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The present paper is a survey on some results on optimal control of continuous het-
erogeneous systems, which were recently published in periodic journals. A dynamical
system is called heterogeneous if each of its elements has specific dynamics. The
heterogeneity of the systems we consider is described by a one- or two-dimensional
parameter – each element of the system corresponds to a specific value of the para-
meter.
The heterogeneous dynamical systems are used to model processes in economics, epi-
demiology, biology, social security (preventing the use of illicit drugs) etc. Here we
consider models of optimal investment in education at the macroeconomic level [11],
of restricting the damage caused by the spread of HIV [9], of markets for emission
permits [3, 4] and optimal macroeconomic growth with endogenous improvement of
the cutting-edge technologies [1].

1. Introduction. The optimal control of continuous heterogeneous dynamical sys-
tems is under intensive study in the recent years. A dynamical system is called he-
terogeneous if each of its elements has its own dynamics. Typical representatives of
the heterogeneous systems are the age-structured ones. Optimal control problems for
age-structured systems are of interest for many areas of application, as harvesting, birth
control, epidemic disease control and optimal vaccination, illicit drug abuse, investment
economic models, demography, and for a variety of models in the social area (for a quick
overview of the applications the reader is referred to the bibliography in [8]). Many of
the papers on optimal control of age-structured systems present optimality conditions
for particular models, usually in the form of a maximum principle of Pontryagin’s type.
A general maximum principle for nonlinear McKendrick-type systems is obtained in [5].
A number of extensions of the McKendrick and Gurtin-MacCamy [10] models appeared
afterwards, where the existing optimality conditions were not applicable. A nontrivial
extension of the result of Brokate, proved in [8], was able to cope with such situations
and, therefore, found numerous applications, like in [6], [7], [11], [12], etc. The class of the
heterogeneous systems contains also the size-structured systems, the age- and duration-
structured systems, and some other types of systems. A detailed description of various
classes of continuous heterogeneous systems as well as necessary optimality conditions
for optimal control of such systems can be found in [13].
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In the present survey we consider models of optimal investment in education at the
macroeconomic level [11], of restricting the damage caused by the spread of HIV [9], of
markets for emission permits [3, 4] and optimal macroeconomic growth with endogenous
improvement of the cutting-edge technologies [1].

2. Optimal education under changing labor demand and supply. The model
presented in this section, as well as its analysis, is taken from [11]. It is assumed that all
individuals in a given society start working at the same age s = 0 (which corresponds to,
say, 20 years of biological age) and retire at age s = ω. Here t ∈ [0, T ] denotes time, T is
the end of the (presumably large) planning horizon. The heterogeneity in this model is
the moment of “birth” (i.e the moment of entering the work force) t− s, of each worker.
The workers are distinguished also by their skills, considering for simplicity two levels of
qualification: low-skilled and high-skilled workers. The amount of low-skilled workers of
age s at time t is denoted by L(t, s), and similarly, by H(t, s) – the amount of high-skilled
workers resulting from the government’s investment in human capital.

Upgrading of low-skilled workers into high-skilled workers takes place with a rate
l(t, s)u(t, s) + e(s). Here u(t, s) denotes the educational rate at time t for workers of age
s. The function l(t, s) reflects the dependence of the learning abilities of the workers
on time and age, and e(s) represents the learning by doing which depends on the years
spent working. At the same time, due to the technological progress or other reasons,
high-skilled workers of age s may lose their skills with a rate δ(t, s).

Therefore, the equations for the dynamics of the stock of low- and high-skilled workers
are

Lt + Ls = δ(t, s)H(t, s) − e(s)L(t, s) − l(t, s)u(t, s)L(t, s), L(t, 0) = L0(t),

Ht +Hs = −δ(t, s)H(t, s) + e(s)L(t, s) + l(t, s)u(t, s)L(t, s), H(t, 0) = H0(t),

L(0, s), H(0, s) – given initial data.

