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SELF-AVOIDING WALKS IN THE PLANE"

Rumen Dangovski, Kalina Petrova

We examine the number of self-avoiding walks with a fixed length on the square grid
graph and more specifically we complete the analysis of the lattice strip of height one.
By combinatorial arguments we get an exact formula for the number of self-avoiding
walks on a restricted to the left and to the right lattice strip. We investigate the
formula asymptotically as well.

1. Introduction. A self-avoiding walk (SAW for convenience) is a path on a lattice,
which does not intersect itself. In other words, if we consider it as a sequence of points
(a1,az2...ay), the following condition a; # a; Vi, j|i # j is satisfied. Finding the number
of SAWs with a fixed length on the lattice Z x Z remains an open problem in combina-
torics. However, the case Z x {0,1} is of interest, because it may lay the grounds for
solving the general case.

Definition 1. Let ¢,, denote the number of sequences C' = (co,c1...cn)lci = (zi,y5)
of pairwise different points in the plane such that x; € Z and y; € {0,1} for 0 < i < mn,
co =(0,0) and |x; — zi—1| +|yi —yi—1| =1 for 1 <i<mn.

Doron Zeilberger was the first who find a formula for ¢, by using generating func-
tions [1].

Theorem 1. The following relation holds:

cn = 8fn — on,
n if n is even,
4 ifn is odd

Later Arthur Benjamin presented the first combinatorial proof of this result in [2] by
generating SAWs from sequences, related to Fibonacci numbers. Nikolai Nikolov proved
the formula for ¢, by analyzing the construction of a SAW and counting the number of
sequences in the different subsets [3].

A more complicated problem is considering the same grid Z x {0, 1} with restrictions
to the left and to the right.

Definition 2. Let wqp, denote the number of sequences C = (co,c1 ... cn)lei = (zi,y5)
of pairwise different points, such that x; € Z| —a < xz; <b, y; € {0,1}, 0 <i <n.

We study this number in order to complete the basic analysis of this lattice. In the
proof we use the notions as follows: u-move for an upward move, d-mowve for a downward
move, [-move for a move to the left and r-move for a move to the right. A sequence of
the letters u, d, [ and r is a SAW, which starts from (0,0) and follows the directions in

the string. If a direction @ € {u,d,,r} is repeated k times we write z*.

where o, = { and f, is the n'" Fibonacci number.

*2010 Mathematics Subject Classification: Primary: 52A40.
Key words: Self-avoiding walks.
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2. Main result. 2.1. Formula for restricted walks. For convenience we widen
the definition of a binomial coefficient.
Definition 3. We use the convention
0 ifn<korn<0ork<0,

-

We analyze the construction of the SAWs. In other words, in order to find wgp, we
need to consider the different possible subsets of each sequence.

Definition 4. Let l,p, and rqp, denote the number of SAWs C, such that the last
move (¢p—1,¢y) is entirely on the left and entirely on the right of the segment ((0,0), (0, 1)),
respectively. These sequences we call left and right SAWs.

The relation wqepn = lapn + Tabn holds. Since the two cases are analogical, we proceed
only with the case of the left sequences.

Definition 5. Let fl,, denote the number of SAWs C, such that x; < 0,0<i<mn
and plapn denote lopn — flan, the number of the rest left sequences. These SAWs we call
fully left and partially left, respectively.

Definition 6. Let ul,, denote the number of the fully left sequences Clx; — x;—1 +
lyi —yic1l =1, 1 < i < n and mlgn = flan — tlan s the number of the rest fully left
SAWs. We call these sequences ultra-left and middle left SAWs, respectively.

Definition 7. Let ul;., denote the number of the ultra-left sequences Clx,, = —i. We
call these sequences ultra-left of type 7.

Proposition 1. The following identity holds:

a +1 a—2 a—1 +1 b+1a—1 +1
Wabn = Z_:(;z) +Z:Z(n22ji) +ZZ(n22kz‘>

0 if n is even,

_ _9q—
max <O,min (b, n_5>) — max (0, w) + Xan
2 2
where ogpn =

_ _9bh_
+ max (O,min (a, L 5 5)) — max (0, nTbS) + Mo if 1 is odd,

0 ifn>2a+1,

where Agp = ) .
1 ifnis odd and n < 2a + 1.

Proof. We consider an ultra-left sequence of type ¢ and see that there are exactly @
[-moves. The rest n — i moves are either u-moves or d-moves. Each one of them is made
after an [-move or in the beginning. Hence, a SAW is determined by the choice of the
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positions of the u-moves and d-moves. Thus

(i + 1)
Ulign = .-
n—i
We note the following relation:

