packages: Peach Exchange Format.

Informatics, 2 (2008), 192-207.

Krassimir Manev

Miloslav Sredkov

Petar Armyanov

Faculty of Mathematics and Informatics
St. Kliment Ohridski University of Sofia
5, J. Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: manev@fmi.uni-sofia.bg

miloslav@gmail.com
parmyanov@fmi.uni-sofia.bg

Olympiads in

COPTVYEPHA IINIAT®OPMA 3A IIPEIIOJIABAHE HA
IMPOTPAMUWPAHE CbC CbCTE3ATEJIHN CUCTEMMUA

Kpacumup Manes, MusiociaB Cpeakos, Ilerbp ApmMsiHoB

Cwcreszarennutre cucremu (CC) ca HE3aMEHUMO CPEJICTBO 338 OPraHU3aIMs Ha ChCTE3a-
Hus 1o nporpamupate. Hamocieabk CC ce m3m013BaT U B 00y IEHIETO IO IPOrPaMU-
pane. B crarusTa e npemyoxkena miargopma, KOATO Ja HHTEIPAPa Bb3MOXKHOCTHTE
ua CC, cb3maleHn WM U3I0I3BaHU OT aBropuTe. llesTa e M3rpak1aHeTo Ha IPOCTa
n edeKTHBHA cpea 3a 00ydeHHe 1o IIporpaMupaHe, MOIIOMAarala yaeOHus MPOIIeC.
Crerpdunnpanu ca OCHOBHUTE eJIeMEHTH Ha IaaTdopMaTa, KaTo pe3yJITaT OT Hpej-

XOJITHO MU3CjleBaHe, U eJiHa HeliHa Bb3MOXKHa apXHUTeKTypa.

305