The left hand side, Lt + Ls = limh→0(L(t + h, s + h) − L(t, s))/h, represents the
change in one unit of time of the low-skilled labor that is of age s at time t. This change
is composed of downgrading high-skilled to low-skilled workers (decay of human capital)
at the rate δ(t, s) and of upgrading low-skilled to high-skilled workers at the rate e(s)
due to costless on the job learning by doing and at the rate l(t, s)u(t, s) due to costly
education. Similarly, the left hand side, Ht + Hs represents the change in one unit of
time of the high-skilled labor. This change is composed of the same components as the
change of the low-skilled labor, but with the opposite sign.

At age s = 0 the number of those who enter the work force at time t is L0(t) for the
low-skilled and H0(t) for the high-skilled. We assume throughout the paper that H0(t) is
for each t relatively small compared with L0(t). This reflects the fact that all but a few
high school graduates enter the work force as low-skilled workers and have to undergo
additional education/training in order to become high-skilled.

We assume also that there is no unemployment and there is no mortality at working
ages, therefore the sum L(t, s) +H(t, s) equals the total working age population, which
is determined by the exogenously given total inflow, N0(t). Thus L0(t) +H0(t) = N0(t).
This allows to exclude the variable H(t, s) from the model and to pass to a single dif-
ferential equation for L(t, s). However, for the purposes of better transparency of the
exposition we work with both equations for L(·, ·) and H(·, ·).

The price of the per capita education u(t, s) is p(s, u(t, s)), where p(·, ·) is a given
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function of (s, u). Therefore, the total cost P (t) of the educational effort for the society
at time t is represented as

P (t) =

∫ ω

0

p(s, u(t, s))L(t, s) ds.

We allow for imperfect substitutability across age groups for both low-skilled and
high-skilled labour. If πL(·) and πH(·) are the respective relative efficiency parameters
(assumed to be fixed over time), then the two sub-aggregates of low-skilled and high-
skilled labour at time t, L̃(t) and H̃(t), are given by the following two CES functions

L̃(t) =

(
∫ ω

0

πL(s)(L(t, s))λ
L ds

)1/λ
L

, H̃(t) =

(
∫ ω

0

πH(s)(H(t, s))λ
H ds

)1/λ
H

.

Here λL ∈ (−∞, 1] and λH ∈ (−∞, 1] give the respective partial elasticity of substitution
1

1 − λi
for i = L,H . In the limit case of perfect substitutability across age groups, λL and

λH are equal to 1 and the aggregate of low-skilled and skilled-labor is simply a weighted
sum of age-specific supply.

We assume that the production technology depends only on the labor. The aggregate
output at time t is given by a CES function of the two sub-aggregates of low-skilled and
high-skilled labor, in which the technological level is represented by the two efficiency
parameters θL(t) and θH(t):

Y (t) =
(

θL(t)(L̃(t))ρ + θH(t)(H̃(t))ρ
)1/ρ

.

Here again ρ ∈ (−∞, 1] gives the partial elasticity of substitution σW =
1

1 − ρ
between

high-skilled and low-skilled labor. Note that the marginal product of labor for a given
age-education group depends on the group’s own supply of labor and the aggregate supply
– of labor in the education category.

The net revenue of the society at time t is the aggregate output Y (t) minus the cost
of education, P (t), i.e. Y (t) − P (t).

The formal problem of a central planner is to maximize the accumulated discounted
net revenue by choosing optimally the educational rate u(t, s). Discounting the future
with a rate r ≥ 0, we come up with the following dynamic optimization problem with
state variables L(t, s), H(t, s), L̃(t), H̃(t) and P (t), and control variable u(t, s):

max

∫ T

0

e−rt

[

(

θL(t)(L̃(t))ρ + θH(t)(H̃(t))ρ
)1/ρ

− P (t)

]

dt(1)

subject to

Lt + Ls = δ(t, s)H(t, s) − e(s)L(t, s) − l(t, s)u(t, s)L(t, s), L(t, 0) = L0(t),(2)

Ht +Hs = −δ(t, s)H(t, s) + e(s)L(t, s) + l(t, s)u(t, s)L(t, s), H(t, 0) = H0(t),(3)

L(0, s), H(0, s) – given initial data,
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L̃(t) =

(
∫ ω

0

πL(s)(L(t, s))λ
L ds

)1/λ
L

,(4)

H̃(t) =

(
∫ ω

0

πH(s)(H(t, s))λ
H ds

)1/λ
H

,(5)

P (t) =

∫ ω

0

p(s, u(t, s))L(t, s) ds,(6)

u(t, s) ≥ 0.(7)

Since our model does not include the education as a separate sector, the control u is
directly interpreted as on-the-job training.

