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SELF-AVOIDING WALKS IN THE PLANE*

Rumen Dangovski, Kalina Petrova

We examine the number of self-avoiding walks with a fixed length on the square grid
graph and more specifically we complete the analysis of the lattice strip of height one.
By combinatorial arguments we get an exact formula for the number of self-avoiding
walks on a restricted to the left and to the right lattice strip. We investigate the
formula asymptotically as well.

1. Introduction. A self-avoiding walk (SAW for convenience) is a path on a lattice,
which does not intersect itself. In other words, if we consider it as a sequence of points
(a1, a2 . . . an), the following condition ai 6= aj ∀i, j|i 6= j is satisfied. Finding the number
of SAWs with a fixed length on the lattice Z × Z remains an open problem in combina-
torics. However, the case Z × {0, 1} is of interest, because it may lay the grounds for
solving the general case.

Definition 1. Let cn denote the number of sequences C = (c0, c1 . . . cn)|ci = (xi, yi)
of pairwise different points in the plane such that xi ∈ Z and yi ∈ {0, 1} for 0 ≤ i ≤ n,

c0 = (0, 0) and |xi − xi−1| + |yi − yi−1| = 1 for 1 ≤ i ≤ n.

Doron Zeilberger was the first who find a formula for cn by using generating func-
tions [1].

Theorem 1. The following relation holds:

cn = 8fn − σn,

where σn =

{

n if n is even,

4 if n is odd
and fn is the nth Fibonacci number.

Later Arthur Benjamin presented the first combinatorial proof of this result in [2] by
generating SAWs from sequences, related to Fibonacci numbers. Nikolai Nikolov proved
the formula for cn by analyzing the construction of a SAW and counting the number of
sequences in the different subsets [3].

A more complicated problem is considering the same grid Z×{0, 1} with restrictions
to the left and to the right.

Definition 2. Let wabn denote the number of sequences C = (c0, c1 . . . cn)|ci = (xi, yi)
of pairwise different points, such that xi ∈ Z| − a ≤ xi ≤ b, yi ∈ {0, 1}, 0 ≤ i ≤ n.

We study this number in order to complete the basic analysis of this lattice. In the
proof we use the notions as follows: u-move for an upward move, d-move for a downward
move, l-move for a move to the left and r-move for a move to the right. A sequence of
the letters u, d, l and r is a SAW, which starts from (0, 0) and follows the directions in
the string. If a direction x ∈ {u, d, l, r} is repeated k times we write xk.
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2. Main result. 2.1. Formula for restricted walks. For convenience we widen
the definition of a binomial coefficient.

Definition 3. We use the convention
(

n

k

)

=







0 if n < k or n < 0 or k < 0,

n!

k!(n − k)!
if n ≥ k ≥ 0.

We analyze the construction of the SAWs. In other words, in order to find wabn we
need to consider the different possible subsets of each sequence.

Definition 4. Let labn and rabn denote the number of SAWs C, such that the last

move (cn−1, cn) is entirely on the left and entirely on the right of the segment ((0, 0), (0, 1)),
respectively. These sequences we call left and right SAWs.

The relation wabn = labn + rabn holds. Since the two cases are analogical, we proceed
only with the case of the left sequences.

Definition 5. Let flan denote the number of SAWs C, such that xi ≤ 0, 0 ≤ i ≤ n

and plabn denote labn − flan, the number of the rest left sequences. These SAWs we call

fully left and partially left, respectively.

Definition 6. Let ulan denote the number of the fully left sequences C|xi − xi−1 +
|yi − yi−1| = 1, 1 ≤ i ≤ n and mlan = flan − ulan is the number of the rest fully left

SAWs. We call these sequences ultra-left and middle left SAWs, respectively.

Definition 7. Let ulian denote the number of the ultra-left sequences C|xn = −i. We

call these sequences ultra-left of type i.

Proposition 1. The following identity holds:

wabn =
a

∑

i=0

(

i + 1

n − i

)

+
a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+
b+1
∑

k=2

a−1
∑

i=0

(

i + 1

n − 2k − i

)

+

b+1
∑

k=2

a−3
∑

i=0

a−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+

b
∑

i=0

(

i + 1

n − i

)

+

b−2
∑

i=0

b−i
∑

j=2

(

i + 1

n − 2j − i

)

+

a+1
∑

k=2

b−1
∑

i=0

(

i + 1

n − 2k − i

)

+

a+1
∑

k=2

b−3
∑

i=0

b−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+ σabn,

where σabn =































0 if n is even,

max

(

0, min

(

b,
n − 5

2

))

− max

(

0,
n−2a−5

2

)

+ λan

+ max

(

0, min

(

a,
n − 5

2

))

− max

(

0,
n−2b−5

2

)

+ λbn if n is odd,

where λan =

{

0 if n > 2a + 1,

1 if n is odd and n ≤ 2a + 1.

Proof. We consider an ultra-left sequence of type i and see that there are exactly i

l-moves. The rest n− i moves are either u-moves or d-moves. Each one of them is made
after an l-move or in the beginning. Hence, a SAW is determined by the choice of the

153



positions of the u-moves and d-moves. Thus

ulian =

(

i + 1

n − i

)

.

We note the following relation:

(2.1) ulan =

a
∑

i=0

ulian =

a
∑

i=0

(

i + 1

n − i

)

.

