MATEMATUKA W MATEMATWHECKO OBGBPA3OBAHWE,
MATHEMATICS AND EDUCATION

2011

IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference
of the Union of Bulgarian Mathematicians
Borovetz, April 5-9, 2011

GENERATION OF TESTING SOURCE CODE FOR
OBJECT-ORIENTED PROGRAMS"®

Krassimir Manev, Anton Zhelyazkov, Stanimir Boychev

This paper presents the implementation of the last stage of a test data generator
for structured testing of software system written in an object-oriented programming
language — the generation of the testing source code. Some details of the implemen-
tation of the other stages that are important for implementation of the last stage are
outlined. The algorithm used for generation of the testing source code is described.

1. Introduction. Automated testing (AT) of software and automated test data
generation (ATDG) have no alternative nowadays. That is why the development of
corresponding efficient AT-tools is an actual task — both for the theory and the practice.

/1 Method Invocdions

Program Angyzer

Control Flow Graph

/I ExternalResources
Path Selector P o
. External Libraries

Data Dependence

TestPaths Path Info

Grapts
Test Data Generator |/l Compound Types
I h Equal References

TestData

I'. Objects Construction
TestingCode Generator
Testing Code

Fig. 1. Constraint solving test data
generator scheme

L(‘ompound Expressios

Being members of a project team developing
a system for smart code analyzing and testing
(SSA, [1]), the authors had to design and im-
plement the ATDG part of the system. Some
experience gained during the implementation
of the ATDG for testing object-oriented pro-
grams is described in this paper. Further we
will use the terminology from the systematic
review of the state of the art in the domain [2].

Because the implemented ATDG is a part
of a system for code analyzing, the struc-
tured (white or transparent box) testing was
used, based on the static analysis of the soft-
ware under testing. Among the different possi-
ble approaches for structured testing the path-
oriented approach [3] with constraints solving
[4] was chosen and among the different possible
levels of testing — testing of a set of modules.

The traditional stages of ATDG for struc-
tured testing are the following (Fig. 1):

*2000 Mathematics Subject Classification: 68N30.
Key words: Automated Test Data Generation, Object-oriented Programs, Testing Source Code

Generation.

This work was partly supported by the Bulgarian National Science Research Fund, Contract

02-102,/2009.
306

Program analysis. At this stage a control flow graph of the program (CFG, [3])
and a data dependence graphs (DDG) for each local variable are constructed;

Paths selection. At this stage a set of paths is chosen, so as to “cover” the CFG of
the program [3], following some testing criteria;

Generation of test data. At this stage a system (conjunction) of constraints is
generated for each of the selected paths, corresponding to the branching conditions along
the path [4]. Then the satisfiability of each conjunction of constraints is checked by
some Sat solver and if the conjunction is satisfied, then an attempt is made to solve
the system of constraints by some of the available constraints solvers. Finally a test
set is constructed. Each of its test cases is a solution of the corresponding system of
constraints.

The target language of the project was Java. That is why, we had to add to the
traditional stages of ATDG one more:

Generation of testing source code. At this stage a Java class for testing the
module is constructed (based on the JUnit technology [5]). The testing class has to
arrange the generated test data in the necessary input objects, to execute the module
under testing on each generated input and to collect the obtained results.

The difficulties that arose during the implementation of the traditional three stages
(shown in Fig. 1 after exclamation signs) were discussed in [6]. In this paper we will
concentrate on the implementation of the forth stage — Generation of the testing source
code. Some steps of our algorithm for generation of the testing code depend on decisions
made on some of the first three stages. That is why, in Section 2 and Section 3 we will
briefly present these issues of the object-oriented programming that influence significantly
developed algorithm. The algorithm itself is presented in Section 4. In Section 5 the
conclusion and the results from some experiments are given.

2. Compound types. One of the main problems arising from the process of test
data generation is that the existing Sat solvers are not able to resolve constraints involving
instances of compound data types — strings, lists, trees, sets, maps, etc. In generation
of test sets for testing object-oriented programs especially big problem is the resolving
of constraints on instances of the input objects. For solving the problem we had to split
each constraint involving such instances to the included elementary data — approach that
we called atomization [6]. Atomization is not an easy and proper solution, because of the
large number of constraints could make the obtained Sat problem enormously large and
practically unsolvable (Sat problem is NP-complete). Something more, if some attributes
of an object are objects too, then we had to apply atomization in depth,which makes
the problem even harder. We will illustrate the typical difficulties that we have met in
generation of instances of compound data types with the following:

Example 1.

int validate(String url,int minLen, String fName)

{
if (fName.length() >= minLen {\&}{\&} url.contains(fName)
&& (url.startswith(’’http://’’) || url.endswith(’’.pdf’’)))
return true;
return false;
}

307

Given the module from the Example 1, we want to generate string variables url, fName
and an integer variable minLen that satisfy the condition of if operator. This condition
should be converted into constraints for the Sat solver. The parts of the condition
that concern different variables cannot be treated separately, because they are mutually
dependent. Following the atomization approach we represent each string by a list of
variables comprising the values of the characters and a variable for the size of the string.

