MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2012
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012
Proceedings of the Forty First Spring Conference
of the Union of Bulgarian Mathematicians

Borovetz, April 9-12, 2012

EXTRACTING BUSINESS RULES THROUGH STATIC
ANALYSIS OF THE SOURCE CODE"

Krassimir Manev, Neli Maneva, Haralambi Haralambiev

The business rules (BR) approach has been introduced at the end of the past cen-
tury in order to facilitate the specification of business software and to make it more
adequate to the needs of the corresponding business. Nowadays most of the stated
goals of the approach have been achieved. But the efforts, both scientific and practi-
cal, for providing ”a rigorous basis for reverse engineering BR from existing systems“
are still in progress. This paper describes an approach for deriving BR from source
code, based on the methods of source code static analysis. Some advantages and
disadvantages of such simplified approach are outlined.

1. Introduction. The Business Rules Project (BRP or GUIDE BRP) started in 1993
with an aim ”"to formalize an approach for identifying and articulating the rules which
define the structure and control the operation of an enterprize“. In 2000 the research
group issued its first Final report [1]. Underlying in it the fact that each business has a
specific set of rules such that partners in the business — businessmen and clients — obey,
members of the research team pointed four main objectives of the project, namely:

e to define how to apply BR to information systems;

e to define and describe BR and associated concepts;

e to provide a rigorous basis for engineering new systems based on formal definitions
of business rules;

e to provide a rigorous basis for reverse engineering of business rules from existing
systems.

Soon after the appearance of the report the first three objectives of the project have
been, more or less, achieved. Specifying software system through the preliminary outlined
BR is a wide-spread practice nowadays [2]. This paper is dedicated to the last of the
above mentioned objectives.

As stressed in the Final report [1] the authors of the BR concept supposed that the
approach must be used for reverse engineering of the existing systems. It is well known
that software systems get old. There are two possible ways to solve the problems with
a legacy application. One of them is to build a new system from scratch. Another
— to change the existing system or part of it with respect to some new demands and

*ACM Classification: D.2.7, D.2.5.
Key words: Business Rules, Extraction of BR from Source Code, Static Analysis, Automated Test
Data Generation.
This work is supported by the National Scientific Research Fund under the Contract DTK 02-
69,/20009.

247



requirements. In both cases it will be very helpful for the development team to have as
rigorous as possible description of the business logic of the system, built in the software.

That is why, since the launching of BR approach some efforts to extract BR from
existing code are made, but there is no a complete solution of the problem till the moment.
Something more, it is not surprising that several authors consider the task unsolvable,
and give a solid reasons for their statements (see [3], for example). As usually in the
theory of algorithms, if the task is unsolvable or intractable ([4]), one possibility is to
solve some particular cases, i.e. to reduce the heavy task to some more simple sub-tasks.

In this paper we try, using the methods of the static analysis of the source code, to
split the text of a given program to disjoint parts in such a way, that each part of the
partition to be transformed later in a single BR. In Section 2 the necessary definitions
and a sample of source code to be used for illustrations are given. Section 3 describes
the proposed approach, based on static analysis of the code. The approach is applied
to the sample from Section 2 and drafts of corresponding rules are extracted. Section 4
concludes some advantages and disadvantages of the approach, the possibilities to extend
the idea to efficient algorithms and describes some intentions for future research.

2. Preliminaries.

2.1. Types of business rules. In [1] the following types of BR are defined:

¢ Definitions of business terms. The most basic elements building business rules are
terms. So the definitions of terms are business rules which describe how people in business
think and talk about things. Terms have been documented in glossaries or as entities in
an entity/relationship model.

¢ Facts relate terms to each other. The structure of an organization can be described
with the facts which relate terms. Facts can be documented as natural language sentences
or as relationships, attributes, and generalization structures in a graphical model.

o Constraints. Each enterprize constrains its behavior in some way. Constraints
permit or prevent an action to be taken.

¢ Derivations. Business rules of this type define how knowledge in one form have to
be transformed into other knowledge, possibly in a different form.

