SOME MARGINAL DENSITIES OF THE WISHART DISTRIBUTION*

Evelina Veleva

Wishart distribution arises as the distribution of the sample covariance matrix for a sample from a multivariate normal distribution. Some marginal densities, derived by integration of the Wishart density function are obtained. Necessary and sufficient conditions for positive definiteness of a matrix are established, which give the bounds of the integration.

Wishart distribution has been considered in the literature as multivariate generalization of the χ^{2}-distribution. It is a basic distribution in many models of the multivariate statistical analysis. In practice it arises as the distribution of the sample covariance matrix for a sample from a multivariate normal distribution. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be n independent observations on a random vector \mathbf{x} with p-variate normal distribution $N_{p}(\mu, \Sigma)$, $p<n$, with mean vector μ and positively definite covariance matrix Σ. Let \mathbf{S} be the sample covariance matrix

$$
\mathbf{S}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overrightarrow{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{t}, \quad \overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}
$$

Then, the joint distribution of the elements of the matrix \mathbf{S} is Wishart distribution $\mathrm{W}_{p}(n-1,1 /(n-1) \Sigma)$ (see [1], [4]). Hence, the joint distributions of sets of elements of the matrix \mathbf{S} are marginal distributions of the Wishart distribution.

A $p \times p$ random matrix \mathbf{W} with Wishart distribution $\mathrm{W}_{p}(n, \Sigma)$, where $p<n+1$ and Σ is a positively definite $p \times p$ matrix, has probability density function of the form

$$
\begin{equation*}
f(\mathrm{~V})=\frac{1}{2^{n p / 2} \Gamma_{p}(n / 2)(\operatorname{det} \Sigma)^{n / 2}}(\operatorname{det} \mathrm{~V})^{(n-p-1) / 2} e^{-\operatorname{tr}\left(\mathrm{V} \mathrm{\Sigma}^{-1}\right) / 2} \tag{1}
\end{equation*}
$$

for any real $p \times p$ positively definite matrix V , where $\Gamma_{p}(\cdot)$ is the multivariate gamma function defined as $\Gamma_{p}(\gamma)=\pi^{p(p-1) / 4} \prod_{j=1}^{p} \Gamma[\gamma+(1-j) / 2]$ and $\operatorname{det}(\cdot), \operatorname{tr}(\cdot)$ denote the determinant and the trace of a matrix.

Let $\mathbf{W}=\left(W_{i, j}\right)$. The marginal distribution of the Wishart distribution $\mathrm{W}_{p}(n, \Sigma)$, corresponding to a set of elements of the form $\left\{W_{i, j}, k \leq i \leq j \leq s\right\}$ for arbitrary integer k, s, such that $1 \leq k \leq s \leq p$, is $\mathrm{W}_{s-k+1}(n, \Sigma[\{k, \ldots, s\}])$, where $\Sigma[\{k, \ldots, s\}]$ denotes the submatrix of the matrix Σ, composed of the rows and columns with numbers from the set $\{k, \ldots, s\}$ (see [1], [4]). These marginal distributions correspond to all the elements

[^0]of a submatrix of the random matrix \mathbf{W} of the form $\mathbf{W}[\{k, \ldots, s\}]$. Marginal densities for the sets of the form $\left\{W_{i, j}, k \leq i \leq j \leq s\right\} \backslash\left\{W_{q, r}\right\}$, where $1 \leq k \leq q<r \leq s \leq p$, can be obtained by integration the density of the Wishart distribution (1) with respect to the element $v_{q, r}$ of the positively definite matrix V . The result is given by Theorem 1.

Subsequently, by $I_{v}(\cdot)$ we denote the modified Bessel function of the first kind (see [3], 8.445). Throughout the paper, the elements of Σ^{-1} are denoted by $\sigma^{i, j}, 1 \leq i \leq j \leq p$.

