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EVOLUTION OF SETS SYSTEMS AND HOMOTOPY

GROUPS OF SPHERES*

Simeon Stefanov, Velika Dragieva

Evolution of systems of sets on the Euclidean sphere S
n is investigated. The re-

lationship of such models with homotopy groups of spheres is established. Some
combinatorial applications for polytopes are obtained.

1. Introduction. Many computer design or pure geometry models deal with continu-
ous motion of sets, but the “continuity” of the motion may be mathematically formalized
in different manners (see [1], [2]). First of all, we need a “distance” between sets. There
are several natural candidates for the job, according to the desired properties of the
motion model. The most general distance of this kind is the so-called “area-distance”
defined in a space M with measure µ as follows: If A and B are measurable subsets of
M , then set

d(A, B) = µ(A∆B),

where A∆B = (A\B) ∪ (B\A) is the symmetric difference of A and B. This is in
fact the distance we deal with in the present article. Note that formally speaking, d
is not a metric, but only a pseudometric in the family M of measurable subsets of M ,
nevertheless, it becomes metric after appropriate factorization of in M.

Another natural distance is the Hausdorff distance between sets in a metric space
(M, ρ)

dH(A, B) = max{sup
x∈A

inf
y∈B

ρ(x, y), sup
y∈B

inf
x∈A

ρ(x, y)}.

If M is bounded then ρ is a metric in the family of closed subsets. There is a finer
metric – the dual Hausdorff, which satisfy to a greater extent the needs of the computer
and geometry design:

dHd(A, B) = max{dH(A, B), dH(M\A, M\B)}.

As pointed above, we deal here with the area distance d which is in many aspects
easier to investigate, on the other hand, it gives more general results in some important
cases. The analogous problems for the other two metrics give rise to some hard open
problems (at least their answers are not known to us).

Now, in order to formalize the concept of continuous motion of a set A ⊂ M , we say
that A is moving continuously subject to the deformation At, t ∈ [0, 1] if A = A0, the sets
At are measurable and the function φ(t) = d(A, At) is continuous in t. For example, the
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drying of the water spots on the asphalt is continuous with respect to the area distance,
while it is discontinuous in the other two distances.

Roughly speaking, a general problem could be the description of equivalence classes
of measurable finite coverings of a manifold (e.g. the Euclidean sphere S

n), satisfying
some constraint, with respect to continuous motion in the above sense. If there is no
constraint on the coverings, then any two of them are obviously equivalent, so there is
no problem here. The situation we deal in the article is about motion classes of finite
coverings ω = (A1, . . . , Ak) of S

n with the constraint such that there exists some α > 0
so that for any ball B of radius α the intersection of B with some Ai has measure zero
(so, in particular, the intersection ∩Ai has measure zero). Let us call such ω “coverings
with null intersection”. For example, if Ai are closed subsets with empty intersection,
then it is easily seen ω to be a covering with null intersection. We suppose here that
the coverings are ordered, i.e., if we interchange two elements of ω,then we get another
covering. Now, it turns out that these motion classes are in a close relation with the
homotopy groups of spheres π∗(S

n) (see Theorem 1). Let us recall that the homotopy
groups of spheres are not completely understood at all (see [4], [5]) and they present
quite irregular and enigmatic behaviour, so the full list of πm(Sn) is very far from being
accomplished.

2. Motion classes and homotopy groups. Let ω be a covering with null inter-
section of S

n containing k sets. We call for brevity such a covering a k-system. Define
the width of ω as the supremum of all α > 0 such that for any ball B of radius α the
intersection of B with some Ai has measure 0. Let us denote it by α(ω).

Definition 1. Let ω0 and ω1 be two k-systems on S
n: ωε = (Aε

1, . . . , A
ε
k), ε = 0, 1.

We say that ω0 and ω1 are equivalent, if they may be connected by a family of k-systems
ωt = (At

1, . . . , A
t
k), t ∈ [0, 1] so that the functions d(A0

i , A
t
i) are continuous in t for any

i = 1, . . . , k and moreover, inf
0≤t≤1

α(ωt) > 0.

We denote the equivalence classes of k-systems on S
n by A(n, k).

This definition gives rise to a list of curious problems, such as: if we interchange
two elements of a k-system ω, then do we get a system equivalent to ω? (Recall, that
k-systems are ordered k-tuples of sets.) We shall see that in many cases the answer is
negative! Another question is whether a given k-system is demountable, i.e. whether it
is equivalent to the trivial one ω0 = (Sn, ∅, . . . , ∅). It is natural to call such a system
detachable, as the equivalence to ω0 is a kind of disassembly of the original system.
Well, we shall see further that the answer to this question may be easily given in terms
of homotopy groups. (For elementary introduction to homotopy groups see for example
[3].)

