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Let G be a simple n-vertex graph with degree sequence d1, d2, . . . , dn and vertex set
V(G). The degree of v ∈ V(G) is denoted by d(v). The smallest integer r for which
V(G) has an r-partition

V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6= j

such that d(v) ≤ n− |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r is denoted by ϕ(G). In this note we
prove the inequality

ϕ(G) ≥
n

n − ¯̄d
,

where ¯̄d =

r
d2
1 + d2

2 + · · · + d2
n

n
.

1. Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We use the following notations:

V(G) – the vertex set of G;
e(G) – the number of edges of G;
cl(G) – the clique number of G;
χ(G) – the chromatic number of G;
N(v), v ∈ V(G) — the set of neighbours of a vertex v;

N(v1, v2, . . . , vk) =
⋂k

i=1
N(vi);

d(v) – the degree of a vertex v;
G[V ], V ⊆ V(G) – induced subgraph by V .
Definition 1. Let G be a graph, |V(G)| = n and V ⊆ V(G). Then, the set V is

called a δ-set in G, if

d(v) ≤ n − |V | for all v ∈ V .

Clearly, any independent set V of vertices of a graph G is a δ-set in G since N(v) ⊆
V(G) \ V for all v ∈ V . It is obvious that if V ⊆ V(G) and |V | ≥ max {d(v) | v ∈ V(G)}
then V(G) \ V is a δ-set in G (it is possible that V(G) \ V is not independent).
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Definition 2. A graph G is called a generalized r-partite graph if there is a r-partition

V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6= j

where the sets V1, V2, . . . , Vr are δ-sets in G. The smallest integer r such that G is a

generalized r-partite is denoted by ϕ(G).

As any independent vertex set of G is a δ-set in G, we have ϕ(G) ≤ χ(G). In fact,
the following stronger inequality [10]

(1) ϕ(G) ≤ cl(G)

holds.

Let V(G) = {v1, v2, . . . , vn} and cl(G) = r. Define

d̄ =
d(v1) + d(v2) + · · · + d(vn)

n
, ¯̄d =

√

d2(v1) + d2(v2) + · · · + d2(vn)

n
.

By the classical Turan Theorem, [11] (see also [5]) we have

(2) e(G) ≤
n2(r − 1)

2r
.

The equality in (2) holds if and only if n ≡ 0 (mod r) and G is complete r-chromatic
and regular.

It is proved in [6] that

(3) e(G) ≤
n2(ϕ(G) − 1)

2 ϕ(G)
.

According to (1) the inequality (3) is stronger than the inequality (2). But in case of
equality in (3) the graph G is not unique as it is in the Turan theorem.

Since d̄(G) =
2e(G)

n
, it follows from (3) that

(4) ϕ(G) ≥
n

n − d̄(G)
.

In this note we give the following improvement of the inequality (4).
Theorem 1. Let G be a n-vertex graph. Then,

(5) ϕ(G) ≥
n

n − ¯̄d(G)
.

The equality in (5) holds if and only if n ≡ 0 (mod ϕ(G)) and G is regular graph of

degree
n(ϕ(G) − 1)

ϕ(G)
.

2. Auxiliary results. We denote the elementary symmetric polynomial of degree s

by σs(x1, x2, . . . , xn), 1 ≤ s ≤ n, i. e.

σs(x1, x2, . . . , xn) = x1x2 . . . xs + · · · .

Further, we use the following equalities:

x2
1 + x2

2 + · · · + x2
n = σ2

1 − 2σ2,(6)

x3
1 + x3

2 + · · · + x3
n = σ3

1 − 3σ1σ2 + 3σ3,(7)

where σi = σi(x1, x2, . . . , xn).

In order to prove Theorem 1 we use the following well-known inequality (particular
case of the Maclaurin inequality, see [2], [3]).
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Theorem 2. Let x1, x2, . . . , xn be non-negative reals and σs(x1, x2, . . . , xn) = σs.

Then,

(8) s

√

σs
(

n

s

) ≤
x1 + x2 + · · · + xn

n
=

σ1

n
, 1 ≤ s ≤ n.

If s ≥ 2, then the equality in (8) holds if and only if x1 = x2 = · · · = xn.

A straight and very short prove of Theorem 2 is given in [4].
3. Proof of Theorem 1. Let ϕ(G) = r, V(G) = {v1, v2, . . . , vn} and

(9) V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

where V1, V2, . . . , Vr are δ-sets in G, i. e. if ni = |Vi|, i = 1, 2,. . . , r, then

(10) d(v) ≤ n − ni, ∀v ∈ Vi.

It follows from (9) that

d2(v1) + d2(v2) + · · · + d2(vn) =

r
∑

i=1

∑

v∈Vi

d2(v).

According to (10)
∑

v∈Vi

d2(v) ≤ ni(n − ni)
2.