Let α and β be nonempty subsets of the set $\{1, \ldots, p\}$. By $\mathrm{V}[\alpha, \beta]$ we denote the submatrix of V , composed of the rows with numbers from α and the columns with numbers from β. When $\beta \equiv \alpha, \mathrm{V}[\alpha, \alpha]$ is denoted simply by $\mathrm{V}[\alpha]$. For the complement of α in $\{1, \ldots, p\}$ we use the notation α^{c}. For instance, $\mathrm{V}\left[\{q\}^{c},\{r\}^{c}\right]$ denotes the submatrix, which can be obtained from V by deleting its q-th row and r-th column.

Theorem 1. Let $\mathbf{W}=\left(W_{i, j}\right)$ has Wishart distribution $\mathrm{W}_{p}(n, \Sigma)$ and q, r be integers, $1 \leq q<r \leq p$. Then, the marginal density, corresponding to the set of elements $\left\{W_{i, j}, 1 \leq i \leq j \leq p\right\} \backslash\left\{W_{q, r}\right\}$ has the form

$$
\begin{equation*}
f_{q, r}\left(v_{i, j}, 1 \leq i \leq j \leq p,(i, j) \neq(q, r)\right)= \tag{2}
\end{equation*}
$$

$$
\frac{L}{2^{n p / 2} \Gamma_{p}(n / 2)(\operatorname{det} \Sigma)^{n / 2}} \frac{\left(\operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}_{0}\left[\{r\}^{c}\right]\right)^{(n-p) / 2}}{\left(\operatorname{det} \mathrm{~V}_{0}\left[\{q, r\}^{c}\right]\right)^{(n-p+1) / 2}} e^{-\operatorname{tr}\left(\mathrm{V}_{0} \Sigma^{-1}\right) / 2}
$$

where V_{0} is the symmetric matrix with elements $v_{j, i}=v_{i, j}, 1 \leq i \leq j \leq p,(i, j) \neq(q, r)$ and $v_{q, r}=v_{r, q}=0$, for all $v_{i, j}, 1 \leq i \leq j \leq p,(i, j) \neq(q, r)$ for which the matrices $V_{0}\left[\{q\}^{c}\right]$ and $V_{0}\left[\{r\}^{c}\right]$ are both positively definite. If $\sigma^{q, r}=0$, then

$$
\begin{equation*}
L=\frac{\Gamma((n-p+1) / 2) \Gamma(1 / 2)}{\Gamma((n-p+2) / 2)} . \tag{3}
\end{equation*}
$$

For $\sigma^{q, r} \neq 0$,

$$
\begin{equation*}
L=\Gamma((n-p+1) / 2) \Gamma(1 / 2) e^{A}\left(\frac{2}{B}\right)^{(n-p) / 2} I_{(n-p) / 2}(B), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{(-1)^{r-q-1} \operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]}{\operatorname{det} \mathrm{V}_{0}\left[\{q, r\}^{c}\right]} \sigma^{q, r}, \quad B=\frac{-\sqrt{\operatorname{det} \mathrm{V}_{0}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}_{0}\left[\{r\}^{c}\right]}}{\operatorname{det} \mathrm{V}_{0}\left[\{q, r\}^{c}\right]} \sigma^{q, r} . \tag{5}
\end{equation*}
$$

Proof. The next Lemma gives the bounds of the integration of the Wishart density $f(\mathrm{~V})$, given by (1) with respect to the variable $v_{q, r}$.