2.2. Static analysis of the code. In this paper we try to apply methods and
algorithms for static analysis of the program code. More precisely, we provide a parallel
with the algorithms for automated test data generation (ATDG) that we implemented
recently [5] as a part of a Smart Source Analyzer [6] — a system, helping software devel-
opers of the company. Our test generator uses the path covering method with solving of
system of constraints. Traditional stages for such ATDG are:

© Program analysis. At this stage of ATDG the code is parsed and a control flow graph
of the program (CFG) and a data dependence graphs (DDG) for each local variable are
constructed. DDG of a variable is used to trace changes of its value during the execution
of the program. The stage is typical for almost each task solved with static analysis
of the code. We could use this stage of ATDG in extraction of BR without significant
changes. Parser of the code in ATDG is created by ANTLR [7] — one of the modern tools
for creation of parsers;

o Paths selection. At this stage of ATDG a set of paths is chosen so as to ,,cover“ the
CFG of the program, following some testing criteria. For extraction of BR the algorithm
of this stage have to be changed a bit and so the name of the stage has to be Path
exploring;

248



o Generation of test data. During this stage of ATDG a system (conjunction) of con-
straints is generated for each of the selected paths. The system is solved by a constraints
solver and a test set is constructed. This stage is specific for ATDG and could not be
used for extraction of BR. We will replace it with a new stage, adequate to the task,
called Ezxtracting the rules.

2.3. Sample code. For the consideration below we use the following sample of
programming code — simplified version of a real function:

public VacReqResult reqVac(Employee anEmployee, //1
Date fromDate, Date toDate, VacType type) //2

{ int daysLeft = anEmployee.getVacDays (type); //3
int daysReq = CompCalend.getWorkDays(fromDate,toDate); //4

if (daysLeft < daysReq) //5

{ return VacReqResult.AUTO_REJECT; } //6
else /77

{ Employee operLeader = anEmployee.getOperLeader(); //8
while (operLeader.isOnVac()) //9
{ operlLeader = operLeader.getOperLeader(); } //10
notifyForVacReq(operLeader) ; //11
return VacReqResult.REQUESTED; //12
} //13
} //14

Remark. For the purposes of the paper the source code of the sample is too nice
(verbose) — all identifiers clearly show the purpose of corresponding type, variable, con-
stant or function/method. In the reality this is not the case. But the mapping of the
extracted rules to the ontology of the business domain is going far beyond the scope of
this paper.

3. Static analysis approach for BR extraction.

3.1. General limitation. Having in mind that the task for extracting BR from
program code could be unsolvable or at least untractable, we have to put some restric-
tions, changing the task with more easy one. Such restrictions could be, for example, the
following:

¢ Let the source code be written in a procedural language, excluding in such a way
from consideration the functional and logical programming, as well as the high level
languages (e.g. SQL);

o Let the program do not contain any form of recursion - neither recursive function
calls, both direct and indirect, nor recursively defined user data types or classes of objects;

¢ Let all parameters of function calls be passed by value, eliminating in such way
the possibility a called function/method to modify some local variables of the calling
function;

o Let each sequence of characters used as a string, be declared as a String, else — as
an array of char’s; etc.

3.2. Rule extraction principles. Our extraction principles are the following:

¢ Terms and facts will be extracted from the declarative part of the code. The
variable names, the constants, the function/method names and the names of the user

249



defined types/classes are extracted as terms. As a fact is extracted: each declaration
that associates a variable with its type, each definition of aggregated type (array, record,
union, etc.), as well as each user defined type/class, that associates many variables in
the aggregate/type/class; each definition of a function/method or function/method call,
which associates the name of the function with its type and the types of its parameters.
¢ Each linear sequence of operators between two branchings (i.e. each part of the
program corresponding to an edge of CFG) is extracted as an elementary derivation.

o And, finally, each branching condition is extracted as two elementary constraints
— one connected with the true elementary derivation, and one with the false elementary
derivation of the branch (the corresponding logical value included).

¢ Elementary derivations and elementary constraints are used for final construction
of constraints and derivation rules. This is the heaviest part of the algorithm and we are
not ready to specify precisely it now.

3.3. Extracting the rules. Let us now apply the outlined extraction principles to
the sample code and to try to point out the main algorithmic challenges of the approach
with static analysis of the code.

