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ASYMPTOTIC EXPANSION OF SOLUTION FOR ALMOST
REGULAR AND WEAKLY PERTURBED SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS"

Lyudmil Karandzhulov, Neli Sirakova

In the paper is applied the Poincare method for solving almost regular nonlinear
boundary-value problems with general boundary conditions. We assume that the
differential system contains an additional function, which defines the perturbation as
singular. Under certain conditions we get the asymptotics of the solution.

1. Introduction. Consider the boundary-value problems
dx

(1) 5 = AOz +o(t) +eF(z,te, f(t€)), t € ab],

(2) I(z) = h,
where ¢ is a small positive parameter.

The coefficients of the problem (1), (2) satisfy the conditions:

(C1) A(t) is (n x n)-matrix with elements of continuous functions of ¢ € [a, ] and
©(t) is a vector-function of the class C([a, b]);

(C2) The function F(x,t,¢, f(t,e)) is a vector-function, having continuous partial
derivatives with respect to all arguments up to (n + 2) in the domain G = D, x [a, ] x
[0,&] x Dy, where D, C R" is in some neighborhood of the solution (%) (t) of the generate
system (e = 0)

d:C(O)
e AWz + o), 1z =h, telab],
Dy C R? is bounded and closed domain, 0 < & < 1. The function f = f(¢,¢) is smooth
in the domain G1 = [a, b] x (0,&] and its values belongs to Dj.

(C3) ! is linear, bounded vector functional, [ € (z : Cla,b] — R, R").

We assume that the function f(t,¢) of (1) contains singular elements (for example
f = flexp(—t/e),sin(t/e))). It shows that we look at almost regular boundary value
problems and almost nonlinear boundary problem. Almost regular Cauchy problems are
considered in [2].

The existence and uniqueness of the solution of the problem (1) (2) were proved in
the work [4] in a form of uniformly convergent power series with respect to . It was
introduced an additional parameter in [4], thus generalizing the method of Poincare on
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the class of boundary-value problems containing singular functions. The results of [4]
have been applied in [1] for systems of type (1) with integral boundary conditions. In
this work, under certain conditions, we get the asymptotics of the solution, obtained in
[4]. The construction of the asymptotic expansion of solution of the problem (1), (2) is
based on the pseudoinverse matrices and orthogonal projections. Algorithm to finding it
by using pseudoinverse matrices can be seen for example in [5], [6], [3].

If + = (x1,...,2,), then as standard norm of the vector z we understand
lz] = max |lz;]], but as standard norm of the matrix A = (a;;) we understand

1= ,n

Al = max Z la; ;|- As norm of the linear operator I we understand ||I(¢)|| < [,
= lnj

b > 0.
2. Auxiliary results. Instead of boundary value problems (1) (2), we consider the
problem with two parameters [2] € € [0,&] and p € (0, ]

(3) f; A(t)z + @(t) + eF (2,12, (L, 1)), € [a,b],
I(z) = h,

Problem (3) is regularly perturbed with respect to the small parameter ¢ and the solution
can be constructed in the form of a power series:

(4) z(t,e, p) Zz(k) (t,u)e

Then, the solution of (1), (2) has the forrn

(5) x(t,e) = Zz(’“) t,e)ek
k=0

By the condition (C2) the function F is analytic in G and it is possible to be presented
in the form

(6) F(z,te, f(t,p) = > Bi(t, p)z"'eb,

k=0
where By (t, 1) is (n x n)-matrix with continuous elements in the domain G;1. We put (4)
in (6) and obtain the series

F (i ) ef te, ft, p)

k=0

tllﬂgv

Fk(t7uaz(0)(t7u)a' . (k) ZFk t :U/

=~
Il

0
where
Fk(t7/j/) = Bo(t7ﬂ)z(k) +9k(t7ﬂaz(0)7 T az(k_l))7 k > 0) go = 0.
Let U(t, s) be the Cauchy matrix for the system Z = A(t)z. Then, the solution of the
Cauchy problem Z = A(t)z, z(a) = £ has the form z(t) = U(¢t, a)¢.
We assume that for (n x n)-matrix D = [(U(-, a)) the following condition is satisfied:
(C4) rank D =r < n.
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Donate by D' the unique pseudoinverse (n X n)-matrix of the matrix D, with Pp
and Pp- the orthoprojectors Pp : R — ker D, Pp« : #” — ker D*, D* = DT. From
the conditions (C4) it follows that rank Pp = rank Pp~ = n — r = p. Then, the matrices
D and D* contain p linearly independent columns and p linearly independent rows,
respectively. Let Pp, be (n x p) matrix, consisting of p linearly independent columns on
the matrix Pp and PD; — (p X n)-matrix, consisting of p linearly independent lines of the
matrix Pp«. The solution of the algebraic system Dy = ¢ under the condition (C4) has
the form y = Pp,n+ D*q, n € R? if and only if Pp-q=0.