Let us consider a middle left SAW C = (c0, c1 . . . cn). If n is odd and n ≥ 2a + 1, then

the sequence l
n−1

2 ur
n−1

2 is a SAW. The construction of the rest middle left walks involves
an ultra-left sequence, followed by an u-turn of type lxurx−1 or lxdrx−1. We associate C

with an ultra-left sequence C′ = (c0, c1 . . . ck)|xk = xn of type i, k ≤ n − 3. Considering
the behavior of the u-turn (ck−1, ck) ∪ (C\C′) with the restriction coming from a, we
obtain

(2.2) mlan =

a−2
∑

i=0

a−i
∑

j=2

ulia,(n−2j) + δan =

a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+ δan,

where δan =











0 if n is even,

0 if n is odd and n > 2a + 1,

1 if n is odd and n ≤ 2a + 1.

From the relation flan = ulan + mlan, (2.1) and (2.2) we get

(2.3) flan =

a
∑

i=0

(

i + 1

n − i

)

+

a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+ δan.

The arbitrarily chosen partially left SAW C = (c0, c1 . . . cn) consists of a u-turn of type
rxulx+1 or rxdlx+1 followed by a fully left sequence. Since x ≥ 1, having in mind the
restriction deriving from b, we reach to the conclusion that

plabn =
b+1
∑

k=2

fl(a−1),(n−2k) =
b+1
∑

k=2

a−1
∑

i=0

(

i + 1

n − 2k − i

)

(2.4)

+

b+1
∑

k=2

a−3
∑

i=0

a−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+

b+1
∑

k=2

δ(a−1),(n−2k).(2.5)

From the relation labn = flan + plabn, (2.3) and (2.4) follows that

labn =
a

∑

i=0

(

i + 1

n − i

)

+
a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+ δan +
b+1
∑

k=2

a−1
∑

i=0

(

i + 1

n − 2k − i

)

(2.6)

+
b+1
∑

k=2

a−3
∑

i=0

a−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+
b+1
∑

k=2

δ(a−1),(n−2k).(2.7)

Now we consider the case of rabn similarly. We swap the places of a and b in (2.5) to
obtain the result. �

During the process of finding the formula, we used a computer program to verify the
result.
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2.2. Asymptotic estimations. Some special cases are of interest for our research,
namely when one of the restrictions is removed. If we set a = ∞ and b = ∞, then the
case coincides with cn. So,

w∞∞n = cn.

If we set a =const and b = ∞, then we obtain the formula

wa∞n =
1

2
(a + 1 + (a + 1)(−1)n+1) + 4fn − 2fn−2a−2

+

a
∑

i=0

(

i + 1

n − i

)

+

a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+ δan +

b+1
∑

k=2

a−1
∑

i=0

(

i + 1

n − 2k − i

)

+

b+1
∑

k=2

a−3
∑

i=0

a−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+

b+1
∑

k=2

δ(a−1),(n−2k).

The form of the relations makes it convenient to estimate them asymptotically.
Proposition 2. The following relations hold:

wabn ∈ O(1)

wa∞n ∈ O(qn)

w∞∞n ∈ O(qn),

where a = const, b = const and q =
1 +

√
5

2
.

Proof. We can choose k large enough, so that wabn = 0 ∀n ≥ k. Hence, wabn ∈ O(1).

Let

van =
1

2
(a + 1 + (a + 1)(−1)n+1) + 4fn − 2fn−2a−2,

oan =

a
∑

i=0

(

i + 1

n − i

)

+

a−2
∑

i=0

a−i
∑

j=2

(

i + 1

n − 2j − i

)

+ δan +

b+1
∑

k=2

a−1
∑

i=0

(

i + 1

n − 2k − i

)

+

b+1
∑

k=2

a−3
∑

i=0

a−i−1
∑

j=2

(

i + 1

n − 2k − 2j − i

)

+

b+1
∑

k=2

δ(a−1),(n−2k).

Then,

van ∈ O

(

1

2

(

a + 1 + (a + 1)(−1)n+1
)

+ 4fn − 2fn−2a−2

)

= O(4fn − 2fn−2a−2)
= O(4fn)
= O(fn)
= O(qn)

and
oan ∈ O(1).

Hence, wa∞n ∈ O(qn).
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Similarly,

w∞∞n ∈ O(8fn − σn)

= O(8fn)

= O(fn)

= O(qn).

Therefore, w∞∞n ∈ O(qn) to complete the proof. �

The limits which we derive in the three cases are as follows:
Proposition 3.

lim
n→∞

wabn

qn
= 0,

lim
n→∞

wa∞n

qn
=

1√
5

(

4 − 2

q2a+2

)

,

lim
n→∞

w∞∞n

qn
=

8√
5
,

where a = const, b = const and q =
1 +

√
5

2
.

Proof. We can choose k large enough, so that wabn = 0 ∀n ≥ k. Therefore,

lim
n→∞

wabn

qn
= 0.

Now

lim
n→∞

wa∞n

qn
= lim

n→∞

van

qn
+ lim

n→∞

oan

qn

= lim
n→∞

4fn − 2fn−2a−2

qn
+ 0

=
1√
5

4qn − 2qn−2a−2

qn
.

Hence, lim
n→∞

wa∞n

qn
=

1√
5

(

4 − 2

q2a+2

)

.

When a = ∞ and b = ∞
lim

n→∞

w∞∞n

qn
=

lim
n→∞

8fn − σn

qn
=

1√
5

8qn

qn
.

Therefore, lim
n→∞

w∞∞n

qn
=

8√
5
, which completes the proof. �
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НЕСАМОПРЕСИЧАЩИ СЕ РАЗХОДКИ В РАВНИНАТА

Румен Руменов Данговски, Калина Христова Петрова

Разглеждаме броя на несамопресичащите се разходки с фиксирана дължина вър-

ху целочислената решетка. Завършваме анализа върху случая за лента, с дъл-

жина едно. Чрез комбинаторни аргументи получаваме точна формула за броя на

разходките върху лента, ограничена отляво и отдясно. Формулата я изследваме

и асимптотично.
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