As it was mentioned above, during the stage of Program analysis the code is parsed
and different results will be obtained. First, the CFG of the program shown on the Fig. 1
is obtained. The vertices of CFG are denoted by sets of corresponding code line numbers.
Then, the parser determines:

o the user defined types VacReqResult, Employee, VacType;

¢ the constants AUTO_REJECT, REQUESTED and the variables anEmployee, operLeader,
type, daysLeft, daysReq, fromData, toData;

o the names of functions reqVac, getVacDays, getWorkDays, isOnVac, getOperLeader,
notyfyForVacReq;
which will form our dictionary of business terms.

Now we could construct the facts. One possible form of fact rule is

<wvariable> is of type <type>
or the analogical

<list of variables> are of type <type>.

In our example we extract the fact rules

f1: AUTOREJECT,REQUESTED are of type VacRegResult,

f2: anEmployee, operLeader are of type Employee,

£f3: fromData, toData are of type Date,

f4: daysLeft, daysReq are of type int,
and

£f5: type is of type VacType.

Another possible form of fact rule is

< function name> calc <type> from <list of types>.

Applying the method to an instant of a class of objects we will consider the class as a
first argument type in the list of arguments types of the method — in conformance with
the syntax of function call.

So, we extract the following facts:

f6: reqVac calc VacReqResult from (Employee, Date, Date,
vacType),

£7: getVacDays calc int from (Employee, vacType),

250



£8: getOperLeader calc Employee from (Employee),

£9: getWorkDays calc int from (CompCalend, Date, Date),

£10: isOnVac calc int from (Employe),

f11: notyfyForVacReq calc void from (Employee).

It is important to stress that for each identified function/method call the extracting
algorithm should call itself recursively in order to extract the rules from the code of the
called function/method. Among these rules is the derivation rules which describes the
transformation/calculation performed by the function/method.

On the second stage the algorithm should explore the CFG of the program in order
to outline the branching points — in our example these are the vertices {5,7} and {9}, as
well as to extract the elementary derivations, corresponding of execution of lines between
the start vertex and a branching vertex, between two branching vertices or between a
branching vertex and an end vertex, namely {1, 2, 3, 4}, {6}, {8}, {10} and {11, 12}.

{1,2,3,4}
{5,7}
{8} {6}
{9}
{10} {11,12}

Fig. 1. Control Flow Graph

At the moment we are not able to fix the precise form of the elementary derivations.
So we denote them with the general ederive < CFG vertexr>. We obtain the elementary
derivations edl: ederive {1, 2, 3, 4}, ed2: ederive {6}, ed3: ederive {8},
ed4: ederive {10} and ed5: ederive {11, 12}.

The two conditional expressions in lines {5,7} and {9} generates the following two
couples of elementary constraints:

clt: if (daysLeft < daysReq) is true ed2 and stop,

clf: if (daysLeft < daysReq) is false ed3 and check {9},

c2t: if (isOnVac(operLeader)) is true ed3 and check {9},
and

c2t: if (isOnVac(operLeader)) is false ed5 and stop.

The final stage of the algorithm has to compose the constraints and derivation rules.
This is the most challenging part of the extraction process. Different approaches are pos-

251



sible and all of these approaches have to be investigated further for achieving a satisfiable
result.

Here we demonstrate one relatively simple possibility to construct one of the business
rules embedded in our sample code. For this purpose we use an element from the algo-
rithm of our ATDG — covering of a path. Let us consider the simplest path in CFG of
the code leading from the start vertex to one of the end vertices — {1, 2, 3, 4,}, {5,7},
{6}. Covering this path with elements that we constructed to the moment is ed1; cl1t
or more precise

ederive {1 , 2, 3, 4}; if (daysLeft < daysReq) is true ederive
{6} and stop.

Now, substitution with the elementary derivations will give us the rule:

Calcuate daysLeft for (anEmployee, type) with getVacDay and daysReq for (fomDate,
toDate) with getWorkDays. If daysLeft is less than daysReq then issue AUTO_REJECT.

If we are able to map terms into an adequate business ontology, we are able to obtain
even more understandable rule formulation.

4. Conclusion. One advantage of this approach is that it is very simple and intuitive
— it just follows the syntax of the code. The other advantage is that the implementation
of the approach is facilitated by the existence of many software components, used for
development of other software tools, based on the static analysis of the code.