Lemma 1. Let $\mathrm{V}=\left(v_{i, j}\right)$ be a real $p \times p$ symmetric matrix and q, r be fixed integers, $1 \leq q<r \leq p$. Let V_{0} be the matrix, obtained from the matrix V by replacing the elements $v_{q, r}$ and $v_{r, q}$ with zeros. Then the matrix V is positively definite if and only if the matrices $\mathrm{V}\left[\{q\}^{c}\right]$ and $\mathrm{V}\left[\{r\}^{c}\right]$ are positively definite and the element $v_{q, r}$ satisfies the inequalities

$$
\begin{equation*}
a<v_{q, r}<b, \tag{6}
\end{equation*}
$$

where

$$
a=\frac{(-1)^{r-q} \operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]-\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]},
$$

$$
b=\frac{(-1)^{r-q} \operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]+\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]} .
$$

For convenience of the reader, the proof of Lemma 1 is given in Appendix A. Using Lemma 1,

$$
\begin{equation*}
f_{q, r}\left(v_{i, j}, 1 \leq i \leq j \leq p,(i, j) \neq(q, r)\right)=\int_{a}^{b} f(\mathrm{~V}) d v_{q, r} \tag{7}
\end{equation*}
$$

Let us change the variable of the integration by the substitution

$$
\begin{equation*}
v_{q, r}=\frac{(-1)^{r-q} \operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]+t \sqrt{\operatorname{det} \mathrm{~V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]} \tag{8}
\end{equation*}
$$

The new variable t ranges from -1 to 1 and

$$
d v_{q, r}=\frac{\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]} d t
$$

A simple representation of $\operatorname{det} \mathrm{V}$ in terms of the new variable t is given by the next Lemma.

Lemma 2. Let t be defined by equality (8). Then,

$$
\begin{equation*}
\operatorname{det} \mathrm{V}=\frac{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]}\left(1-t^{2}\right) \tag{9}
\end{equation*}
$$

The proof of Lemma 2 is given in Appendix B.
Since the matrices V and Σ^{-1} are symmetric, we have the representation

$$
\operatorname{tr}\left(\mathrm{V} \Sigma^{-1}\right)=\sum_{i=1}^{p} v_{i, i} \sigma^{i, i}+2 \sum_{i<j} v_{i, j} \sigma^{i, j}=\operatorname{tr}\left(\mathrm{V}_{0} \Sigma^{-1}\right)+2 v_{q, r} \sigma^{q, r}
$$

Hence, changing the variable of the integration, the marginal density (7) takes the form (2) with

$$
\begin{equation*}
L=e^{A} \int_{-1}^{1}\left(1-t^{2}\right)^{(n-p-1) / 2} e^{B t} d t \tag{10}
\end{equation*}
$$

where A and B are given by (5). If $\sigma^{q, r}=0$, then $A=B=0$. Now, using the equalities 3.1963 and 8.3844 in [3], we obtain (3).

When $\sigma^{q, r} \neq 0$, then using 8.431 in [3], (10) can be written in the form (4).
As an immediate consequence of Theorem 1, we get the next Corollary.
Corollary 1. Let $\mathbf{W}=\left(W_{i, j}\right)$ has Wishart distribution $\mathrm{W}_{p}(n, \Sigma)$ and q, r be integers, $1 \leq q<r \leq p$. Then, the conditional density of $W_{q, r}$ given that $W_{i, j}=v_{i, j}, 1 \leq i \leq j \leq$ $p,(i, j) \neq(q, r)$ has the form

$$
\begin{aligned}
g\left(v_{q, r} \mid v_{i, j}, 1 \leq i \leq j \leq p,(i, j)\right. & \neq(q, r)) \\
& =\frac{\left(\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]\right)^{(n-p+1) / 2}(\operatorname{det} \mathrm{~V})^{(n-p-1) / 2}}{\left(\operatorname{det} \mathrm{~V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]\right)^{(n-p) / 2} L} e^{-v_{q, r} \sigma^{q, r}}
\end{aligned}
$$

where L is given by the equalities (3)-(5), for all $v_{i, j}, 1 \leq i \leq j \leq p$ for which the matrix $\mathrm{V}=\left(v_{i, j}\right)$ is positively definite.

Appendix A.