So the variable url.startswith(‘ ‘http://’’) should be transformed to:
url.size > 7 && url[0] == ’h’ && url[1l] == ’t’ && url[2] == ’t’

&& url[3] == ’p’ && url[4] == ’:’> && url([5] == ’/’ && url[6] == */’.

The condition url.endswith(’’.pdf’’) should be treated in the same way demon-
strating one of disadvantages of the atomization approach — the increasing number of
constraints. The atomization of the condition url.contains(fileName) is even more
serious problem.

Similar problems arise not only with string but with any aggregated data type, too.
The discussion of possible solutions is out of the scope of this paper and will be a subject
of future research.

3. Equal references. In object-oriented languages objects are composed of at-
tributes. Each attribute could be an object composed of its own attributes too and so
on. The constraints, which include object-variables, lead to some additional difficulties.
Let us consider the following:

Example 2.
int check(Point a, Point b)

{ if(a ==b)
{ if(a.x > 5 && b.x < 10) return 1;
return 2;
}

return 3;

When we have == constraint on two object-variables (which means that they refer to
the same object), this can lead to some difficulties if we have also constraints that refer
to attributes of these objects. In such case the references to the same attributes of two
objects has to be considered as a same object too. Else we could generate different values
for the same attribute, which is unacceptable (in our Example — value 11 for a.x and
value 4 for b.x).

Suppose a and b are variables that can refer to the same object and ¢y, co, ..., ¢, are
their attributes. Following the atomization approach we have to form the constraint ((a
== b) => (a.c; == b.c; && a.cy == b.cy && ...&% a.c, == b.c,)). The same
had to be recursively applied to the attributes, which are of reference type too. This
could increase enormously the number of constraints.

The simple substitution a—b could be a solution, but only when a == b is not com-
bined with another constraint on the attributes (see again Example 2 but with a condition
a ==Db || a.y > b.y of the outer if). Fortunately, this case could be eliminated at the
analysis stage as a “hidden” branching.

4. Implementation of testing code generator. The part of the object-oriented
ATDG that generates testing source code has to construct series of statements that

308

will create the input variables and will invoke the module under testing. This part was
implemented on the base of the JUnit technology [5]. The solutions of the constraints are
the values of the elementary (atomized) variables. Using these data we have to generate
the statements of the JUnit-code that instantiate the input variables. The input variables
could be of primitive types but could be of reference types and some of its attributes can
reference to other objects too. That is why, when generating the statements of testing
code, the following should be taken into account:

e The order of the generated statements is im-
portant. For example, we have to instantiate first
the object before setting its fields. Or if a field can
be passed only in the constructor of the object, it next data
should have already been instantiated;

e In OOP encapsulation allows hiding some

fields and their initialization/modification can be

first

0

done only through the constructor or a setter next data value name
method. For example, if an attribute is defined
as private it should be modified through a setter

method. In order to create such object we have
to find the proper constructor or setter;

e Some variables can point to the same object Fig. 2. Object representation
and there can be cyclic references (i.e. object A
has an attribute referencing to object B and vice versa).

4.1. Representation of an object. A good way to represent a compound object
is using a directed graph, where each node is an object and its ancestors are the nodes
of its attributes. The class structure from Example 3 is illustrated with the graph from
Fig. 2.

Exampe 3.
class Element { class Data {
private Data data; private int value, String name;
{ this.data = data; } public Data(String name,
public Element (Element next, Data data) int value) {
{ this.data = data; this.next = next; } this.name = name;
public void setNext(Element next) this.value = value; }
{ this.next = next; } }
}

4.2. Creation of the objects. The representation then can be used to generate
the statements that will create an object with such representation. An object can be
initialized using three different methods — with constructor, with invocation of a setter
or with reflection (a Java interface that gives an access to private fields [7]).