We introduce the notations:

®,(t) =U(t,a)Pp, — (n X p)-matrix;

0
Q(n) = Ppyl (/ U(-,s) BO(Saﬂ)q)p(S)dS) — (p x p)-matrix

Theorem 1 [4]. Let the conditions (C1)—(C4), PD;}_L =0,h=nh-1 (fa() U(-,8)p(s) ds)
and det Q(p) # 0V u € (0, e*] be satisfied. Then, in the domain Gy there exist uniquely
determined continuously differentiable functions z(k)(t, w), k > 0 with respect to t € [a,b)
and continuous for p € (0,e*], which satisfy the boundary problems

20 = A)2O + (1), 1(2?) =h,
Z(k) = A(t)z(k) + kal(taua Z(O)a s 7z(k71))7 k Z ]-a

Theorem 2 [4]. There exists €* > 0, so that the series (4) is uniformly convergent
in Go = {(t,e,p)|la <t <b,0<e<e* 0<pu<e*} and its sum is a solution of the
problem (3).

Moreover, by Theorem 2 it is proved that the functions z(*) (t, ) satisfy the inequal-
ities ||2¥) (¢, w)|| < C, k > 0 in the set [a,b] x (0,£*].

3. Main results. We introduce the partial sums of series (4), (5) and the function
H,:

Xo(t,e) =Y 2W(te)ek,  Zu(ten) =Y 2Pt ek,

(7) k=0 . k=0

Hy(u,te,p) =eF(u+ Zn,t,e, f) — Z Fk_l(t,u,z(o), 2R ek
k=1

Lemma 3. There exists a constant €1, 0 < &1 < &, so that in the domain Gs =
{(tye,p)la <t <b,0<e<e,0<pu<er} the function H,(0,t,e, 1) satisfies the
inequality

|Hn(0,t,e,p)|| < Ce™, C > 0.

Lemma 3 can be proved inductively.

In (C2) the set D, is a neighborhood of the generated solution 29 Then, the sum
of the series (4) and its partial sums also belong to this neighborhood. Therefore, for
§>0and ||z < 6, we have ||z]| < p < 6.

Lemma 4. There exist 6, 0 < § < § and 0 < &1 < &, so that for ||u|| < § and ||u| <6,
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t €la,b],0<e<ey, 0<p<ey the function Hy(u,t, e, 1) satisfies the inequality
VA = | ol t, e, 1) — (i, t,,0)| < Cella — ]

In the proof of Lemma 4 is substantially used that the function F' has continuous
partial derivatives with respect to x.

Let the following conditions be fulfilled:
“)
(C5) PD;b(E, w) =0, b(e,pn) = -1 </ U(-,s) Hp (u, 8¢, 1) ds);
a

(C6) The function & = £(e, u) satisfies the inequality
l&(e, )| < b, >0, 0<e<& O<pu<é

Theorem 5. Let the conditions (C1)—(C6) be satisfied. Then, there exist positive
constants €* and C* such that for t € [a,b] and ¢ € (0,£*], the unique solution x(t,e) of
the problem (1), (2) satisfies the inequality

lo(t,€) = Xn(t )| < C7e™*.

Proof. We accomplish the change
(8) U(tﬂf,/ﬁ) = Z(t,E,/J/) - Zn(t757/j/)'
It suffices to show that ||u(t, e, u)|| < C*e™ .

We put (8) in (3) and obtain that the remainder term of the series (4) is a solution
of the following boundary-value problem

o % — Alt)u+ Hy(u,t,2, 1),
l(u) =0,

where Hp,(u,t,e, 1) is defined by (7).

The differential system (9) is equivalent to the equation
t
(10) u(t.zn) = Ultsa)+ [ U(t.s)Ho(us,ep)ds ne RY

We put (10) into the boundary conditions from (9) and to determine the constant vector
1, we obtain the system

(11) Dn=b(e,p),
)
where b(e, u) = —I </ U(-,8)Hp(u,s,€, 1) ds) i

According to (C4), the system (11) has the solution
(12) n=Pp,&(e, 1) + DT b(e, ),

where (g, ) is an arbitrary vector function at 0 < e < & and 0 < p < &, if and only if
the condition (C5) is satisfied. We assume that the function £(e, p1) satisfies the condition
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(C6). We put (12) in (10) and obtain the integral equation
(13) wu(t,e,u) = U(t,a)Pp,&(e, ) + U(t,a) DV b(u, e, 1)

t
+ / U(t, S)H’ﬂ(u(svgau)a Sa 5; :LL) dS

We point out that b(u,e, ) depends on u through H,. We apply the method of
successive approximations to the integral equations (13)

U’O(t7 g, 1,y 5) = 0)

(14) ug(t,e, 1, &) =U(t,a)é(e,p) + Ut a)D+b(uk—17 €, 1)

t
—|—/ U(t,s)Hp(uk—1(8,€, 1), 8,&,p)ds, k>1

One can find positive constants b;, i = 1,2,3, such that ||®,(¢)]| < b1, |U(%,s)|| < ba,
D] < b, at t € [a,0], s € [a,1].

