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COUETTE GAS FLOW BETWEEN CYLINDERS WITH
DIFFERENT TEMPERATURE"

Peter Gospodinov, Dobri Dankov, Vladimir Roussinov, Stefan Stefanov

The stationary Couette gas flow between rotating inner cylinder and stationary outer
one is studied using DSMC method and numerical solution of a continual model
for relatively small (subsonic) speed. Different cases were studied by varying the
temperature of the rotating cylinder and the Knudsen number. The purpose of this
study is to determine the influence of the cylinder temperature difference on macro-
characteristics — density, gas velocity and temperature. The results obtained by both
methods are in an excellent agreement for a small Knudsen number Kn = 0.02. These
results are important for applications in non-planar microfluidic problems.

1. Introduction. The cylindrical Couette flow is a fundamental problem in the
rarefied gas dynamics [4, 3, 6, 10, 14]. As such, its modeling and numerical solving is
of a great importance for microfluidics, which serves for theoretical background of the
analysis of new emerging Micro Electro Mechanical Systems MEMS [15, 1, 8, 13].

The design of adequate mathematical models of gaseous flows in micro devices is one
of the most important tasks of the studies. We consider both molecular and continuum
models treating the gaseous flow by using different level of mathematical description.
Both models take into account the specific microfluidic effects of gas rarefaction and
slip-velocity regime at the solid boundaries [11, 12, 5, 7].

In the present paper we compare results obtained by using the molecular Direct
Simulation Monte Carlo (DSMC) method with those calculated by a numerical solution
of the continuum Navier-Stokes equations for compressible flow (NS). The aim of the
comparison is to illustrate qualitatively the influence of temperature gradient on the
macro-characteristics — p, V, T

Both methods are used to model the cylindrical Couette flow for Knudsen numbers
0.02, 0.05, 0.1, subsonic velocities and different cylinder wall temperatures. The aim of
the present paper is to study the gas flow for different temperatures of cylinder walls
and establish the field of matching decisions in the two methods in terms of number of
Knudsen and inner cylinder temperature.
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2. Formulation of the problem and methods of solution. We study a rar-
efied gas between two coaxial unconfined cylinders (one dimensional, axis-symmetrical
problem).

2.1. Continuous model (NS) and numerical simulation. The continuous
model is based on the Navier—Stokes equations for compressible fluid, completed with
the equations of continuity and energy transport. The governing equations are written
as follows:
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where V is the velocity vector, u and v are the velocity components along axis r and
©. A rather standard notation is used in Eqs (1)—(5): p is the density and T is the
temperature. p, P, T, u,v = f (r,t). 7; are the stress tensor components and ® is the
dissipation function [9]. For a perfect monatomic hard spheres gas, the viscosity and the
coefficient heat transfer read as [8]:
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(7) A= \(T) = CapoloVoVT, Cx= VT

The above written equations are normalized by using the following scales: for density,
po = mng, (m — is the molecular mass, no-the average number density), for velocity
Vo = V2R1y — R is the gas constant, for length — the distance between the cylinders
L = Ry — Ry, for time ¢y = L/Vp, for temperature Ty = T,1 — the wall temperature of
both cylinders. The Knudsen number is Kn = ly/L, where the mean free path is [y and
v=cp/cy =5/3 (cp and cy. are the heat capacities at constant pressure and constant
volume respectively). In this way in the dimensionless model the characteristic number
Kn and the constants C,, and C) take part. After the scaling, the same symbols for the
dimensionless p, P, T, u, v are used.

For the problem (1)—(4), first-order slip boundary conditions are imposed at the both
walls, which can be written directly in dimensionless form as follows [16, 13]:

0
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or r
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T
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T

at r = R;, i = 1,2. In Eqgs (8)—(10) V; = v;/Vp and T; = Tw,; /T are the dimensionless
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wall velocity and temperature for both cylinders (v;, ¢ = 1,2 is the dimensional wall
velocity). The boundary conditions are modeled by using the local Knudsen number
Knjocal-

! -t K
(11> Knlocal - Z = (L\/§7TO'2£.TL()) = Po 117
Po P

where [ denote the local mean free path.