The easiest way is to initialize everything using reflection, as it escapes the restrictions
of the encapsulation, but this can create an invalid object. Thus we make an analysis of
the given class constructors and setters and choose the best possibility. Reflection could
be used when we don’t have another way to set a field, because it is not visible to us
(private field).

309

As an example, let us generate an object first of class Element using the following
results received from the constraints solver (Fig. 2):

first is Element; first.data is Data;

second is Element;

first.next = second; first.data.value = 5; first.data.name = ’’£fd4’°’.

In order to generate object first, we should first generate its attributes — next and
data. After analyzing the setters and constructors of the class Element, we see that
the attribute next can be initialized with the setNext method and the attribute data
— with the constructor. The construction of first.data can only be done using the
constructor, setting both its attributes — value and name. As they are primitives, they
need no separate initialization and the generated code is:

Data a_data = new Data(5, ’’a’’);

Element b = new Element(null);

Element a = new Element(a_data);

a.setNext (b);

The process is described as Algorithm 1.

Algorithm 1.

generate (Var) {

if (Var is primitive) {
generate statement to create and initialize V;
return;

}

for (each attribute in Attributes_of_Var) {
generate (attribute);

}

find the best constructor and the attributes that
will be set using setters and reflection;

generate statement to construct the object;

generate setter invocation statements;

generate reflection invocation statements;

}

The above mentioned approach does not handle the case, when two variables have
a reference to the same object or when we have cyclic references. For example, let us
consider the three instances of the class Element that have to satisfy the description
obtained by the constraints solver shown in Fig. 3.

a, b, ¢ is Elment; a.next = b;

b.next = c; c.next = a.

In such case Algorithm 1 will result in infinite recursion, because as it can be seen
on Fig. 3 we have a cycle in the representation graph. In order to escape the cyclic
referencing, we can construct a new graph — statements dependency graph (SDG). Instead
of objects the nodes of the SDG represent the statements that initialize it.

Each node of the SDG is from one of the following types:

e constructor — corresponding to the statement with object initialization through a
constructor;

e assignment — used when more than one variable is referencing the same object;

e setter — setting attribute of an object;

e reflection — setting hidden attribute of an object.

310

@;neﬂ—@ 0 e
data next next data

i ~d_ o e
I adata) [bdata)
\ / \ /

data

O
[c data \
___/

Fig. 3. Cyclic referencing Fig. 4. Statements

dependency graph

Each edge of SDG shows a dependency between two statements, i.e. the edge (v, w)
means that w should be executed before v. We will have edges between the following
nodes:

e between each assignment/setter/reflection node and the constructor node of the
referred attribute;

e between a constructor node and each of the constructor nodes of its parameters.

How to determine when we have dependency between two statements? Before gen-
erating the statement we have the knowledge about the different variables, how they
are constructed and the way they will be set if they are attributes. Denoting with
Var_statement the construction statement of Var we have the Algorithm 2.

Algorithm 2.
//For each variable V invokes this method
build_statements(V)
if (V statements are already built) return;
if (V is comnstructed by constructor) {
build V_statement;
for (each parameter P of V’s comstructor) {
build_statements(P);
add the dependency (V_statement, P_statement)

}

for (each Var to be set with setter) {
build_statements (Var);
build Var’s setter invocation statement Var_SIS;
add the dependency (Var_SIS, Var_statement);
add the dependency (Var_SIS, V_statement);

for (each Var to be set with reflection)
build_statements (Var);
build Var ‘s reflection invocation statement Var_RIS;
add the dependency (Var_RIS, Var_statement);
add the dependency (Var_RIS, V_statement);

}

else // V is constructed with assignment

311

build V’s assignment statement;

let M be the variable that V' is pointing to;
build_statements (M);

add the dependency (V_statement, M_statement);

}
}

As an example let us generate the statements dependency graph of the three instances of
class Element from Fig. 3. The statements that are generated by Algorithm 2 for this example,
listed in the order in which they are generated by the Algorithm and labelled from 1 to 6, are:

1. Element a = new Element(null); 2. a.setNext(b);

3. Element b = new Element(null); 4. b.setNext(c);

5. Element ¢ = new Element(null); 6. c.setNext(a);

The corresponding SDG is shown on Fig. 4. Now for obtaining the order in which the
statements will be included in the testing source code we need to sort topologically the graph.