Proof of Lemma 1. If α is a nonempty subset of the set $\{1, \ldots, p\}$ and the matrix $\mathrm{V}[\alpha]$ is invertible, then the Schur complement $\mathrm{V} / \mathrm{V}[\alpha]$ of $\mathrm{V}[\alpha]$ in V is defined as (see [6])

$$
\mathrm{V} / \mathrm{V}[\alpha]=\mathrm{V}\left[\alpha^{c}\right]-\mathrm{V}\left[\alpha^{c}, \alpha\right](\mathrm{V}[\alpha])^{-1} \mathrm{~V}\left[\alpha, \alpha^{c}\right]
$$

An important property of the Schur complement is that (see [6])

$$
\operatorname{det}(\mathrm{V} / \mathrm{V}[\alpha])=\frac{\operatorname{det} \mathrm{V}}{\operatorname{det} \mathrm{~V}[\alpha]}
$$

The Schur complement of $\mathrm{V}\left[\{q, r\}^{c}\right]$ in the matrix V is the 2×2 matrix

$$
\mathrm{V} / \mathrm{V}\left[\{q, r\}^{c}\right]=\left(\begin{array}{cc}
v_{q, q} & v_{q, r} \\
v_{r, q} & v_{r, r}
\end{array}\right)-\binom{\mathrm{V}_{q}^{t}}{\mathrm{~V}_{r}^{t}}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1}\left(\begin{array}{ll}
\mathrm{V}_{q} & \mathrm{~V}_{r}
\end{array}\right),
$$

where V_{q} and V_{r} are the vectors $\mathrm{V}_{q}=\mathrm{V}\left[\{q, r\}^{c},\{q\}\right], \mathrm{V}_{r}=\mathrm{V}\left[\{q, r\}^{c},\{r\}\right]$. Since V is a symmetric matrix,

$$
\mathrm{V} / \mathrm{V}\left[\{q, r\}^{c}\right]=\left(\begin{array}{cc}
v_{q, q}-\mathrm{V}_{q}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{q} & v_{q, r}-\mathrm{V}_{q}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{r} \tag{11}\\
v_{q, r}-\mathrm{V}_{q}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{r} & v_{r, r}-\mathrm{V}_{r}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{r}
\end{array}\right) .
$$

The Schur complements of $\mathrm{V}\left[\{q, r\}^{c}\right]$ in $\mathrm{V}\left[\{q\}^{c}\right]$ and $\mathrm{V}\left[\{r\}^{c}\right]$ are numbers,

$$
\begin{aligned}
& \mathrm{V}\left[\{q\}^{c}\right] / \mathrm{V}\left[\{q, r\}^{c}\right]=v_{r, r}-\mathrm{V}_{r}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{r}=\frac{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right]}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]}, \\
& \mathrm{V}\left[\{r\}^{c}\right] / \mathrm{V}\left[\{q, r\}^{c}\right]=v_{q, q}-\mathrm{V}_{q}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{q}=\frac{\operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]} .
\end{aligned}
$$

The Schur complement of the matrix $\mathrm{V}\left[\{q, r\}^{c}\right]$ in the matrix

$$
\mathrm{V}\left[\{q, r\}^{c}\right]_{q, r}=\left(\begin{array}{cc}
\mathrm{V}\left[\{q, r\}^{c}\right] & \mathrm{V}_{r} \\
\mathrm{~V}_{q}^{t} & v_{q, r}
\end{array}\right)
$$

is again a number,

$$
\mathrm{V}\left[\{q, r\}^{c}\right]_{q, r} / \mathrm{V}\left[\{q, r\}^{c}\right]=v_{q, r}-\mathrm{V}_{q}^{t}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)^{-1} \mathrm{~V}_{r}=\frac{\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, r}}{\operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]}
$$