From the properties of the function Hy(u,t,e, ) (Lemma 3 and Lemma 4) we get

t
”ul - UOH = (I)p(t)f({:‘, ,LL) + U(tv a)D+b(u07 & N) + / U(tv S)Hn(uo(sa &, ,LL), 5,6, N)d‘s”

t
<l 2p® 16, Il + U E )l [DF[Ib(0, &, )] +/ 1U(t, 5)Hn(0,5,¢, )| ds

< by1be™ 4 babgbba|| Hy (0, 5, €, 1)|| (b — @) + boCe™ (b — a)

< bybe™ 4 b3bsb(b — a)Ce™ T + by (b — a)Ce™ = (C) + Oy + )™ = g

where v = 2(Cy 4 Cy + C3)e™ 1, C1 = byb, Cy = b2bsbC(b — a), Cs = byC'(b — a).

Using Lemma 4, we obtain

14
S '57

_ = 1
lug — w1 < Caellur — ugll + Csellur — uol] < Celluy — upl| < Ce 5

(VIIN

1
ife <eg= Yok Inductive approach shows that

1 v
||ukfuk71|| < 2k——1._ vk > ]-th € [aab]a €€ (0a52]7 1A (0752]7 ”ukH < 5; ||Uk71|| <.

2
Then,
Nkt e, )l < [luk — wp—1 | + luk—1 — wg—2l| + -+ + luz — wr|| + [lur — uo|

< Lry Ly, v vyl ]
= 9k=19 ' k=29 22 27 2 2 22 k-1
§2.z:1/,

2

i, luk(t,e, p)l| < v
Cs).

The above shows that the sequence of successive approximations (14) converges uni-
formly to the solution u(t,e, ) for the problems (9), i.e. a solution of the problem (9)
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exists, it is uniquely determines and satisfies the inequality
(15) u(t,e, )| < C*e"*, telab], €€(0,e], ne (0,7,

where e* < min(é, e1,e3).
From (8) and (15) it follows that

||Z(t, 2 :u) - Zn(t,E,u)H < C*EnJrlv

which shows that

lz(t,€) = Xn(t, )|l < C*e" 1.

The theorem is proved. [

(1]

(6]

REFERENCES

L. I. KARANDZHULOV, N. D. SIRAKOVA. Boundary-Value Problems with Integral Condi-
tions. CP1184 Applications of Mathematics in Engineering and Economics (Eds G.Venkov,
V. Pasheva) Sozopol 2011, American Institute of Physics, 978-0-7354-0750-3, 2011, 181-188.
R. P. KuzMINA. Asymptotic methods for ordinary differential equations. Kluwer Academic
Publishers, Dordrecht-Boston, 2000.

P. LANKASTER. Theory of matrix. Academic Press, New York-London, 1969 .

N. D. SirakOvA, L. I. KARANDZHULOV. Boundary-Value Problems for Almost Regular and
Weakly Perturbed Nonlinear Systems. In: Mathematical Analysis, Differential equations
and their Applications (Eds A. Andreev, L. Karandzhulov), Proceedings of Bulgarian-
Turkish-Ukrainian Scientific Conference, Sunny Beach, September 15-20, 2010, Academic
Publishing House “Prof. Marin Drinov” ISBN 978-954-322-454-8, Sofia, 2011, 195-206.

R. PENROSE. A generalized inverse for matrices. Proc. Cambridge Phil. Soc., 51 (1955),
No 3, 406-413.

C. R. RAao, S. K. MITRA. Generalized Inverses of Matrices and Applications. New York,
Wiley, 1971.

Lyudmil Ivanov Karandzhulov Neli Dimitrova Sirakova
Technical University — Sofia Technical University — Sofia
Faculty of Applied Math. and Informatics e-mail: evklid@abv.bg
P.O.Box 384

1000 Sofia, Bulgaria

e-mail: likar@tu-sofia.bg

ACUMIITOTNYHO PEINIEHUVE HA ITOYTU PEI'YJIAPHU N CJIABO
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CMYTEHU CUCTEMU 3A OBUKHOBEHU JNO®EPEHIINAJIHA
YPABHEHUA

JI. 1. Kapanmxkyinos, H. 1. CupakoBa

B paborara ce mpuiara merombr Ha Iloankape 3a pemraBaHe Ha HOYTH PEryJIsipHU
HEJINHEHN TPAaHWYHY 33J[a9d MIPU OOIM T'paHuYHY ycaoBusi. [Ipenmosara ce, e mu-
depeHImaTHATa CUCTEMA ChIbPXKa CHHTYJIsIpHA, (DYHKIIUSI 10 OTHOIIEHNE HA MAJIKUS
napameTbp. [Ipu onpesiesienn yCaoBus ce J0Ka3Ba aCUMIITOTUYIHOCT HA PEIIIEHUETO Ha
[TOCTaBeHATa 3a/1a4a.



