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SINGULAR SOLUTIONS OF PROTTER’S PROBLEM FOR A
CLASS OF 3-D HYPERBOLIC EQUATIONS"

Nedyu Popivanov, Aleksey Nikolov

For 3-D wave equation M. Protter formulated (1952) some boundary value problems
which are three-dimensional analogues of the Darboux problems on the plane. Protter
studied these problems in a 3-D domain, bounded by two characteristic cones and
by a plane region. Now, more than 50 years later, it is well known that, for an
infinite number of smooth functions in the right-hand side, these problems do not have
classical solutions and the generalized solution have a strong power type singularity at
the vertex of the characteristic cone, which is isolated and does not propagate along
the cone. In the present paper we consider the third boundary value problem for the
wave equation involving lower order terms with a right-hand function of the form of
trigonometric polynomial and give a new upper estimate of possible singularity of the
solutions. It is interesting that the solutions of the considered problem have the same
order of possible singularity as the solutions of the wave equation without lower order
terms.

1. Statement of the problem. We denote the points in R? by (z,t) = (x1, 22, 1)
and consider the wave equation involving lower order terms

(1) Lu = Ugygy + Ugozy, — Ut + 01Uz, + boUg, + bus + cu = f

in the simply connected region

Qo:={(z,t): 0 <t <1/2,t <22 +22 <1—t}

The region ¢ C R? is bounded by the disk
Yo = {(z,t) : t = 0,22 + 23 < 1}

with center at the origin O(0,0,0) and the characteristic surfaces of (1):

Ypo={(z,t): 0<t <1/2,4/a? + 22 =1—1t},
Yoo :={(z,t): 0 <t <1/2 /2% + 23 =t}

We treat the following problem
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Problem P, . Find solutions to (1) in Qg that satisfy the conditions
(2) ulg, =0, [ur+ aullspo =0,
where o € C1 ().

The adjoint problem to P, is as follows:

Problem P} .Find a solution of the adjoint equation

L'u = gy zy + Usgymy, — Ut — (012) g, — (b2tt)z, — (bu) +cu=g¢g in Qo
with the boundary conditions:
uls,, =0, [us+ (a+bullg, =0.

2. Protter’s problems for the wave equation (without lower order terms).
The following problems were introduced by Protter (see [16]):

Find a solution of the wave equation
(3) Ou = Agt — Ugt = Ugyzy + Ugoz, — e = f 0 Qg
with one of the following boundary conditions

Pl: u|g,us, =0, P1*: wulgyus,, =03
P2: ulg, =0,us, =0, P2": ulsg,, =0,uls, =0.

Protter [16] formulated and investigated both Problems P1 and P1* in Qg as multi-
dimensional analogues of the Darboux problem on the plane. It is well-known that the
corresponding Darboux problems on R? are well posed, which is not true for the Protter’s
problems in R3. For recent results concerning the Protter’s problems see Edmunds and
Popivanov [5], Choi and Park [4], Cher [9], Popivanov and Popov [13, 14, 15].

We formulate the following well-known result Kwang-Chang [17], Popivanov and
Schneider [10], presented here in the terms of the polar coordinates 1 = pcosp, o =
osin .

Theorem 1. For alln € N, n > 4; ay, b, arbitrary constants, the functions

_3
(4) (0, p,t) = to™" (0% = #%)" 72 (an cosng + by sinng)
are classical solutions of the homogeneous problem P1* and the functions

(5) wn(0,,1) = 07" (0% = #7)"* (ay cosng + by sinng)
are classical solutions of the homogeneous problem P2*.

This theorem shows that for the classical solvability (see Bitsadze [3]) of the problem
P1 (respectively, P2) the function f at least must be orthogonal to all smooth functions
(4) (respectively, (5)). The reason of this fact has been found by Popivanov and Schneider
in [10], [11], where they announced for Problems P1 and P2 that there exist singular
solutions for the wave equation (3) with power type isolated singularities even for very
smooth functions f. First a priori estimates for singular solutions of Protter’s Problems
P1 and P2, concerning the wave equation in R3, were obtained in [12].

3. Estimates of singular solutions of this problem for the equation involving
lower order terms. For Problem P,, i.e. (1)-(2), we refer the reader to [7] and [6].
The case a(z) = 0 has been studied by Aldashev [1], Aldashev [2]. Also, we point out
that in the case of (1), with nonzero lower order terms, Karatoprakliev [8] obtained a
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priori estimates, but only for solutions of Problem P1 smooth enough in €.

To formulate known results for Problem P, we first give the definition of generalized
solutions.

Definition 2. A function v = u(z1,22,t) is called a generalized solution of problem
P, in Qq, if
i) u € CHQ\O), [us + a(m)u]‘zo\o =0, u‘zl =0,
i1) the equality

/ [UtVr — Uz, Uy — Ugy Uy + (D1Ug, + Doy, + buy + cu — f)v]dzidradt
Qo

_ / o) (uv) (x, 0)dz1 ders
o

holds for all v from
Vo :={v e C' Qo) : [vr + (a+ b)v]‘zo =0, v =0 in a neighborhood of 320}

The Definition 2 assures that generalized solutions of Problem P, may have singular-
ities on the cone X g.

In Grammatikopoulos et al. [6] under appropriate conditions for the coefficients of
the general equation (1) are derived results which ensure the existence of many singular
generalized solutions of Problem P,. More precisely, the equation (1) is considered in
polar coordinates:

1 1
(6) Lu = E(ng)g + ?UWP — Uy + a1up + gty + buy + cu = f,

where

a1 = bicosp + basinp, ag = g_l(bgcosgo — bising),
and the right-hand side function f is of the form
(7) flo.o.t) = £V (0, 1) cosng + £ (o, t) sinnp,n € N.