Here we consider the simplest case, in which problem (1)–(7) becomes linear with
respect to the state variables: the case of perfectly substitutable labor across ages and
across qualifications, ρ = λL = λH = 1. In this case we have

Proposition 1 ([11], Proposition 2). The optimal educational rate u(t, s) is inde-

pendent of the initial data L(0, s), H(0, s), and of the low- and high-skilled workers

inflows L0(t) and H0(t). If all data are time-invariant (except for L0(t) and H0(t)), then

u(t, s) = u(s) is also time-invariant in the time-interval [0, T − ω].

The proposition implies, in particular, that a demographic change (represented by
L0(t) andH0(t)) would not have any influence on the optimal educational rate. Moreover,
in the stationary case the end of the time-horizon T may influence the optimal control
no longer than one generation time before the end of the horizon, that is, on [T − ω, T ]
only.

Several papers on optimal education and human capital formation (cf. [2], [14] for
a review of the theoretical literature on optimal life-cycle human capital investment)
assume or conclude that the educational efforts are optimally allocated in youngest ages
and decrease with age. It was established numerically that this is not always true in the
present model, namely, the optimal educational rate u(s) may strictly increase at certain
ages. Below it is analyzed mathematically what is the reason for this effect and some
economic explanations are given. The analysis is presented in the case of time-invariant
data and a quadratic cost function p(u).

Proposition 2 ([11], Proposition 3). Assume that all data (except for L0(t) and

H0(t)) are time-invariant and continuous in s, l(s) = l, p(u) = bu +
c

2
u2. Let there

exist some s for which u(s) > 0 and such that one of the following conditions holds:

(i) d(s) −
b

c
l ≥ 0 & θHπH(s) − θLπL(s) <

b2

2c
;

or (ii) d(s) −
b

c
l < 0 & θHπH(s) − θLπL(s) <

b

l
d(s) −

c

2l2
(d(s))2,

where d(s) = r + δ(s) + e(s). Then there exists s0 ∈ (0, ω) where u is differentiable and

u′(s0) > 0.

The sufficient conditions for non-monotonic behaviour of the optimal educational rate
are fulfilled if
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(i) d(s) = r + δ(s) + e(s) is sufficiently large for some s (larger than bl/c) and f(s) =
θHπH(s) − θLπL(s) is sufficiently small for this s (smaller than b2/2c).
(ii) d(s) is not so large, but f(s) is small enough, now depending on the value of d(s).

In economic terms, an increase of the educational rate with age would happen if for
some age the sum of depreciation (r), dequalification (δ(s)) and “learning by doing”
(e(s)) rates is large relative to the productivity differential f . If in a certain age interval
the productivity differential is small, this may lead to postponement of learning since
in the short run the returns to education are small. The return to education may be
reduced by the fact that people can lose their costly qualification (with rate δ(s)), and
can make use of the costless “learning by doing” (with rate e(s)). In addition, higher
depreciation rate diminishes the role of the length of the time-interval in which the worker
exercises his qualification and therefore increases the chances for non-monotone learning.
We mention that a higher value of δ can be associated with a higher rate of technological
progress. Then, higher technological progress may lead to postponement of learning to
older ages in order to take advantage of the more advanced knowledge.

3. Age- and duration-structured systems. Optimal prevention and treat-

ment of HIV. The model of HIV spread, where prevention and medical treatment are
controls appeared in [9]. Here t ∈ [0, T ] is the time, a ∈ [0, ω] is the age of an individual,
and if the individual is infected, then b ∈ [0, a] is the duration of infection – the time
elapsed since becoming infected (T is the time-horizon (could be +∞), ω is the maximal
length of life). In the present model “mortality due to AIDS” always means “becoming
sexually and economically inactive due to AIDS”, which usually happens somewhat later
than the first symptoms of AIDS. The heterogeneity in this model is described by two
parameters – the moment t − b at which an individual is infected and the age a − b at
which he/she is infected.

