МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012 Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

SOME MARGINAL DENSITIES OF THE WISHART DISTRIBUTION*

Evelina Veleva

Wishart distribution arises as the distribution of the sample covariance matrix for a sample from a multivariate normal distribution. Some marginal densities, derived by integration of the Wishart density function are obtained. Necessary and sufficient conditions for positive definiteness of a matrix are established, which give the bounds of the integration.

Wishart distribution has been considered in the literature as multivariate generalization of the χ^2 -distribution. It is a basic distribution in many models of the multivariate statistical analysis. In practice it arises as the distribution of the sample covariance matrix for a sample from a multivariate normal distribution. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be n independent observations on a random vector \mathbf{x} with p-variate normal distribution $N_p(\mu, \Sigma)$, p < n, with mean vector μ and positively definite covariance matrix Σ . Let \mathbf{S} be the sample covariance matrix

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \vec{\mathbf{x}})^t, \qquad \bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i.$$

Then, the joint distribution of the elements of the matrix **S** is Wishart distribution $W_p(n-1, 1/(n-1)\Sigma)$ (see [1], [4]). Hence, the joint distributions of sets of elements of the matrix **S** are marginal distributions of the Wishart distribution.

A $p \times p$ random matrix **W** with Wishart distribution $W_p(n, \Sigma)$, where p < n + 1 and Σ is a positively definite $p \times p$ matrix, has probability density function of the form

(1)
$$f(\mathbf{V}) = \frac{1}{2^{np/2}\Gamma_p (n/2) (\det \Sigma)^{n/2}} (\det \mathbf{V})^{(n-p-1)/2} e^{-tr(\mathbf{V}\Sigma^{-1})/2}$$

for any real $p \times p$ positively definite matrix V, where $\Gamma_p(\cdot)$ is the multivariate gamma function defined as $\Gamma_p(\gamma) = \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma[\gamma + (1-j)/2]$ and det (\cdot) , $tr(\cdot)$ denote the determinant and the trace of a matrix.

Let $\mathbf{W} = (W_{i,j})$. The marginal distribution of the Wishart distribution $W_p(n, \Sigma)$, corresponding to a set of elements of the form $\{W_{i,j}, k \leq i \leq j \leq s\}$ for arbitrary integer k, s, such that $1 \leq k \leq s \leq p$, is $W_{s-k+1}(n, \Sigma[\{k, \ldots, s\}])$, where $\Sigma[\{k, \ldots, s\}]$ denotes the submatrix of the matrix Σ , composed of the rows and columns with numbers from the set $\{k, \ldots, s\}$ (see [1], [4]). These marginal distributions correspond to all the elements

²2000 Mathematics Subject Classification: 62H10.

Key words: Wishart distribution, positively definite matrix, marginal density, covariance matrix. 273

of a submatrix of the random matrix \mathbf{W} of the form $\mathbf{W}[\{k, \ldots, s\}]$. Marginal densities for the sets of the form $\{W_{i,j}, k \leq i \leq j \leq s\} \setminus \{W_{q,r}\}$, where $1 \leq k \leq q < r \leq s \leq p$, can be obtained by integration the density of the Wishart distribution (1) with respect to the element $v_{q,r}$ of the positively definite matrix V. The result is given by Theorem 1.

Subsequently, by $I_v(\cdot)$ we denote the modified Bessel function of the first kind (see [3], 8.445). Throughout the paper, the elements of Σ^{-1} are denoted by $\sigma^{i,j}$, $1 \le i \le j \le p$.

Let α and β be nonempty subsets of the set $\{1, \ldots, p\}$. By $V[\alpha, \beta]$ we denote the submatrix of V, composed of the rows with numbers from α and the columns with numbers from β . When $\beta \equiv \alpha$, $V[\alpha, \alpha]$ is denoted simply by $V[\alpha]$. For the complement of α in $\{1, \ldots, p\}$ we use the notation α^c . For instance, $V[\{q\}^c, \{r\}^c]$ denotes the submatrix, which can be obtained from V by deleting its q-th row and r-th column.