2 i1
2.1 Wan = Wign = ( )
(2.1) z:; z:; .
Let us consider a middle left SAW C = (cg,c¢1...¢,). If nis odd and n > 2a + 1, then
the sequence [ “tur™s is a SAW. The construction of the rest middle left walks involves
an ultra-left sequence, followed by an u-turn of type [“ur®~! or I*dr*~!. We associate C
with an ultra-left sequence C’ = (co, ¢1 ... cx)|zr = T of type 4, k < n — 3. Considering
the behavior of the u-turn (cx—1,cr) U (C\C’) with the restriction coming from a, we
obtain

a—2a—1i a—2a—1
(22) an*ZZuzza (n— 2])+5anzz<n_z;]1_ Z)+5ana

=0 j=2 =0 j=2
0 if n is even,
where 0,4y, = 0 ifnisoddand n > 2a+1,

1 ifnisodd and n < 2a+ 1.
From the relation fl,, = ulan + mlan, (2.1) and (2.2) we get

a . a—2a—1
(23) flan = Z <;t];> Z Z <7’L _Z;jl_ Z> + 5an-

=0 =0 j=2
The arbitrarily chosen partially left SAW C' = (cg, ¢y ... ¢,) consists of a u-turn of type
r®ul®t or r*dl**! followed by a fully left sequence. Since x > 1, having in mind the
restriction deriving from b, we reach to the conclusion that

b+1 b+1a—1 i + 1
(24) Plan = > Flla—1)n-2k) = Y D < )

k=2 k=2 i=0

b+1a—3a—i—1 Z+ 1 b+1
(2.5) + Z Z Z (n ok 2j z> + 25(a—1),(n—2k)-
k=2

k=2 i=0 j=2
From the relation lgpn = flan + plabn, (2.3) and (2.4) follows that

(26) labn = Z(;HZ) aiZ( S Z-)”“"*bi:hil(ni;kli)

=0 i=0 j=2 k=2 1i=0

b+1a—3a—i—1 Z+]. b+1
(2.7) + ZZ Z < 9 — i)+k225(a_1)’(n_2k)'

k=21i=0 j=2

Now we consider the case of 74, similarly. We swap the places of @ and b in (2.5) to
obtain the result. O

During the process of finding the formula, we used a computer program to verify the
result.
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2.2. Asymptotic estimations. Some special cases are of interest for our research,
namely when one of the restrictions is removed. If we set a = oo and b = oo, then the
case coincides with ¢,. So,

Wooocon = Cn-

If we set a =const and b = oo, then we obtain the formula

1
Waoon = §(a+1+(a+1)(_1)n+1)+4fn_2fn—2a—2
a . a—2 a—1 b+1a—1 .
141 z—l—l 141
- Z(nz) ZZ( i)+6an+22(n2ki)
1=0 1=0 j=2 k=2 i=0

b+1la—3a—i—1 i1 bil
)
i - Z <n—2k—2]_z)+2(a 1),(n—2k)"

The form of the relations makes it convenient to estimate them asymptotically.
Proposition 2. The following relations hold:

Wabn € 0(1)
Waoon € O(qn)
Woooon € O(qn ) )

1+5
7

Proof. We can choose k large enough, so that wqp, = 0Vn > k. Hence, wap, € O(1).

where a = const, b = const and ¢ =

Let
1
Van = §(a+1+(a+1)(_1)n+1)+4fn_2fn—2a—2a
a—2 a—1 b+1a—1
A Z<z+1> ZZ< z+.1 >+5an+ < z+1 )
=0 =0 j=2 k=2 1i=0
b+1la—3a—i—1 i+ 1 b+1
Yy (n% ) )+25<a1 o
k=2 i=0 j=2
Then,
1
Van € 0(5 (a+1+(a+1)(—1)"+1)+4fn—2fn_2a_2)
= O(4fn - 2fn72a72)
= 0(4 n)
= 0(¢")
and

oan € O(1).

Hence, waoon € O(q").
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Similarly,

Woooon € O8fn —on)
= O(an)
- O(fn)
= 0(q").
Therefore, Woooon € O(¢™) to complete the proof. O

The limits which we derive in the three cases are as follows:
Proposition 3.
w
lim —22 = 0,

n—oo qn

. Waoon
lim =
n— o0 q"

lim =
n—oo q"

1
V5
Woooon i
NG

1+V5

where a = const, b = const and ¢ =

2
Proof. We can choose k large enough, so that wgp, = 0 Vn > k. Therefore,
lim 2o g
n— o0 q"
Now
lim wa(::m = lim wL: + 1 QL:
4 2fn_2a_
_ lim fn fn 2a—2 40
n— o0 q"
1 4qn _ Qqn—Qa—Q
= = .
. Waoon 1 2
Hence, nlirxgo e 75 <4 - W)
When a = oo and b = oo
. Woooon
lim =
n— oo n
. 8fn —On
lim — =
n— oo n
1 8q"
Vb q"
8
Therefore, lim Wosoon _ —=, which completes the proof. (I

n—oo q* /5
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HECAMOIIPECNYAIIINA CE PA3XOJKHN B PABHNIHATA

Pymen Pywmenos /lanroscku, Kanuaa Xpucrosa Ilerposa

Pazriexxjame 6post Ha HecaMOIIPECHYAIIIUTE Ce PA3XOJAKH C (PUKCUPAHA [IHJIKUHA Bbp-
Xy IEeJIOYUCJIeHATa PelleTKa. 3aBbpliBaMe aHAJIN3a BbpPXY Clydas 3a JICHTA, C JbJl-
KUHA €JTHO. Upe3 KOMOMHATOPHU apryMeHTH Moy daBaMe TOUHa (hpopMysia 3a 6post Ha
Pa3XOKUTEe BbPXY JIEHTa, OTPAHMYEHa OTIsABO U oTiscHo. PopMysiaTa s u3cienBame
U aCUMIITOTHIHO.
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