The state variables in the model are:
S(t, a) – number of susceptible individuals of age a at time t;
I(t, a, b) – number of individuals of age a at time t, infected b years ago, but still active;
K(t) – weighted number of individuals at time t with weight m(a) (see (12) below);
J(t) – total infectivity at time t. Depends on the part of the infected individuals who

participate in risky interactions, on the intensity, m(a), of their participation, and
on the variable infectivity λ(·) (see (13) below);

B(t) – the inflow of noninfected individuals of age zero (see (11) below);
N(t) – the total number of sexually active individuals (see (14) below).

The equations below hold for t ∈ [0, T ], a ∈ [0, ω], b ∈ [0, a].

St + Sa = −ρ

(

J(t)

K(t)

)

ψS

(

a,
u(t, a)

(N(t))σ

)

m(a)S(t, a) − µ(a)S(t, a),(8)

S(0, a) = S0(a), S(t, 0) = B(t),

It + Ia + Ib = −µ(a)I(t, a, b) − (δ(a, b) − ε(a, b)κ(a, v(t)))α(b)I(t, a, b),(9)

I(0, a, b) = I0(a, b),

I(t, a, 0) = ρ

(

J(t)

K(t)

)

ψS

(

a,
u(t, a)

(N(t))σ

)

m(a)S(t, a),(10)
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B(t) =

∫ ω

0

β(a)S(t, a) da,(11)

K(t) =

∫ ω

0

m(a)

[

S(t, a) +

∫ a

0

I(t, a, b) db

]

da,(12)

J(t) =

∫ ω

0

∫ a

0

ψI

(

a,
u(t, a)

(N(t))σ

)

m(a)λ(b)I(t, a, b) dbda,(13)

N(t) =

∫ ω

0

[

S(t, a) +

∫ a

0

I(t, a, b) db

]

da.(14)

The following variables are considered as controls:
u(t, a) – money spent for prevention among a-years old individuals at time t;
v(t) – price of medical treatment per person and unit of time at t;

Moreover, the following data are involved:
ρ(z) – incidence rate. Depends on the weighted prevalence z = J/K;
m(a) – age-dependent intensity of participation in risky interactions;
ψS(a, u), ψI(a, u) – effect of the prevention control u on the risky behavior of the suscep-

tible (infected, respectively) individuals: decreasing functions such that ψ(a, 0) = 1,
ψ(a,+∞) = ψ0 ≥ 0;

λ(b) – infectivity of an individual, infected b years ago;
β(a) – birth rate of the a-years old non-infected individuals;
σ – a non-negative real number that reflects the “swamping effect”: σ = 1 corresponds

to prevention programs where the per capita effect is proportional to the per capita
expenditure; σ = 0 if the per capita effect is independent of the number of individ-
uals and depends only on the aggregated expenditure. Mixture of the two types of
programs lead to intermediate values of σ;

µ(a) – natural mortality rate of the non-infected individuals;
δ(a, b) – the “mortality” rate due to AIDS;
ε(a, b) – reduction of the “mortality” rate due to AIDS for treated individuals, ε(a, b) ≤

δ(a, b);
α(b) – the fraction of the b-years ago infected individuals who are aware that they need

treatment;
κ(a, v) – the fraction of the individuals of age a who can afford treatment, if the price

of the medicine is v;
S0, I0 – initial conditions;

The momentary value of an individual of age a is assumed equivalent to the current
net contribution of the individual to the Gross National Product. Therefore, the objective
function to be minimized has the form

∫ T

0

e−rt

∫ ω

0

[

−gS(a)S(t, a) − gI(a)

∫ a

0

I(t, a, b) db+ u(t, a)

]

da dt

+

∫ T

0

e−rt

∫ ω

0

∫ a

0

(c∗(t) − v(t))α(b)κ(a, v(t))I(t, a, b) dbda dt,

where
gS(a), gI(a) – the instantaneous “value” of a single non-infected (infected, respectively)

individual of age a;
c∗(t) – market price of the medicine per unit of time of consumption.
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The right-hand side of (8) represents the outflow of susceptible individuals: due to
infection, or due to natural mortality. The intensity of participation of the susceptible
individuals in risky interactions is decreased by a factor of ψS(a, u/Nσ) ≤ 1, where u is
the money allocated for prevention. The inflow B(t) of individuals of age zero aggregates
all births by non-infected parents. It is assumed that all individuals are non-infected at
birth, and that only non-infected individuals may have children.