The equations of transfer (1)—(4), together with the boundary conditions (8)—(11), and
zero initial distributions for u,v and T, formulate the initial unsteady state boundary-
value problem. A second order of approximation, implicit difference scheme to solve
numerically the formulated problem is used [13]. Starting from the inner cylinder wall
M grid knots are introduced along the coordinate r. Thus the difference value problem,
for a given time t, is reduced to the solution of 4 linearized systems of M algebraic
equations. The obtained algebraic system has a diagonal and weakly filled matrix. An
appropriate optimized sparse linear system solver from IMSL Fortran library is applied
for solution of the algebraic system. Due to the problem non-linearity, additionally an
internal iteration process is used.
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Fig 1. Density profiles “o” —T1=10.1; “x” —=T1 = 0.5, “+” - T1 =1

234



Kn=0.1

\ o x + DSMC

Fig 2. Velocity profiles “0” —T1 =0.1; “x” —=T1 =0.5, “47 =T =1

2.2. Direct Simulation Monte Carlo (DSMC) Method. The gas considered
is simulated as a stochastic system of N particles [2, 3]. All quantities used are non-
dimensional, so that the mean free path at equilibrium is equal to 1. The basic steps of
simulation are as follows:

A. The time interval [0; f] over which the solution is found, is subdivided into subin-
tervals with step At.

B. The space domain is subdivided into cells with sides Az, Ar.

C. Gas molecules are simulated in gap G using a stochastic system of N points
(particles) having position z; (t),r; (t) and velocities fL—(t))

D. N,, particles are located in the m-th cell at any given time. This number varies
during the computer simulation by the following two stages:

Stage 1. Binary collisions in each cell are calculated, whereas particles do not move.
Collision modeling is realized using Bird’s scheme “no time counter”.

Stage 2. Particles move with new initial velocities acquired after collisions, and no
external forces act on particles. No collisions are accounted for at this stage.

E. Stage 1 and Stage 2 are repeated until ¢ = .
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Fig 3. Temperature profiles “o” — T1 =0.1; “x” =T7 =0.5, “+7 - T1 =1

F. Flow macro-characteristics (density, velocity, temperature) are calculated as time-
averaged when steady regime is attained.

G. Boundary conditions are diffusive at the cylinder walls and periodic along axis Oy.
The number of particles (simulators) used in DSMC calculations is 3200000.

3. Numerical results. In a previous research [5, 7, 6] it was found that only for
Kn = 0.02 and less both method solutions were in an excellent agreement. And here, the
initial studies are for the cases with Kn = 0.02, V; = 0.5, V5 = 0. The wall temperatures
are different: T varies from 0.1 to 1.0 with step 0.1 and Ty = 1.

We have studied the following cases of rarefied gas flow between both cylinders for
Kn = 0.02, 0.05 and 0.1:

Case 1: ‘/120.5,‘/2:0,1—'1:1,1—12:1, R1:17R2:2;

Case 2: V1 =05,V =0,T1 =05,T, =1, Ry =1, Ry = 2;

Case 3: V1 =05,V =0,T1=0.1,T, =1, Ry =1, Ry = 2.

The results obtained by both methods are: in an excellent agreement at a small
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Knudsen number Kn = 0.02 and Kn = 0.05, in a satisfactory agreement at 0.1 — Figure
1, 2 and 3. By increasing the temperature difference between the cylinder walls at
Kn = 0.1 the difference between flow macrocharacteristics is getting larger, while at
Kn = 0.02 and Kn = 0.05 it is small. This is due to the fact that at larger Knudsen
number the NS model cannot adequately describe the non-equilibrium effects in the gas
flow. It is important to note that the temperature varying does not lead to significant
differences in the velocity profile, as with increasing of Knudsen number these differences
are decreasing.

(1]

REFERENCES

K. Aoki, H. YosHIDA, T. NAKANISHI, A. GARCIA. Inverted velocity profile in the cylin-
drical Couette flow of a rarefied gas. Phys. Rev. E, 68 (2003), 016302:1-11.

G. A. BIRD. Molecular gas dynamics and the direct simulation of gas flows. Oxford Uni-
versity Press, Oxford, (1994).

C. CERCIGNANI. Rarefied gas dynamics, from basic concepts to actual calculations. Cam-
bridge University Press, Cambridge, 2000.

C. CERCIGNANI, F. SERNAGIOTTO. Cylindrical Couette flow of a rarefied gas. Physics of
Fluids, 10 (1967), 1200-1205

D. Y. Dankov, V. M. RoussiNov. Modelling and applications of the cylindrical Couette
flow of a rarefied gas. AIP Conf. Proc., 1067 (2008), 239-243.

P. GospobpiNov, D. DANkKOvV, V. ROUSSINOV, S. STEFANOV. Modelling of cylindrival
Couette flow of rarefied gas between rotating cylinders. Math. and Education in Math., 39
(2010), 184-189.