Replacing in (11), we obtain the representation

$$
\mathrm{V} / \mathrm{V}\left[\{q, r\}^{c}\right]=\frac{1}{\operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]}\left(\begin{array}{ll}
\operatorname{det} \mathrm{V}\left[\{r\}^{c}\right] & \operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, r} \\
\operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]_{q, r} & \operatorname{det} \mathrm{~V}\left[\{q\}^{c}\right]
\end{array}\right) .
$$

Let α be a nonempty set of indexes. A square matrix V is positively definite if and only if the matrices $\mathrm{V}[\alpha]$ and $\mathrm{V} / \mathrm{V}[\alpha]$ are positively definite (see [6]). Using this property of the Schur complement, the matrix V is positively definite if and only if the matrices $\mathrm{V}\left[\{q, r\}^{c}\right]$ and $\mathrm{V} / \mathrm{V}\left[\{q, r\}^{c}\right]$ are both positively definite. Consequently, the positively definiteness of the matrix V is equivalent to the conditions:
1.1. The matrix $\mathrm{V}\left[\{q, r\}^{c}\right]$ is positively definite;
1.2. $\operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]>0$;
1.3. $\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right]>0$;
1.4. $-\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right]} \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right] \quad<\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, r}<\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}$.

Let us consider the matrix $\mathrm{V}\left[\{q, r\}^{c}\right]_{q, q}=\left(\begin{array}{cc}\mathrm{V}\left[\{q, r\}^{c}\right] & \mathrm{V}_{q} \\ \mathrm{~V}_{q}^{t} & v_{q, q}\end{array}\right)$, which can be obtained from the matrix $\mathrm{V}\left[\{r\}^{c}\right]$, placing its q-th row and column after the last row and column, respectively. With this transformation the determinant remains unchanged, $\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, q}=\operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]$. A symmetric matrix is positively definite if and only if all principal minors of the matrix are positive (see [2]). Hence, the conditions 1.1 and 1.2 are equivalent to
2.1. The matrix $\mathrm{V}\left[\{q, r\}^{c}\right]_{q, q}$ is positively definite.

Another well-known property of the positively definite matrices is that their eigenvalues are all positive. Since, obviously, the matrices $\mathrm{V}\left[\{q, r\}^{c}\right]_{q, q}$ and $\mathrm{V}\left[\{r\}^{c}\right]$ have the same eigenvalues, the condition 2.1 is equivalent to
3.1. The matrix $\mathrm{V}\left[\{r\}^{c}\right]$ is positively definite.

Analogically, the conditions 1.1 and 1.3 are equivalent to
3.2. The matrix $\mathrm{V}\left[\{q\}^{c}\right]$ is positively definite.

From the expansion of $\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, r}$ by the elements of its last row, we have

$$
\operatorname{det} \mathrm{V}\left[\{q, r\}^{c}\right]_{q, r}=v_{q, r} \operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]+\operatorname{det}\left(\begin{array}{cc}
\mathrm{V}\left[\{q, r\}^{c}\right] & \mathrm{V}_{r} \tag{12}\\
\mathrm{~V}_{q}^{t} & 0
\end{array}\right)
$$

The last matrix in (12) can be obtained from the matrix $\mathrm{V}_{0}\left[\{r\}^{c},\{q\}^{c}\right]$, placing its q-th row below the last row and its $(r-1)$-th column after its last column. Consequently,

$$
\operatorname{det}\left(\begin{array}{cc}
\mathrm{V}\left[\{q, r\}^{c}\right] & \mathrm{V}_{r} \tag{13}\\
\mathrm{~V}_{q}^{t} & 0
\end{array}\right)=(-1)^{r-q-1} \operatorname{det} \mathrm{~V}_{0}\left[\{r\}^{c},\{q\}^{c}\right] .
$$

Since the transposition preserves the value of a determinant,

$$
\begin{equation*}
\operatorname{det} \mathrm{V}_{0}\left[\{r\}^{c},\{q\}^{c}\right]=\operatorname{det} \mathrm{V}_{0}\left[\{q\}^{c},\{r\}^{c}\right] . \tag{14}
\end{equation*}
$$

Now, using (12)-(14) and 1.1, we obtain that the condition 1.4 is equivalent to
3.3. The element $v_{q, r}$ satisfies the inequalities (6).