The right-hand side of (9) represents the outflow of infected individuals due to natural
mortality and due to AIDS. The explanation of the second term is as follows. It is assumed
that before someone dies of AIDS they are aware that they need treatment. Out of αI
such individuals, καI have mortality rate δ−ε (those who are medicated), and (1−κ)αI
have mortality rate δ. The resulting common mortality rate for all the αI individuals is
then (δ − ε)κ+ δ(1 − κ) = δ − εκ.

The inflow of newly infected individuals equals the outflow due to infection from the
group of susceptible individuals (10).

The prevention may have an effect also on the already infected individuals, decreasing
the intensity with which they participate in risky interactions. Therefore, ψI is presum-
ably smaller than one in the expression for J(t), in (13).

In the objective function we aggregate the discounted economic value of the active
individuals and subtract the control costs: u for prevention, the last term – for treatment.
The latter equals the difference between the market price and the subsidized price of the
medicine, times the consumption.

A necessary optimality condition in the form of Pontryagin maximum principle for
general age- and duration-structured systems is obtained in [9] and is used for analysing
the HIV spread model. The conclusions are that the treatment (subsidy of the medicine)
alone may be counterproductive. The subsidy is productive if the initial prevalence is
high, and/or the optimization point of view is myopic: short time horizon or large dis-
count rate. Also, reduction in the prevention program should lead to reduction of the
optimal subsidized treatment. Increase in the treatment should necessarily be accompa-
nied by increase in the prevention.

4. Markets for emission permits. The topic of this section is taken from [3] and
[4]. Imagine a firm that is composed of machines of different vintages (technologies) τ :
K(τ, s) denotes the capital stock of vintage τ and of age s. That is, K(τ, t − τ) is the
stock of vintage τ that exists at time t ≥ τ . The maximal life-time of machines of each
technology is denoted by ω, and the depreciation rate of each technology – by δ. Both
are assumed independent on the vintage just for notational convenience. At any time
t > 0 the firm may invest with intensity I(τ, s) in machines of vintage τ that are of age s
at time t (so that s = t−τ). In the model discussed here the heterogeneity is represented
by the vintage parameter τ .

The planning horizon of the firm is [0,∞). Therefore, the stock of machines of vintage
τ ∈ [−ω, 0] the firm has at time t = 0 is considered as exogenous and is denoted by K0(τ).
These machines have age −τ at time t = 0 and may be in use untill they reach age ω.
Machines of vintage τ > 0 may be in use for ages s ∈ [0, ω], and their stock at age zero
equals zero. Therefore, K0(τ) will be defined as zero for τ > 0. The ages of possible use
of any vintage can be written as [s0(τ), ω], where s0(τ) = max{0,−τ}.

Summarizing, the dynamics of each vintage τ ∈ [−ω,∞) is given by the equation
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(15) K̇(τ, s) = −δK(τ, s) + I(τ, s), K(τ, s0(τ)) = K0(τ), s ∈ [s0(τ), ω],

where “dot” means everywhere the derivative with respect to s (the argument represent-
ing the age).

The productivity of machines of vintage τ is denoted by f(τ), while g(τ) denotes
the emission per machine of vintage τ . The firm faces at time t costs due to emissions
at a price v(t) per unit of emissions. From the point of view of a firm v(t) represents
an exogenous tax on pollution set up by a regulator. From market’s (regulator’s) point
of view the price v(·) is endogenized by auctioned emission permits. Due to this cost
the firm may decide to (possibly temporarily) switch off a part of the machines. Let us
denote by W (τ, s) ∈ [0, 1] the fraction of the machines of vintage τ that operate at age s.

The cost of investment I in s years old machines of any vintage is denoted by C(s, I).
The present value (at time t = 0) of the total production of machines of vintage τ ,

discounted with a rate r, is

e−rτ

∫ ω

s0(τ)

e−rsf(τ)K(τ, s)W (τ, s) ds,

the cost of emission is

e−rτ

∫ ω

s0(τ)

e−rsv(τ + s)g(τ)K(τ, s)W (τ, s) ds,

and the investment costs are

e−rτ

∫ ω

s0(τ)

e−rsC(s, I(τ, s)) ds.