Thus we have

d2(v1) + d2(v2) + · · · + d2(vn) ≤
r

∑

i=1

ni(n − ni)
2.

From (6) and (7) we see that
r

∑

i=1

ni(n − ni)
2 = nσ2 + 3σ3,

where σ2 = σ2(n1, n2, . . . , nr), σ3 = σ3(n1, n2, . . . , nr).
Thus we obtain the inequality

(11) d2(v1) + d2(v2) + · · · + d2(vn) ≤ nσ2 + 3σ3.

Since σ1 = n, Theorem 2 yields

(12) σ2 ≤
n2(r − 1)

2r
and σ3 ≤

n3(r − 1)(r − 2)

6r2
.

Now, the inequality (5) follows from (11) and (12).

Obviously, if n ≡ 0 (mod r) and d(v1) = d(v2) = · · · = d(vr) =
n(r − 1)

r
, then we

have equality in (5). Now, let us suppose that we have equality in inequality (5). Then,

we have equality in (12) and (10) too. From r = ϕ(G) =
n

n − ¯̄d
it is clear that r divides

n. By Theorem 2, we have

n1 = n2 = · · · = nr =
n

r
.

Because of the equality in (10), i. e. d(v) = n − ni, v ∈ Vi, we have

d(v1) = d(v2) = · · · = d(vr) =
n(r − 1)

r
.

Theorem 1 is proved.
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4. Some corollaries.

Definition 3 ( [5]). Let G be a graph and v1, v2, . . . , vr ∈ V(G). Then, the sequence

v1, v2, . . . , vr is called an α-sequence in G if the following conditions are satisfied:

(i) d(v1) = max {d(v) | v ∈ |V(G)};

(ii) vi ∈ N[v1, v2, . . . , vi−1] and vi has maximal degree in the induced subgraph

G[N(v1, v2, . . . , vi−1], 2 ≤ i ≤ r.

Definition 4. Let G be a graph and v1, v2, . . . , vr ∈ V(G). Then, the sequence

v1, v2, . . . , vr is called a β-sequence in G if the following conditions are satisfied:

(i) d(v1) = max {d(v) | v ∈ |V(G)};

(ii) vi ∈ N(v1, v2, . . . , vi−1) and d(vi) = max {d(v) | v ∈ N(v1, v2, . . . , vi−1)}, 2 ≤ i ≤ r.

Corollary 1. Let v1, v2, . . . , vr, r ≥ 2 be an α- or a β-sequence in an n-vertex graph

G such that N(v1, v2, . . . , vr) is a δ-set. Then,

(13) r ≥
n

n − ¯̄d
.

Proof. Since N(v1, v2, . . . , vp) is a δ-set, G is a generalized r-partite graph, [9].
Thus, r ≥ ϕ(G) and (13) follows from Theorem 1. �

Corollary 2. Let v1, v2, . . . , vr, r ≥ 2, be a β-sequence in n-vertex graph G such that

(14) d(v1) + d(v2) + · · · + d(vr) ≤ (r − 1)n.

Then, the inequality (13) holds.

Proof. From (14) it follows that G is a generalized r-partite graph ( [7], [8]). �

The next corollary follows from (1) and Theorem 1.
Corollary 3 ( [1]). Let G be an n-vertex graph. Then,

(15) cl(G) ≥
n

n − ¯̄d
.

Remark 1. The prove of the inequality (15) given in [1] is incorrect, since the
arguments on p. 53, rows 8 and 9 from the top, is not valid.

Corollary 4. Let G be an n-vertex graph such that

(16) cl(G) =
n

n − ¯̄d
.

Then, G is regular and complete cl(G)-chromatic graph.

Proof. Let ϕ(G) = r. Then, by (16), (1) and Theorem 1 we have

cl(G) = ϕ(G) = r =
n

n − ¯̄d
.

By Theorem 1, n ≡ 0 (mod r) and G is a regular graph of degree
n(r − 1)

r
. Thus

e(G) =
n2(r − 1)

2r
=

n2(cl(G) − 1)

2 cl(G)
.

According to Turan’s Theorem, G is complete r-chromatic and regular. �
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ЕДНО НЕРАВЕНСТВО ЗА ОБОБЩЕНИ ХРОМАТИЧНИ ГРАФИ

Асен Божилов, Недялко Ненов

Нека G е n-върхов граф и редицата от степените на върховете му е d1, d2, . . . , dn,

а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v).
Най-малкото естествено число r, за което V(G) има r-разлагане

V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6= j

такова, че d(v) ≤ n− |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r е означено с ϕ(G). В тази работа

доказваме неравенството

ϕ(G) ≥
n

n − ¯̄d
,

където ¯̄d =

r
d2
1 + d2

2 + · · · + d2
n

n
.
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