One possible outcome from the topological sorting is the order: 1, 3, 5, 2, 4, and 6. The
correct sequence of statements that will construct the necessary for the testing object is:

Element a = new Element(null);

Element b = new Element(null);

Element ¢ = new Element(null);

a.setNext(b); b.setNext(c); c.setNext(a);

5. Conclusion. Implementation of a complex software analyzing tool with automated test
data generator for object-oriented programming, as described above, is a big challenge even
when the selected approach (path covering with constraints solving in our case) is relatively well
developed and discussed in the literature. Beside the classical problems of the approach, some
additional problems arise from the usage of objects with compound structure.

Straight forward solutions of the problems, as the mentioned above atomization in depth
are sometime inevitable and usually lead to some of the classical problems of the approach —
a very big system of constraints in our case. Something more, atomization leads to a wvirtual
deconstruction of the considered objects and inevitable process of their reconstruction to real
objects that will be used for testing.

With the proposed algorithm in the paper we succeed to solve (to some extent) the problem
and to implement a working ATDG for testing modules written in Java. In order to estimate
the performance of the implemented ATDG some experiments was conducted with two complex
systems with open source code written in Java (592 classes, 3166 methods and 13034 instructions
in the first, and 92 classes, 809 methods and 4300 instructions in the second, respectively). As
it was recorded by the automated tool for control of the test generation process EclEMMA [12]
we succeed to cover about 80% of the classes, 50 % of the methods and 35% of the lines of the
tested systems in average. This statistics shows that there is still a large field for amelioration
of the chosen approaches and algorithms.

REFERENCES

[1] Smart Source Analyser (SSA). Under development in Musala Soft, Ltd.:
http://www.musala.com

[2] SH. MAHMOOD. A systematic review of automated test data generation techniques, Master
thesis MSE 2007:26, School of Engineering, Blekinge Institute of Technology, Sweden, Oct.
2007.

[3] A. H. WaATsoN, J. T. McCABE. Structured testing: a testing methodology using the

cyclomatic complexity metric, NIST Special Publication 500-235, September, 1996.
312

[4] R. A. DEMILLO, A. J. OFFUTT. Constraints-based automatic test data generation, IEEFE
Trans. on Software Engineering, vol. SE-17, No 9, September 1991, pp. 900-910.

[5] Resources for test driven development: http://www.junit.org/

[6] KR. MANEV, A. ZHELYAZKOV, ST. BOYCHEV. Implementation of an Object-Oriented
Test Data Generator, Proc. of Intern. Conference ov e-Learning and Knowledge Society —
e-Learing’10, Riga, August 2010.

[7] Using Java reflection:
http://java.sun.com/developer/technicalArticles/ALT/Reflection/

[8] A. GOLDBERG, T. C. WaANG, D. ZIMMERMAN. Application of feasible path analysis to
program testing, Proceedings of the 1994 International Symposium on Software Testing,
and Analysis, Seattle WA, August 1994, pp. 80-94.

[9] M. R. GAREY, D. S. JOHNSON. Computers and intractability: a gide to the theory of
NP-completeness, W. H. Freeman and Company, 1979.

Krassimir Manev

Sofia University

Faculty of Mathematics and Informatics
5, J. Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: manev@fmi.uni-sofia.bg

Anton Zhelyazkov

Stanimir Boychev

Musala Soft

36, Dragan Tsankov Blvd

1057 Sofia, Bulgaria

e-mail: anton.zhelyazkov@musala.com
e-mail: stanimir.boychev@musala.com

TEHEPVPAHE HA KOJA HA TECTBAII MOVYJI 3A
OBEKTHO-OPUEHTUWUPAHU ITPOT'PAMU

Kpacumup ManeB, Aaron 2KesnsskoB, Ctanumup Boiiden

B crarusita e mpejscraBeHa mMILIEMEHTAIMSITA Ha TMOCTeqHATa (ha3a HA aBTOMATHU-
YeH MeHEpPATOp Ha TEeCTOBU JIAHHU 3a CTPYKTYPHO TeCTBaHe Ha COMTyep, HAMMCAH HA
00EKTHO-OPMEHTUPAH €3UK 3a IPOrpaMUpaHe — FeHEPUPAHETO Ha M3XOJIEH KOJ Ha TeC-
TBaIys MOAyJ. Hskou jmeraitin OT MMIIJIEMEHTAIUSTA HA OCTaHAJIUTE (ha3w, KOUTO
ca Ba)KHH 3a MMILUIEMEHTAIUsATa Ha IocjeaHaTa ¢dasa, ca npeacraBeHu mbpso. Crer
TOBa € OIMCAH U AJITOPUTHMBT 3a FeHEepHUpaHe Ha KOAA HA TECTBAIIUASA MOJLYJI.

313