The firm maximizes the aggregated over time discounted net revenue, that is, solves
the problem

max
I≥0, W∈[0,1]

∫ ∞

−ω

e−rτ

∫ ω

s0(τ)

e−rs [(f(τ) − v(τ + s)g(τ))K(τ, s)W (τ, s) − C(s, I(τ, s))] ds dτ

subject to (15).
For a given v(·) and on the optimal trajectory (K∗,W ∗, I∗) the emission of the firm

at time t > 0 is given by the expression

E∗[v](t) =

∫ t

t−ω

g(τ)K(τ, t− τ)W (τ, t − τ) dτ.

Consider an economy consisting of n identical firms described by the above introduced
model. Let Ê(t) be a cap for the emission permits of the economy for t ≥ t̂. We assume
that the regulation (here, the emission cap) is known by the firms at time t = 0 for all
the future. The cap takes effect at time t̂ ≥ ω.

The emission permits are auctioned at time t̂. The question is: does the auction (the
primary market) really determine the price v(t)? The answer is “NO”, and the primary
market behavior and the appearance of market failure was analyzed theoretically and
numerically .

The equation for the auction price of emission permits, v(t), is

(16) E∗[v](t) = Ê(t)/n, t ≥ t̂.

The market would determine the price of permits if:
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(i) equation (16) has a solution v(·) ∈ V ;

(ii) the solution is unique;

(iii) the solution is positive for all t.
In general, no one of the above requirements is fulfilled. The first needs assumptions

for the data, and these assumptions are difficult to specify due to the complexity of
equation (16). The second requirement is obviously not fulfilled if, for example, Ê(t) ≡ 0,
since if v is a solution of (16), then every ṽ with ṽ(t) > v(t) would also be a solution. Even
if the above two possibilities could be classified as “academic”, then it was established
in [3] that a failure of the third requirement could be rather realistic.

Regularization methods for ill-posed equations of the kind we face in (16), are devel-
oped first by A. Tikhonov in the 60-th years of the last century. The regularization that
was employed in [3] is different and has the advantage that it has a clear economic mea-
ning and is implementable in the real market: the emission constraint (16) was formulated
period-wise, rather than at any time instant. This has a clear policy implementation.
Namely, the discrete version of the emission mapping E∗ was introduced as follows:

Êk =
1

tk − tk−1

∫ tk

tk−1

Ê(t) dt

is the cap for the emission intensity in the time-period [tk−1, tk]. For simplicity we assume
that all time periods have the same length h > 0, thus tk = kh, and also that ω = mh,
t̂ = k̂h for appropriate natural numbers m and k̂. Correspondingly, the price of emission
is a constant, vk, on each interval [tk−1, tk) and zero for k ≤ k̂.

In [3] experimental (numerical) results for the auction price of permits were obtained
assuming that the firms participating in the auction are identical (thus the price is
determined by equation (16), if a positive solution exists). In particular, the role of the
aggregation step h was investigated. Following the terminology used under the Kyoto
protocol, this step is called a commitment period, and h is its length. The existence and
the regularity of the auction price for emission permits was scrutinized for different h.

Two basic phenomena were observed in the numerical experiments:
– if the imposed emission cap is below the level (at the time t̂ of the imposition of the

cap) of the unrestricted emissions, the firm begins to reduce the emissions much earlier
than t̂ – this is the so called anticipation effect.

– larger commitment periods regularise the permits market: decrease the volatility
of the market and remove market failures (time periods in which the market “price”
obtained from (16) is negative).