Theorem 1. Let $\mathbf{W} = (W_{i,j})$ has Wishart distribution $W_p(n, \Sigma)$ and q, r be integers, $1 \leq q < r \leq p$. Then, the marginal density, corresponding to the set of elements $\{W_{i,j}, 1 \leq i \leq j \leq p\} \setminus \{W_{q,r}\}$ has the form

(2)
$$f_{q,r}(v_{i,j}, \ 1 \le i \le j \le p, \ (i,j) \ne (q,r)) = L \qquad (\det \operatorname{Vo}[\{q\}^c] \det \operatorname{Vo}[\{r\}^c])^{(n-p)/2}$$

$$\frac{L}{2^{np/2}\Gamma_p (n/2) (\det \Sigma)^{n/2}} \frac{(\det V_0[\{q\}^c] \det V_0[\{r\}^c])^{(n-p+1)/2}}{(\det V_0[\{q,r\}^c])^{(n-p+1)/2}} e^{-tr(V_0 \Sigma^{-1})/2},$$

where V_0 is the symmetric matrix with elements $v_{j,i} = v_{i,j}$, $1 \le i \le j \le p$, $(i,j) \ne (q,r)$ and $v_{q,r} = v_{r,q} = 0$, for all $v_{i,j}$, $1 \le i \le j \le p$, $(i,j) \ne (q,r)$ for which the matrices $V_0[\{q\}^c]$ and $V_0[\{r\}^c]$ are both positively definite. If $\sigma^{q,r} = 0$, then

(3)
$$L = \frac{\Gamma((n-p+1)/2) \Gamma(1/2)}{\Gamma((n-p+2)/2)}$$

For $\sigma^{q,r} \neq 0$,

(4)
$$L = \Gamma\left((n-p+1)/2\right) \Gamma\left(1/2\right) e^{A} \left(\frac{2}{B}\right)^{(n-p)/2} I_{(n-p)/2}(B),$$

where

(5)
$$A = \frac{(-1)^{r-q-1} \det \mathcal{V}_0[\{q\}^c, \{r\}^c]}{\det \mathcal{V}_0[\{q, r\}^c]} \sigma^{q, r}, \quad B = \frac{-\sqrt{\det \mathcal{V}_0[\{q\}^c] \det \mathcal{V}_0[\{r\}^c]}}{\det \mathcal{V}_0[\{q, r\}^c]} \sigma^{q, r}.$$

Proof. The next Lemma gives the bounds of the integration of the Wishart density f(V), given by (1) with respect to the variable $v_{q,r}$.

Lemma 1. Let $V = (v_{i,j})$ be a real $p \times p$ symmetric matrix and q, r be fixed integers, $1 \leq q < r \leq p$. Let V_0 be the matrix, obtained from the matrix V by replacing the elements $v_{q,r}$ and $v_{r,q}$ with zeros. Then the matrix V is positively definite if and only if the matrices $V[\{q\}^c]$ and $V[\{r\}^c]$ are positively definite and the element $v_{q,r}$ satisfies the inequalities

where

$$a = \frac{(-1)^{r-q} \det \mathcal{V}_0[\{q\}^c, \{r\}^c] - \sqrt{\det \mathcal{V}[\{q\}^c] \det \mathcal{V}[\{r\}^c]}}{\det \mathcal{V}[\{q, r\}^c]},$$

274

$$b = \frac{(-1)^{r-q} \det \mathcal{V}_0[\{q\}^c, \{r\}^c] + \sqrt{\det \mathcal{V}[\{q\}^c] \det \mathcal{V}[\{r\}^c]}}{\det \mathcal{V}[\{q, r\}^c]}.$$

For convenience of the reader, the proof of Lemma 1 is given in Appendix A. Using Lemma 1,

(7)
$$f_{q,r}(v_{i,j}, \ 1 \le i \le j \le p, \ (i,j) \ne (q,r)) = \int_{a}^{b} f(\mathbf{V}) dv_{q,r}.$$

Let us change the variable of the integration by the substitution

(8)
$$v_{q,r} = \frac{(-1)^{r-q} \det V_0[\{q\}^c, \{r\}^c] + t\sqrt{\det V[\{q\}^c]} \det V[\{r\}^c]}{\det V[\{q,r\}^c]}.$$

The new variable t ranges from -1 to 1 and

$$dv_{q,r} = \frac{\sqrt{\det \mathbf{V}[\{q\}^c] \det \mathbf{V}[\{r\}^c]}}{\det \mathbf{V}[\{q,r\}^c]} dt$$

A simple representation of $\det \mathbf{V}$ in terms of the new variable $t \mathrm{is}$ given by the next Lemma.