Further, the coefficients of the equation (6) and the coefficient « from the boundary
condition are assumed to have a polar symmetry:

®)  ar=ai(|z],1), a2 =ax(|x],t), b=Db(x],t), c=c(x],1), o= a(z]).
Then, for Problem P, treated in polar coordinates, i.e. equation (6) with the boundary

conditions (2), where the coefficients and the right-hand side are of the special form
(7)—(8), the following theorem is proved:

Theorem 3 ([6]). Let a > 0; a1, b, ¢ € C1(Qp\O), az =0 and
ar(lzl,t) = l(lz[,1),  ax(z],t) = 2fle(|z],t),  (z,1) € Do
Then for each function

fo(x,t) = |z| 7" (|Jz|* — )" 2 cosn (arctanﬁ> € C"%() NC™(Q),
T

n € N, n > 4 the corresponding generalized solution u, of the problem P, belongs to
C?(Q0\O) and satisfies the estimate
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[tn (2, 1) |¢=2] = colz|™"

T2
cosn (arctan —) ‘ . 0< 2| <1/2,
1

where ¢y = const > 0.

In the same paper one can find a proof of the uniqueness of the treated problem.
Analogously to Problems P1 and P2, we see, the generalized solutions in this theorem
have singularities at the vertex O of the cone X3 ¢ and these singularities do not propagate
in the direction of the bicharacteristics. Actually, the zero lower terms and o = 0 satisfy
the conditions of this theorem, so in this particular case we have Problem P2.

On the other hand, T. Hristov, N. Popivanov and M. Schneider in [7] (see Theorem
4.4 there in) obtained some upper bounds for all the solutions of this problem assuming
that the coefficients and the right-hand side are continuous functions in Qy and are of
the form (7)—(8). These upper bounds can be written of the form:

Ju(ar, 1) < cofe] "4,

where ¢ is a positive constant,

K = maX{supIbll,supIbzl,suplbl,suPICI, sup Ia(lwl)l}
Qo Qo Qo Qo 0§|1|S1

and ¢ (K) is a positive function which grows up as K grows up.

Here we state that this estimate can be improved:

lu(z, )] < colz[~"77,

where ¢ is an arbitrary positive number and ¢, is a positive constant depending on o.
That means the maximal possible order of singularity of the solution does not depend
on the lower order terms of the equation.

As a result we formulate the following theorem:

Theorem 4. Let the right-hand function f(o,p,t) of the equation (6) is a trigono-
metric polynomial

l
F= {f(e.t)cosng + f{P(o,)sinng}, €N,

n=0
and the coefficients are of the form (8). Let fy(f),i =1,2, a1, az, b and ¢ are continuous
in Q. Then, the unique generalized solution of Problem P, belongs to C1(0\0) and
u(z, t)] < eqla| ™77
in Qo, where o > 0 is arbitrary number and ¢, > 0 depends on o.
Remark. The smoothness of « is set in the definition of P,, that is C1(Z).
From Theorem 3 we know that there exist generalized solutions achieving this max-

imal possible order of singularity. Theorems 3 and 4 determine their exact asymptotic
behavior.
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CUHI'VJIAPHUW PEINIEHN A HA 3AJTJAYATA HA TTPOT'BP 3A KJIAC
OT TPMUMEPHU XUITEPBOJINYHUN YPABHEHU

Heato UBanos ITonuBamoB, AJjiekceii Mopaarnos HukoJsios

IIpes 1952 r. M. IIporsp dhopMmysmpa HOBH IDaHUYHU 3aJa9H 3a BBHJIHOBOTO ypDaB-
HEHHUe, KOUTO Ca TPUMEPHU aHAaJIo3U Ha 3aiadnrte Ha Japby B paBHuHara. 3ajauure
ca pas3rieaHd B TPUMepHA 00JIACT, OTPAHUYEHA OT JIBE XaPAKTEPUCTUIHHU KOHYCA U
pasuuna. Cera, ciresy KaTto ca MuHaIU 1noBede or 50 romunm, € 100pe M3BECTHO, e
3a 6e30poil raaj Ky PYHKIMU B JsiCHATa CTPpAHa HA YPABHEHUETO TE3U 3aJIaY/d HAMAT
KJIACUYECKU PeIlleHus], a 0DOOIIEHOTO pelleHre NMa CUJIHA CTEIleHHA OCOOEHOCT BbB
BbpXa Ha XapaKTEPUCTUIHUS KOHYC, KOATO € M30JIMPaHa ¥ He Ce PA3IPOCTPAHsIBA 110
konyca. Tyk Hue pasriexkaMe TpeTa 'PAHUYHA 33/1a9a 338 BBJIHOBOTO ypPaBHEHUE C
MJIAJIIITN 9JI€EHOBE U JSICHA CTPaHa BbB opMaTa Ha TPUTOHOMETpHYeH noauaoM. Jla-
JleHa € [I0-HOBa OT JI0Cera M3BECTHATA AllPUOPHA OIEHKA 38 MAKCHMAJIHO Bb3MOXKHATA
ocobeHOCT Ha pelneHusATa Ha Tasu 3agada. Okas3Ba ce, e NpU MO-00IIOTO ypaBHe-
HP€ C MJIAJIIN YJI€HOBE Bb3MOXKHATA CHHIYJISIPHOCT € OT CBINUS PeJ KaTO IPU YUCTO
BBJIHOBOTO ypaBHEHUE.
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