P. GospobpiNov, D. DANKOV, V. RouUssINOV, S. STEFANOV. Modelling of cylindrical Cou-
ette flow of rarefied gas. The Case of Rotating Outer Cylinder. 1AMiTaNS’09 AIP Conf.
Proc., 1186 (2009), 200-206.

M. MALk, J. DEy, M. ALAM. Linear stability, transient energy growth and the role
of viscosity stratification in compressible plane Couette flow. Phys. Rev. E, 77 (2008),
036322:1-15.

A. MANELA, I. FRANKEL. On the compressible Taylor—Couette problem. J. Fluid Mech.,
588 (2007), 59-74.

G. P. NEITZEL. Marginal stability of impulsively initiated Couette and spin decay. Journal
of Fluid Mechanics, 123 (1982), 226-232.

S. K. SteraNOv, V. M. Roussinov, C. CERCIGNANI. Rayleigh-Benard flow of a rarefied
gas and its attractors. Part 1: Convection regime. Physics of Fluids, 14 (2002), 2255-2269.
S. K. SteraNOvV, V. M. Roussinov, C. CERCIGNANI. Rayleigh-Benard flow of a rarefied
gas and its attractors. Part 2: Chaotic and periodic convective regimes. Physics of Fluids,
14 (2002), 2270-2288.

S. STEFANOV, P. GospoDINOV, C. CERCIGNANI. Monte Carlo simulation and Navier-Stokes
finite differnce solution of rarefied gas flow problems. Physics of Fluids, 10 (1998) Issue 1,
289-300.

G. H. Tang, X. J. Gu, R. W. BARBER, D. R. EMERSON, Y. H. ZHANG. Lattice Boltz-
mann simulation of nonequilibrium effects in oscillatory gas flow. Phys. Rev. E, 78 (2008),
026706:1-9.

K. W. TiBBs, F. BARAS, A. L. GARCIA. Anomalous flow profile due to the curvature effect
on slip length. Phys, Rev. E, 56 (1997), 2282-2283.

H. Yosuipa, K. AokI. Linear stability of the cylindrical Couette flow of a rarefied gas.
Phys. Rev. E, 73 (2006), 021201:1-18.

237



Peter Nikolov Gospodinov

Dobri Yordanov Dankov

Vladimir Milanov Roussinov

Stefan Kanchev Stefanov

Institute of Mechanics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 4

1113 Sofia, Bulgaria

e-mail: png@imbm.bas.bg, dankov@imbm.bas.bg,

238

vladimir@imbm.bas.bg, stefanov@imbm.bas.bg

TEYEHUNE HA KYET MEXKAY INJINHAPU C PA3JINYHN
TEMITEPATYPUA

Ilerbp TI'ocionguuos, Jobpu Jdankos, Baagumup Pycutos,
Credan Credanon

Wscnensano e cranumonapuo tedenue Ha Kyer Ha paspejieH ra3 B ciydasl HA BbpTe-
He Ha BBbTPEIIHHS [UJINHIbD U HEIOJABUKEH BBHIIEH [IMJINH/IbD Ype3 U3I0JI3BaHe Ha
DSMC wmeroj n uncieno pemrenue Ha ypasHeHusita Ha Hasme—Crokc 3a oTHOCHTEI-
HO MaJKa (J03BYKOBA) CKOPOCT Ha BbpTeHe. VI3cienBaHn ca Pa3judHU CJIydaud IpU
[IPOMsIHA Ha TeMIlepaTypara Ha BbPTAIMSAT Ce IUINHIbD U ducaoro Ha Kryncen.
Iesrra Ha M3c/IeIBaHETO € Jla Ce YCTAHOBU BJIMSIHHETO HA MAaJIKM CKODOCTH Ha BbP-
TeHe BbPXY MaKPOXapaKTEePUCTUKUTE — IJI'BTHOCTTA, CKOPOCTTA M TEMIIEpaTypaTa Ha
raza. YCTaHOBEHO e J06pO ChBHIAJEHHE Ha PE3yJITATUTE IOJIYyUEHU IO JBATA METOJa
3a Kn = 0.02. ITonydenure pe3yiaraTu ca Ba’KHU HPU PEIIABAHETO HA HEPABHUHHU,
3a/1auM 0T MUKPOdJIyHIUKATa C OTYMTaHe Ha edeKTUTe HA KPUBUHATA.

KurodoBu aymm: mexanmka Ha QiyuauTe, KUHETHYHA TEOPHs, Pa3peieH ras,

DSMC.