Lemma 2. Let t be defined by equality (8). Then,

(9)
$$\det \mathbf{V} = \frac{\det \mathbf{V}[\{q\}^c] \det \mathbf{V}[\{r\}^c]}{\det \mathbf{V}[\{q,r\}^c]} (1-t^2).$$

The proof of Lemma 2 is given in Appendix B.

Since the matrices V and Σ^{-1} are symmetric, we have the representation

$$tr(\nabla \Sigma^{-1}) = \sum_{i=1}^{p} v_{i,i}\sigma^{i,i} + 2\sum_{i< j} v_{i,j}\sigma^{i,j} = tr(\nabla_0 \Sigma^{-1}) + 2v_{q,r}\sigma^{q,r}.$$

Hence, changing the variable of the integration, the marginal density (7) takes the form (2) with

(10)
$$L = e^{A} \int_{-1}^{1} (1 - t^{2})^{(n-p-1)/2} e^{Bt} dt$$

where A and B are given by (5). If $\sigma^{q,r} = 0$, then A = B = 0. Now, using the equalities 3.196 3 and 8.384 4 in [3], we obtain (3).

When $\sigma^{q,r} \neq 0$, then using 8.431 in [3], (10) can be written in the form (4). As an immediate consequence of Theorem 1, we get the next Corollary.

Corollary 1. Let $\mathbf{W} = (W_{i,j})$ has Wishart distribution $W_p(n, \Sigma)$ and q, r be integers, $1 \leq q < r \leq p$. Then, the conditional density of $W_{q,r}$ given that $W_{i,j} = v_{i,j}, 1 \leq i \leq j \leq p, (i, j) \neq (q, r)$ has the form

$$g(v_{q,r} | v_{i,j}, 1 \le i \le j \le p, (i,j) \ne (q,r)) = \frac{(\det V[\{q,r\}^c])^{(n-p+1)/2} (\det V)^{(n-p-1)/2}}{(\det V[\{q\}^c] \det V[\{r\}^c])^{(n-p)/2} L} e^{-v_{q,r}\sigma^{q,r}},$$

$$275$$

where L is given by the equalities (3)–(5), for all $v_{i,j}$, $1 \le i \le j \le p$ for which the matrix $V = (v_{i,j})$ is positively definite.

Appendix A.

Proof of Lemma 1. If α is a nonempty subset of the set $\{1, \ldots, p\}$ and the matrix $V[\alpha]$ is invertible, then the Schur complement $V / V[\alpha]$ of $V[\alpha]$ in V is defined as (see [6])

$$V/V[\alpha] = V[\alpha^c] - V[\alpha^c, \alpha](V[\alpha])^{-1}V[\alpha, \alpha^c]$$

An important property of the Schur complement is that (see [6])

$$\det(\mathbf{V} / \mathbf{V}[\alpha]) = \frac{\det \mathbf{V}}{\det \mathbf{V}[\alpha]}.$$

The Schur complement of $V[\{q, r\}^c]$ in the matrix V is the 2×2 matrix

$$\mathbf{V} / \mathbf{V}[\{q, r\}^c] = \begin{pmatrix} v_{q,q} & v_{q,r} \\ v_{r,q} & v_{r,r} \end{pmatrix} - \begin{pmatrix} \mathbf{V}_q^t \\ \mathbf{V}_r^t \end{pmatrix} (\mathbf{V}[\{q, r\}^c])^{-1} \begin{pmatrix} \mathbf{V}_q & \mathbf{V}_r \end{pmatrix},$$

where V_q and V_r are the vectors $V_q = V[\{q, r\}^c, \{q\}], V_r = V[\{q, r\}^c, \{r\}]$. Since V is a symmetric matrix,

(11)
$$\mathbf{V} / \mathbf{V}[\{q,r\}^{c}] = \begin{pmatrix} v_{q,q} - \mathbf{V}_{q}^{t}(\mathbf{V}[\{q,r\}^{c}])^{-1}\mathbf{V}_{q} & v_{q,r} - \mathbf{V}_{q}^{t}(\mathbf{V}[\{q,r\}^{c}])^{-1}\mathbf{V}_{r} \\ v_{q,r} - \mathbf{V}_{q}^{t}(\mathbf{V}[\{q,r\}^{c}])^{-1}\mathbf{V}_{r} & v_{r,r} - \mathbf{V}_{r}^{t}(\mathbf{V}[\{q,r\}^{c}])^{-1}\mathbf{V}_{r} \end{pmatrix}.$$

