MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2012
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012
Proceedings of the Forty First Spring Conference

of the Union of Bulgarian Mathematicians
Borovetz, April 9-12, 2012

AN INEQUALITY FOR GENERALIZED CHROMATIC
GRAPHS"

Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph with degree sequence d1,ds, . ..,d, and vertex set
V(G). The degree of v € V(G) is denoted by d(v). The smallest integer r for which
V(@) has an r-partition

VG =ViuWLU---UV,, VinV;=0, ,i#j

such that d(v) <n—|V;|, Vv € V;,i=1,2,...,r is denoted by ¢(G). In this note we

prove the inequality
n
e(G) > =

n—d

Wherejz\/d%+d§+..,+d%
n

1. Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We use the following notations:
V(G) — the vertex set of G;
e(@) — the number of edges of G;
cl(G) — the clique number of G;
X(G) — the chromatic number of G;
N(v), v € V(G) — the set of neighbours of a vertex v;
N(v1,v2,...,05) = ﬂle N(v;);
d(v) — the degree of a vertex v;
G[V], V C V(G) — induced subgraph by V.
Definition 1. Let G be a graph, |V(G)| = n and V- C V(G). Then, the set V is
called a §-set in G, if

d(v) <n—1V| foralveV.

Clearly, any independent set V of vertices of a graph G is a d-set in G since N(v) C
V(G)\V for all v € V. Tt is obvious that if V' C V(G) and |V| > max {d(v) | v € V(G)}
then V(G) \ V is a d-set in G (it is possible that V(G) \ V is not independent).
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Definition 2. A graph G is called a generalized r-partite graph if there is a r-partition
V(@) =ViuVau---UV,, VinV; =0, Ji#j
where the sets Vi, Va, ..., V. are d-sets in G. The smallest integer r such that G is a
generalized r-partite is denoted by ¢(Q).

As any independent vertex set of G is a d-set in G, we have p(G) < x(G). In fact,
the following stronger inequality [10]

(1) p(G) < c(G)
holds.
Let V(G) = {v1,v2,...,v,} and cl(G) = r. Define

7 d(v) £ dwo) 4ot d(w) \/dQ(vl) +d?(v2) + - + d2(vn)

d= )
n

n
By the classical Turan Theorem, [11] (see also [5]) we have
n?(r —1)

2r

The equality in (2) holds if and only if n = 0 (mod r) and G is complete r-chromatic
and regular.

It is proved in [6] that
n?(p(G) — 1)

3) (G) < E T

According to (1) the inequality (3) is stronger than the inequality (2). But in case of
equality in (3) the graph G is not unique as it is in the Turan theorem.

(2) e(G) <

Since d(G) = 2@(G)7 it follows from (3) that
n
n
4 G)> ———.
(W o6 > —

In this note we give the following improvement of the inequality (4).
Theorem 1. Let G be a n-vertex graph. Then,

n
(5) #(G) 2 — 7
The equality in (5) holds if and only if n = 0 (mod ¢(G)) and G is regular graph of
degree M

o(G)

2. Auxiliary results. We denote the elementary symmetric polynomial of degree s
by os(21,22,...,2n), 1 <s<mn,ie.

0s(X1, T2y .., Ty) = 1T ... Ts + -+

Further, we use the following equalities:

(6) ot +aj+ -+ ah, = o} — 200,
(7) 23423+ + 23 =0 — 30109 + 303,
where 0; = (21, T2, ..., %y).

In order to prove Theorem 1 we use the following well-known inequality (particular
case of the Maclaurin inequality, see [2], [3]).

144



Theorem 2. Let x1,22,...,T, be non-negative reals and o4(x1,xa,...,2,) = 0Os.
Then,

V() n n

If s > 2, then the equality in (8) holds if and only if x1 = xo = -+ = x,.
A straight and very short prove of Theorem 2 is given in [4].
3. Proof of Theorem 1. Let ¢o(G) =, V(G) = {v1,v2,...,v,} and

(9) V(G)=ViUVaU---UV,, VinV,=0, i#j
where V1, Va,...,V, are d-sets in G, i.e. if n; =|V;|,i=1, 2,..., r, then
(10) dv) <n—mn; YveV,.