5. Macroeconomic growth with endogenous technological progress. The
necessary optimality conditions for the model presented in this section are obtained
in [1]. Let [0, T ] be a fixed time-interval and let [0, Q̄] be an interval where the parameter
of heterogeneity q takes its values (here Q̄ > 0 could be +∞, in which case the interval
should be interpreted as [0,∞)). Denote D = [0, T ] × [0, Q̄]. The state variables in the
model below is the functions

x : D 7→ Rn, Q : [0, T ] 7→ [0, Q̄], y : [0, T ] 7→ Rm,
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while u : D 7→ U ⊂ Rr is a control function. The optimal control problem we consider
reads as follows:

(17) max
u

∫ T

0

∫ Q(t)

0

L(t, q, x(t, q), Q(t), y(t), u(t, q)) dq dt,

subject to the equations

Q̇(t) = g(t, Q(t), y(t)), Q(0) = Q0 ≥ 0, t ∈ [0, T ],(18)

y(t) =

∫ Q(t)

0

h(t, q, u(t, q)) dq,(19)

ẋ(t, q) = f(t, q, x(t, q), Q(t), y(t), u(t, q)),(20)

x(0, q) = x0(q), q ∈ [0, Q0],

x(t, Q(t)) = xb(t), t ∈ [0, T ],

u(t, q) ∈ U.(21)

Here

L : D × Rn × [0, Q̄] × Rm × U 7→ R,

f : D × Rn × [0, Q̄] × Rm × U 7→ Rn, g : D × Rm 7→ R, h : D × U 7→ Rm,

ẋ(t, q) is the derivative with respect to t.
The informal meaning is as follows. Given a control function u with values in U ,

equations (18) and (19) define the interval [0, Q(t)] in which the parameter q takes values
at time t. The state y(t) represents an aggregated (over the domain of heterogeneity
[0, Q(t)]) quantity. Equation (20) with the respective bounary conditions defines the
distributed state x. Then, the objective functional (17) is to be maximized with respect
to the control u.

In the notations below we systematically skip the arguments of all functions which
are at their respective optimal values, e.g.

L(t, Q(t)) := L(t, Q(t), x(t, Q(t)), Q(t), y(t), u(t, Q(t)))

if x(·, ·), Q(·), y(·) and u(·, ·) are optimal.
Let λ(·, ·), µ(·) and ν(·) be the adjoint variables, corresponding to (20), (18) and (19)

respectively, and let

η(t) :=

∫ Q(t)

0

(Ly(t, q) + λ(t, q)fy(t, q)) dq.

Under assumptions on the model’s data which are standard for the control literature
(the involved functions are of Caratheodory type) necessary optimality conditions were
obtained in [1] in which the adjoint variable µ(·) satisfies a differential inclusion instead
of differential equation (let R(t) denote its reachable set at time t) and as a result of this
the maximization of the Hamiltonian takes the form of “min-max”. Namely, defining
H̃ : D × Rn+1+m+r+n+m 7→ R as

H̃(t, q, x,Q, y, u, λ, ν) = L(t, q, x,Q, y, u) + λ f(t, q, x,Q, y, u) + ν h(t, q, u).

one obtains

Theorem 1 ([1], Theorem 1 on p. 295).Let u ∈ L∞(D) be an optimal control in

the problem (17)–(21) and let z := (x,Q, y) be the corresponding trajectory. Let λ be the

adjoint variable, corresponding to (20). Then, for almost every (t, q) ∈ D(u) := {(t, q) :
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t ∈ [0, T ), q ∈ [0, Q(t))}

max
v∈U

min
ν∈R(t)gy(t)+η(t)

(

H̃(t, q, z(t, q), v, λ(t, q), ν) − H̃(t, q, z(t, q), u(t, q), λ(t, q), ν)
)

≤ 0.

If one strengthens the assumptions on the model’s data and imposes an a priory

assumption on the optimal control, then the usual Pontryagin type maximum principle
can be obtained. Impose the following

Assumption: The functions L, Lx, f , fx and h are continuous with respect to q
(uniformly in the rest of the variables); the optimal control u is (equivalent to) a function
which is continuous from the left with respect to q at q = Q(t) for a.e. t ∈ [0, T ].

Introduce the function (having in many respects the traditional meaning of “hamil-
tonian”) H : D × Rn+1+m+r+n+1+m 7→ R as

H(t, q, x,Q, y, u, λ, µ, ν) = L(t, q, x,Q, y, u)+λ f(t, q, x,Q, y, u)+µ g(t, Q, y)+ν h(t, q, u),

where the arguments in the l.-h. side should be inserted in the r.-h. side wherever
appropriate. Then, Theorem 1 implies

Theorem 2 ([1], Theorem 2 on p. 297).Denote by u ∈ L∞(D) an optimal control

in the problem (17)–(21) and by z := (x,Q, y) be the corresponding trajectory. Then the

adjoint system has a unique solution (λ, µ, ν) and for a.e. t ∈ [0, T ] and a.e. q ∈ [0, Q(t)]

H(t, q, z(t, q), u(t, q), π(t, q)) = max
u∈U

H(t, q, z(t, q), u, π(t, q)).