The Schur complements of $V[\{q,r\}^c]$ in $V[\{q\}^c]$ and $V[\{r\}^c]$ are numbers,

$$V[\{q\}^{c}]/V[\{q,r\}^{c}] = v_{r,r} - V_{r}^{t}(V[\{q,r\}^{c}])^{-1}V_{r} = \frac{\det V[\{q\}^{c}]}{\det V[\{q,r\}^{c}]},$$
$$V[\{r\}^{c}]/V[\{q,r\}^{c}] = v_{q,q} - V_{q}^{t}(V[\{q,r\}^{c}])^{-1}V_{q} = \frac{\det V[\{r\}^{c}]}{\det V[\{q,r\}^{c}]}.$$

The Schur complement of the matrix $V[\{q, r\}^c]$ in the matrix

$$\mathbf{V}[\{q,r\}^c]_{q,r} = \begin{pmatrix} \mathbf{V}[\{q,r\}^c] & \mathbf{V}_r \\ \mathbf{V}_q^t & v_{q,r} \end{pmatrix}$$

is again a number,

$$V[\{q,r\}^c]_{q,r}/V[\{q,r\}^c] = v_{q,r} - V_q^t (V[\{q,r\}^c])^{-1} V_r = \frac{\det V[\{q,r\}^c]_{q,r}}{\det V[\{q,r\}^c]}.$$

Replacing in (11), we obtain the representation

$$V/V[\{q,r\}^{c}] = \frac{1}{\det V[\{q,r\}^{c}]} \begin{pmatrix} \det V[\{r\}^{c}] & \det V[\{q,r\}^{c}]_{q,r} \\ \det V[\{q,r\}^{c}]_{q,r} & \det V[\{q\}^{c}] \end{pmatrix}$$

Let α be a nonempty set of indexes. A square matrix V is positively definite if and only if the matrices $V[\alpha]$ and $V / V[\alpha]$ are positively definite (see [6]). Using this property of the Schur complement, the matrix V is positively definite if and only if the matrices $V[\{q, r\}^c]$ and $V / V[\{q, r\}^c]$ are both positively definite. Consequently, the positively definiteness of the matrix V is equivalent to the conditions:

- 1.1. The matrix $V[\{q, r\}^c]$ is positively definite;
- **1.2.** det $V[\{r\}^c] > 0;$

1.3. det
$$V[\{q\}^c] > 0;$$

 $1.4. -\sqrt{\det \mathcal{V}[\{q\}^c]} \det \mathcal{V}[\{r\}^c] < \det \mathcal{V}[\{q,r\}^c]_{q,r} < \sqrt{\det \mathcal{V}[\{q\}^c]} \det \mathcal{V}[\{r\}^c].$ 276

Let us consider the matrix $V[\{q,r\}^c]_{q,q} = \begin{pmatrix} V[\{q,r\}^c] & V_q \\ V_q^t & v_{q,q} \end{pmatrix}$, which can be obtained from the matrix $V[\{r\}^c]$, placing its q-th row and column after the last row and column, respectively. With this transformation the determinant remains unchanged, det $V[\{q,r\}^c]_{q,q} = \det V[\{r\}^c]$. A symmetric matrix is positively definite if and only if

all principal minors of the matrix are positive (see [2]). Hence, the conditions 1.1 and

1.2 are equivalent to 2.1. The matrix $V[\{q, r\}^c]_{q,q}$ is positively definite.

Another well-known property of the positively definite matrices is that their eigenvalues are all positive. Since, obviously, the matrices $V[\{q,r\}^c]_{q,q}$ and $V[\{r\}^c]$ have the same eigenvalues, the condition 2.1 is equivalent to

3.1. The matrix $V[\{r\}^c]$ is positively definite.

Analogically, the conditions 1.1 and 1.3 are equivalent to

3.2. The matrix $V[\{q\}^c]$ is positively definite.

From the expansion of det $V[\{q, r\}^c]_{q,r}$ by the elements of its last row, we have

(12)
$$\det \mathbf{V}[\{q,r\}^c]_{q,r} = v_{q,r} \det \mathbf{V}[\{q,r\}^c] + \det \begin{pmatrix} \mathbf{V}[\{q,r\}^c] & \mathbf{V}_r \\ \mathbf{V}_q^t & \mathbf{0} \end{pmatrix}.$$