Theorem 1. The equivalence classes of k-systems on S
n A(n, k) are in a one-to-one

correspondence with the elements of the homotopy group πn(Sk−2).

Moreover, a geometrical “addition” in A(n, k) may be defined which corresponds
to the addition in πn(Sk−2). We shall call sometimes the elements of A(n, k) “motion
classes”.

The proof of Theorem 1 relies essentially on a technical lemma.

Definition 2. Let ω be a k-system in S
m and ft : S

n × I → S
m be a (continuous)

homotopy. We say that this homotopy is regular over ω, if for any A ∈ ω the function
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d(f−1
0 (A), f−1

t (A)) is continuous in t and, moreover, inf
0≤t≤1

α(f−1
t (ω)) > 0.

Let us note that the term “regular homotopy” has different meaning in the smooth
case with no confusion to our definition.

Now we define some basic (n + 2)-system in S
n – the so-called simplicial system. To

define it, it is convenient to consider S
n as a subset of R

n+2, rather than in R
n+1. It is

clear, that the sphere S
n is homeomorphic to the following subset of R

n+2:

Σn =

{

x ∈ R
n+2 |

n+2
∑

i=1

xi = 1,

n+2
∑

i=1

x2
i = 1

}

.

Define now for any i = 1, . . . , n + 2,

Ci = {x ∈ Σn | |xi| ≥ |xj | for any j = 1, . . . , n + 2} .

This collection of sets Ω = (C1, . . . , Cn+2) form a standard (n + 2)-system in Σn, but
as Σn ≈ S

n canonically, we refer to Ω as a simplicial system on S
n.

Lemma 1. If two maps f, g : S
m → S

n are homotopic, then they are regularly
homotopic over the simplicial system Ω in S

n.

We define now the so-called scan map which is crucial in the proof of Theorem 1. Let
ξ = (A1, . . . , Ak) be a k-system in some metric space M with full measure µ. Denote by
Bα(x) the open ball of radius α > 0 centered at x. Suppose in addition that the measure
of each sphere ∂Bα(x) is zero (this is clearly true for manifolds). By the definition of
k-system we have α(ξ) > 0, take some fixed α > 0 such that α < α(ξ). Consider first
the map

m(x) =

{

µ(Ai ∩ Bα(x))
∑k

j=1 µ(Aj ∩ Bα(x))

}k

i=1

.

Then, m is a well-defined continuous map m : M → Lk−1 into the hyperplane Lk−1 =
{

x ∈ R
k|

k
∑

i=1

xi = 1

}

. Let v0 ∈ Lk−1 denote the point with all coordinates equal to 1/k,

then v0 is not in the image m(M), since α < α(ξ). Thus we may compose m with the
radial projection with center v0:

s(x) =
m(x) − v0

‖m(x) − v0‖
.

It is clear that s sends M into the sphere Σk−2 = {x ∈ Lk−1| ‖x− v0‖ = 1} and since
Σk−2 is canonically homeomorphic to S

k−1, we may consider s as a map s : M → S
k−1.

The map s(x) be called scan map associated with system ξ. As it depends on α and ξ,
we denote it by sα(x, ξ).

Proof of Theorem 1. Let ω0 and ω1 be two equivalent k-systems on S
n connected

by a family of k-systems ωt, t ∈ [0, 1]. Since by definition inf
0≤t≤1

α(ωt) > 0, take α so that

0 < α < inf
0≤t≤1

α(ωt). Then, the scan maps sα(x, ω0) and sα(x, ω1) are connected by a

homotopy sα(x, ωt). Therefore, if [ω0] is the motion class of ω0 in A(n, k), and [sα(x, ω0)]
is the homotopy class of the scan map sα(x, ω0) in πn(Sk−2), we have defined correctly
the correspondence

(1) [ω0] → [sα(x, ω0)] : A(n, k) → πn(Sk−2).