In what follows a stylized economic model of endogenous economic growth is pre-
sented, to which the above results can be applied.

Consider a finite time horizon [0, T ] (presumably rather large, so that T is an “ap-
proximation” of the infinity) and a large corporation producing at time t diverse goods
labeled by the real number q ∈ [0, Q(t)]. Here Q(t) is the newest good (technology)
available at time t. Each of the goods q is produced by a separate firm that at time t has
physical capital stock x(t, q). The q-th firm (q ∈ [0, Q(t)]) invests at time t an amount
u(t, q) that is split in two parts: αu(t, q), 0 ≤ α ≤ 1, is allocated to increase the capital
stock, while (1 − α)u(t, q) is the contribution of the q-th firm to the R&D activity of
the corporation which results in development of new technologies (goods) and, hence, in
increase of Q(t).

The model reads as follows:

ẋ(t, q) = −δx(t, q) + αu(t, q), x(0, q) = x0(q) for q ∈ [0, Q0],

x(t, Q(t)) = 0 for t > 0,

Q̇(t) = (1 − α)y(t), Q(0) = Q0,

y(t) =

∫ Q(t)

0

u(t, q) dq.

Here y(t) is the total investment in R&D, δ ≥ 0 is the depreciation rate of the physical
capital, x0(q) is the initially available capital stock for producing goods q ∈ [0, Q0],
Q0 > 0 is the newest technology available at time t = 0. The objective function to be
maximized is

∫ T

0

e−rt

∫ Q(t)

0

[

p(q,Q(t))x(t, q) − bu(t, q) − cu2(t, q)
]

dq dt,
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subject to the control constraint u(t, q) ≥ 0. In this model r ≥ 0 is the discount rate,
p(q,Q) is the market price of the good q ∈ [0, Q], given that goods up to level Q are
available, bu + cu2, b ≥ 0, c > 0 is the cost of the investments u. The dependence
of the price p on q and Q reflects the fact that the market price of any available good
decreases when newer products emerge (that is, when Q increases). For the present
illustrative purpose we chose the specification p(q,Q) = e−γ(Q−q) with γ ≥ 0. So the
price of the newest product is normalized to one (which is supported by the data for
personal computers and mobile telephones, where the price of the new products does not
substantially change with time, while the quality increases).

Assume that u(t, q) is an optimal control that is continuous from the left at q =
Q[u](t). Then, Theorem 2 implies that

u(t, q) = max{0, (αλ̃(t, q) + ν̃(t) − b)/2c}.

Further analysis of the model can be found in [1].
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ОПТИМАЛНО УПРАВЛЕНИЕ НА ХЕТЕРОГЕННИ СИСТЕМИ

Цветомир Цачев

В настоящия доклад се прави преглед на някои резултати от областта на оп-
тималното управление на непрекъснатите хетерогенни системи, публикувани в
периодичната научна литература в последните години. Една динамична система
се нарича хетерогенна, ако всеки от нейните елементи има собствена динамика-
та. Тук разглеждаме оптимално управление на системи, чиято хетерогенност се
описва с едномерен или двумерен параметър – на всяка стойност на параметъра
отговаря съответен елемент на системата.
Хетерогенните динамични системи се използват за моделиране на процеси в ико-
номиката, епидемиологията, биологията, опазване на обществената сигурност
(ограничаване на използването на наркотици) и др. Тук разглеждаме модел на
оптимално инвестиране в образование на макроикономическо ниво [11], на ог-
раничаване на последствията от разпространението на СПИН [9], на пазар на
права за въглеродни емисии [3, 4] и на оптимален макроикономически растеж
при повишаване на нивото на върховите технологии [1].

Ключови думи: оптимално управление, непрекъснати хетерогенни динамични
системи, приложения в икономиката и епидемиолегията
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