There are some elements of the approach that are not fixed precisely yet. First, the
set of restrictions that we listed in 3.1 is rather intuitive instead of being result of serious
analysis. Each of the included in this list limitations should be an object of detailed
research. It could happen that some of these limitations are not necessary or to find an
algorithmic way to mitigate them. It is worth to stress that even with these limitations,
extracting BRs could be impossible when the developers have been made the code difficult
to be read and understood.

The main disadvantage of the approach is that it is not associated with some of the
classic models for software development. That could lead to non-consistent set of rules,
reflecting the specific style of coding of the involved programmers. An attempt to include
some model-oriented part of the approach will give a good combination of simplicity and
consistency. It is worth also to study and use elements of another attempts to extract
BRs (e.g. [8]) so as to examine their feasibility and efficiency.

REFERENCES

[1] D. Hay, K. A. HEALY (eds). Defining Business Rules ~ What Are They Really? GUIDE
Business Rules Project Final Report, rev. 1.3.; July, 2000.

[2] B. vON HALLE. Business Rules Applied, Building Better Systems Using the Business Rules
Approach. Wiley Computer Publishing, 2002.

[3] D. PaTrICK. Caldwell on Softwaree Engineering. http://dpatrickcaldwell.blogspot.
com/search/label/Mainframe Migration, visited 04.12.2011.

[4] M. R. GAREY, D. S. JoHNsSON. Computers and intractability: a guide to the theory of
NP-completeness, W. H. Freeman and Company, 1979.

[5] KrR. MANEV, A. ZHELYAZKOV, ST. BOYCHEV. Implementation of an Object-Oriented Test
Data Generator. Proc. of International Conference on e-Learning and the Knowledge Soci-
ety — e-Learning’10, Riga, 2010, pp. 231-236.



[6] Smart Source Analyzer (SSA), Musala Soft, Ltd.: http://www.musala.com

[7] T. PARR. The Definitive Antlr Reference: Building Domain-Specific Languages (1st ed.),

Pragmatic Bookshelf, 2007, ISBN 097873925.

[8] I. BAXTER, ST. HENDRIX. A Standards-Based Approach to Extracting Business Rules,

Semantic Designs Inc., 2005 (inofficial presentation).

Krassimir Manev

Faculty of Mathematics and Informatics
Sofia University

5, J. Bourchier Blvd.

1164 Sofia, Bulgaria

e-mail: manev@fmi.uni-sofia.bg

Neli Maneva

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: neman@gbg.bg

Haralambi Haralambiev

Musala Soft, Ltd.

36, D. Tzankov Blvd

1057 Sofia, Bulgaria

e-mail: haralambi.haralambiev@musala.com

N3BJINYAHE HA BUBHEC ITPABMJIA YPE3 CTATUYEH AHAJIN3

HA TTPOTPAMEH KO/I

Kpacumup Mane, Heaiu ManeBa, Xapamamou XapasiamMouen

IMoxxoabr ¢ u3nosnssane Ha GusHec npasuia (BII) Geme BbBeseH B Kpasi Ha MuUHA-
JIsl BEK, 3a Jia ce yJIeCHU cruernuduimpanero Ha pupMeH codTyep U Jia MOXKE TOR
Ja 3aJI0BOJIU TI0-7100pe HYy»KJUTe Ha ChOTBETHHUsI Ou3Hec. /lHec moBedeTro oT Iejimre
Ha TOJIX0a ca nmocturaatu. Ho ycuusita, B Hay YHO-U3CJIEIOBATEICKA U TPAKTUIECKH
aCIIeKT, 3a IIOCTUTAaHE Ha ,, popMaHA OCHOBA 3a oOpaTHO u3BjaudaHe Ha BIT or cbmec-
TBYBAIIU CUCTEMU“ TTPOIbJIKABAT. B cTaTusiTa € mpecraBeH MOX0/1 33 U3BJINYAHE HA
BII or mporpamen koj, 6a3upaH Ha METOIU 3a CTATUYEH aHAIN3 Ha Koja. llocoueHu
ca HSIKOM IPEJMMCTBA U HEJOCTATHIU Ha TaK'bB MOJIXO,.

253