The last matrix in (12) can be obtained from the matrix $V_0[\{r\}^c, \{q\}^c]$, placing its q-th row below the last row and its (r-1)-th column after its last column. Consequently,

(13)
$$\det \begin{pmatrix} V[\{q,r\}^c] & V_r \\ V_q^t & 0 \end{pmatrix} = (-1)^{r-q-1} \det V_0[\{r\}^c, \{q\}^c]$$

Since the transposition preserves the value of a determinant,

(14)
$$\det V_0[\{r\}^c, \{q\}^c] = \det V_0[\{q\}^c, \{r\}^c].$$

Now, using (12)–(14) and 1.1, we obtain that the condition 1.4 is equivalent to **3.3.** The element $v_{q,r}$ satisfies the inequalities (6).

Appendix B.

Proof of Lemma 2. From equality (8) we have that

t

$$t = \frac{v_{q,r} \det \mathbf{V}[\{q,r\}^c] + (-1)^{r-q-1} \det \mathbf{V}_0[\{q\}^c, \{r\}^c]}{\sqrt{\det \mathbf{V}[\{q\}^c] \det \mathbf{V}[\{r\}^c]}}.$$

From the expansion of det $V[\{q\}^c, \{r\}^c]$ by the elements of its *r*-th row it can be seen that det $V[\{q\}^c, \{r\}^c] = v_{r,q}(-1)^{r-q-1} \det V[\{q,r\}^c] + \det V_0[\{q\}^c, \{r\}^c]$. Consequently,

$$=\frac{(-1)^{r-q-1}\det \mathbf{V}[\{q\}^c,\{r\}^c]}{\sqrt{\det \mathbf{V}[\{q\}^c]\det \mathbf{V}[\{r\}^c]}}$$

Hence,

$$1 - t^{2} = \frac{\det \mathbf{V}[\{q\}^{c}] \det \mathbf{V}[\{r\}^{c}] - (\det \mathbf{V}[\{q\}^{c}, \{r\}^{c}])^{2}}{\det \mathbf{V}[\{q\}^{c}] \det \mathbf{V}[\{r\}^{c}]}$$

Now, using the equality

 $\det \mathbf{V} \det \mathbf{V}[\{q,r\}^c = \det \mathbf{V}[\{q\}^c] \det \mathbf{V}[\{r\}^c] - (\det \mathbf{V}[\{q\}^c, \{r\}^c])^2,$

277

which is a special case of the Sylvester's determinant identity (see [5]), we obtain that

$$1 - t^2 = \frac{\det \operatorname{V} \det(\operatorname{V}[\{q, r\}^c])}{\det \operatorname{V}[\{q\}^c] \det \operatorname{V}[\{r\}^c]}.$$

REFERENCES

- T. W. ANDERSON. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, New York, 2nd ed., 2003.
- [2] J. E. GENTLE. Matrix Algebra. Theory, Computations, and Applications in Statistics. Springer Science+Business Media, LLC, New York, 2007.
- [3] I. S. GRADSHTEYN, I. M. RYZHIK. Table of Integrals, Series, and Products. A. Jeffrey and D. Zwillinger (Eds), Elsevier, 7th ed., 2007.
- [4] R. J. MUIRHEAD. Aspects of Multivariate Statistical Theory. John Wiley & Sons, New York, 2nd ed., 2005.
- [5] E. W. WEISSTEIN. Sylvester's Determinant Identity. MathWorld A Wolfram Web Resource.

http://mathworld.wolfram.com/SylvestersDeterminantIdentity.html

[6] F. ZHANG. (ed.) The Schur Complement and Its Applications, Springer Science + Business Media Inc., New York, 2005.

Evelina Veleva Department of Numerical Methods and Statistics Rouse University 8, Studentska Str. 7004 Rouse, Bulgaria e-mail: eveleva@uni-ruse.bg

НЯКОИ МАРГИНАЛНИ ПЛЪТНОСТИ НА РАЗПРЕДЕЛЕНИЕТО НА УИШАРТ

Евелина Илиева Велева

Разпределението на Уишарт се среща в практиката като разпределението на извадъчната ковариационна матрица за наблюдения над многомерно нормално разпределение. Изведени са някои маргинални плътности, получени чрез интегриране на плътността на Уишарт разпределението. Доказани са необходими и достатъчни условия за положителна определеност на една матрица, които дават нужните граници за интегрирането.