It follows from (9) that

() 4+ d*(vy) + -+ d*(v,) = Z > d(v

i=1veV;
According to (10)

ZdQ < ni(n —n;)?.
veV;
Thus we have

d(v1) + d*(v2) + -+ d*(vn) <Y mi(n —ni)?.
i=1
From (6) and (7) we see that

an(n — ;)% = noy + 303,

i=1
where 09 = 03(n1,n2,...,ny), 03 = o3(N1,N2,...,Ny).
Thus we obtain the inequality
(11) d?(v1) + d*(v2) + -+ + d*(v,) < nos + 303.
Since o1 = n, Theorem 2 yields
n?(r—1) n3(r—1)(r —2)
(12) 02 < 5 and 03 < g
Now, the inequality (5) follows from (11) and (12).
-1
Obviously, if n = 0 (mod r) and d(v1) = d(ve) = -+ = d(v,) = M, then we

,
have equality in (5). Now, let us suppose that we have equality in inequality (5). Then,

we have equality in (12) and (10) too. From r = ¢(G) = r 5 it is clear that r divides
n

n. By Theorem 2, we have

n
Ny =nNg =" " =MNp = —.
r
Because of the equality in (10), i.e. d(v) = n —n;, v € V;, we have
n(r—1
d(vy) =d(vg) =+ =d(v,) = g

r
Theorem 1 is proved.
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4. Some corollaries.
Definition 3 ( [5]). Let G be a graph and vy,va,...,v, € V(G). Then, the sequence
v1, V2, ..., 0, is called an a-sequence in G if the following conditions are satisfied:

(1) d(vr) = max{d(v) | v € | V(G)};

(i4) v; € Nlvi,ve,...,v,-1] and v; has mazimal degree in the induced subgraph
G[N(vy,v2,...,vi-1], 2< i <r.

Definition 4. Let G be a graph and vi,ve,...,v, € V(G). Then, the sequence
V1, V2,...,0, s called a B-sequence in G if the following conditions are satisfied:

(1) d(v1) = max{d(v) [ v € [V(G)};

(11) v; € N(v1,v2,...,v;—1) and d(v;) = max {d(v) | v € N(vy,v9,...,v;-1)}, 2 <i < r.

Corollary 1. Let vi,va,...,v., 7 > 2 be an a- or a (B-sequence in an n-vertex graph
G such that N(vy,va,...,v.) is a 0-set. Then,
n
13 r> =
(13) —
Proof.  Since N(v1,vg,...,vp,) is a d-set, G is a generalized r-partite graph, [9].
Thus, r > ¢(G) and (13) follows from Theorem 1. O
Corollary 2. Let vy,vs,...,v., 7 > 2, be a B-sequence in n-vertex graph G such that
(14) d(vy) +d(v2) + - +d(v.) < (r —1)n.

Then, the inequality (13) holds.
Proof. From (14) it follows that G is a generalized r-partite graph ( [7], [8]). O
The next corollary follows from (1) and Theorem 1.

Corollary 3 ( [1]). Let G be an n-vertex graph. Then,
(15) AG) > ——.
n—d
Remark 1. The prove of the inequality (15) given in [1] is incorrect, since the
arguments on p. 53, rows 8 and 9 from the top, is not valid.

Corollary 4. Let G be an n-vertex graph such that

(16) AG) = — =

Then, G is regular and complete cl(G)-chromatic graph.
Proof. Let ¢(G) =r. Then, by (16), (1) and Theorem 1 we have

(@) = p(G) =r = ——.
n—d
. n(r—1)
By Theorem 1, n =0 (mod r) and G is a regular graph of degree ————=. Thus
r
(@) = n%(r—1) _ n?(cl(G) — 1)
2r 2cl(G)
According to Turan’s Theorem, G is complete r-chromatic and regular. O
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EOJHO HEPABEHCTBO 3A OBOBIITEHU XPOMATUYHU I'PA®U

Acen Boxuigos, Henasiiko Henos

Hexka G e n-BbpxoB rpad u peauiara OT CTEIIEHUTE HA BbpXoBeTe My € di, da, . .., dp,
a V(@) e muoxkecTBOTO OT BbpxoBere Ha (. Crenenrta Ha Bbpxa v GesexxuM ¢ d(v).
Haii-mMasIkoTO ecTecTBeHO 9mCIIo T, 3a Koero V(G) uMa r-pasiarane

VG =ViuVeU---UV,, VinV;=0, ,i#j

rakoBa, ue d(v) <n—|Vi|, Vv € V;, i =1,2,...,r e o3Haueso ¢ p(G). B Tasu pabora

JOKa3BaMe€ HEPaBEHCTBOTO
n
e(G) > =,
n—d

— 2 2 .o 2
m)ILeToJ:\/lerdQ+ +d”.
n
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