Appendix B.

Proof of Lemma 2. From equality (8) we have that

$$
t=\frac{v_{q, r} \operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]+(-1)^{r-q-1} \operatorname{det} \mathrm{~V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]}{\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}} .
$$

From the expansion of $\operatorname{det} \mathrm{V}\left[\{q\}^{c},\{r\}^{c}\right]$ by the elements of its r-th row it can be seen that $\operatorname{det} \mathrm{V}\left[\{q\}^{c},\{r\}^{c}\right]=v_{r, q}(-1)^{r-q-1} \operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}\right]+\operatorname{det} \mathrm{V}_{0}\left[\{q\}^{c},\{r\}^{c}\right]$. Consequently,

$$
t=\frac{(-1)^{r-q-1} \operatorname{det} \mathrm{~V}\left[\{q\}^{c},\{r\}^{c}\right]}{\sqrt{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}}
$$

Hence,

$$
1-t^{2}=\frac{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]-\left(\operatorname{det} \mathrm{V}\left[\{q\}^{c},\{r\}^{c}\right]\right)^{2}}{\operatorname{det} \mathrm{~V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}
$$

Now, using the equality

$$
\operatorname{det} \mathrm{V} \operatorname{det} \mathrm{~V}\left[\{q, r\}^{c}=\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]-\left(\operatorname{det} \mathrm{V}\left[\{q\}^{c},\{r\}^{c}\right]\right)^{2},\right.
$$

which is a special case of the Sylvester's determinant identity (see [5]), we obtain that

$$
1-t^{2}=\frac{\operatorname{det} \mathrm{V} \operatorname{det}\left(\mathrm{~V}\left[\{q, r\}^{c}\right]\right)}{\operatorname{det} \mathrm{V}\left[\{q\}^{c}\right] \operatorname{det} \mathrm{V}\left[\{r\}^{c}\right]}
$$

REFERENCES

[1] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley \& Sons, New York, $2^{\text {nd }}$ ed., 2003.
[2] J. E. Gentle. Matrix Algebra. Theory, Computations, and Applications in Statistics. Springer Science+Business Media, LLC, New York, 2007.
[3] I. S. Gradshteyn, I. M. Ryzhik. Table of Integrals, Series, and Products. A. Jeffrey and D. Zwillinger (Eds), Elsevier, $7^{\text {th }}$ ed., 2007.
[4] R. J. Muirhead. Aspects of Multivariate Statistical Theory. John Wiley \& Sons, New York, $2^{\text {nd }}$ ed., 2005.
[5] E. W. Weisstein. Sylvester's Determinant Identity. MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/SylvestersDeterminantIdentity.html
[6] F. Zhang. (ed.) The Schur Complement and Its Applications, Springer Science + Business Media Inc., New York, 2005.

Evelina Veleva
Department of Numerical Methods and Statistics
Rouse University
8, Studentska Str.
7004 Rouse, Bulgaria
e-mail: eveleva@uni-ruse.bg

НЯКОИ МАРГИНАЛНИ ПЛЪТНОСТИ НА РАЗПРЕДЕЛЕНИЕТО НА УИШАРТ

Евелина Илиева Велева

Разпределението на Уишарт се среща в практиката като разпределението на извадъчната ковариационна матрица за наблюдения над многомерно нормално разпределение. Изведени са някои маргинални плътности, получени чрез интегриране на плътността на Уишарт разпределението. Доказани са необходими и достатъчни условия за положителна определеност на една матрица, които дават нужните граници за интегрирането.

[^0]: *2000 Mathematics Subject Classification: 62H10.
 Key words: Wishart distribution, positively definite matrix, marginal density, covariance matrix.