We shall prove that this correspondence is bijective. Let γ ∈ πn(Sk−2) and f : S
n →
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S
k−2 is such that [f ] = γ. Let Ω be the standard simplicial k-system in S

k−2 defined
above, then f−1(Ω) is a k-system in S

n. If [f−1(Ω)] denotes its class in A(n, k), then it is
easy to see now that the correspondence γ → [f−1(Ω)] is the inverse to (1). It suffices to
show that if f0 is homotopic to f1, then f−1

0 (Ω) and f−1
1 (Ω) are equivalent k-systems. But

this follows immediately from Lemma 1. Indeed, then f0 and f1 are regularly homotopic
over Ω with regular homotopy ft and, then, the family f−1

t (Ω) defines an equivalence
between f−1

0 (Ω) and f−1
1 (Ω). �

3. Applications and comments. 1) Let Ω = (C1, . . . , Cn+2) be the simplicial
system in S

n and σ be a permutation of the set {1, 2, . . . , n + 2}. Consider the system
Ωσ = (Cσ(1), . . . , Cσ(n+2)) (recall that our systems are ordered collections). It is natural
to ask whether Ω and Ωσ are equivalent (n + 2)-systems. By means of the scan map, it
is easy to see that

Ω ∼ Ωσ if and only if the permutation σ is even.

In particular, if we interchange two elements of Ω, the new system Ω′ is not equivalent
to Ω. So, roughly speaking, if we try to transform continuously Ω into Ω′, all (n+2)-sets
of the system intersect somewhere inevitably.

Another fact is that each Ωσ is not demountable, i.e. it is not equivalent to the trivial
system ω0 = (Sn, ∅, . . . , ∅).

2) Since A(n, k) turns to be a group, it is natural to define geometrically the opposite
−γ of some γ ∈ A(n, k). Let γ = [ω] for some k-system ω = (A1, . . . , Ak) in S

n. Take in
R

n+1 some reflection with respect to a hyperplane, say s : R
n+1 → R

n+1 is interchanging
the first two coordinates. Then, the system s(ω) = (s(A1), . . . , s(Ak)) is representing the
opposite of γ: [s(ω)] = −γ.

Note that the addition in A(n, k) may also be described in purely geometrical terms.
3) As it follows from Theorem 1, A(n, n + 2) = πn(Sn) = Z. Each element of πn(Sn)

is represented by some f : S
n → S

n and equals to the degree deg f . We may obtain from
these considerations some purely combinatorial facts about convex polytopes in R

n+1.
Let P be a convex polytope in R

n+1 with nonempty interior. We say that P is a
general position polytope, if each vertex v ∈ P is an intersection of exactly (n + 1) faces
of P which are in a general position. Let P be such a polytope and let us color its faces
with (n+2) colors 1, 2, . . . , n+2. Choose an arbitrary color i and let the remaining colors
be i1, . . . , in+1. Then, to any vertex v, where all the colors i1, . . . , in+1 meet, we assign
+1 or -1, according to the orientation defined by the coloring in v. More precisely, let
Pij

be the face containing v and colored ij, then v = ∩n+1
j=1 Pij

. Take an arbitrary point
aj lying in the interior of Pij

and consider the vector ej = (v, aj). Then, e1, . . . , en+1 is
a base of R

n+1 that defines either positive, or negative orientation of R
n+1. Set σ(v) = 1

in the first case and σ(v) = −1 in the second case. Finally, define

σ =
∑

v∈P 0

σ(v),

where P 0 denotes the set of all vertices of P .
Then, it turns out that σ is an invariant which does not depend on the initial choice of

color i (the omitted one). Furthermore, consider the system ω = (A1, . . . , An+2), where
Aj is the union of all faces of P colored with j. Then, ω is demountable on ∂P ≈ S

n if and
only if σ = 0. More generally, two colorings of P with invariants σ and σ′, respectively,
define equivalent (n + 2)-systems if and only if σ = σ′. So, it is not difficult to obtain
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non equivalent systems in a purely geometrical way.
4) It is natural to try to carry out these investigations for the Hausdorff distance

dH , instead of the area-distance d. Then, one obtains motion classes H(n, k) instead of
A(n, k), but their examination seems to be quite more complicated. It is easy to see that

A(n, k) ⊂ H(n, k),

while it is not difficult to see that A(1, k) 6= H(1, k). On the other hand, it is possible
that A(n, k) = H(n, k) for n ≥ 2. The answer is not known to us. Another issue is
to consider motion classes Hd(n, k) with respect to the dual Hausdorff distance dHd.
Anyway, the motion properties of k-systems with respect to the Hausdorff metrics are
not covered adequately by the approach presented here.
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ЕВОЛЮЦИЯ НА СИСТЕМИ ОТ МНОЖЕСТВА И ХОМОТОПИЧНИ

ГРУПИ НА СФЕРИТЕ

Симеон Т. Стефанов, Велика И. Драгиева

В работата е изследвана еволюцията на системи от множества върху n-мерната

евклидова сфера S
n. Установена е връзката на такива системи с хомотопичните

групи на сферите. Получени са някои комбинаторни приложения за многостени.
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