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SOME MARGINAL DENSITIES OF THE WISHART
DISTRIBUTION"

Evelina Veleva

Wishart distribution arises as the distribution of the sample covariance matrix for
a sample from a multivariate normal distribution. Some marginal densities, derived
by integration of the Wishart density function are obtained. Necessary and sufficient
conditions for positive definiteness of a matrix are established, which give the bounds
of the integration.

Wishart distribution has been considered in the literature as multivariate generaliza-
tion of the x2-distribution. It is a basic distribution in many models of the multivariate
statistical analysis. In practice it arises as the distribution of the sample covariance
matrix for a sample from a multivariate normal distribution. Let x1,...,x, be n inde-
pendent observations on a random vector x with p-variate normal distribution N, (p, ),
p < n, with mean vector u and positively definite covariance matrix 3. Let S be the
sample covariance matrix

1 n ~ o ~ 1 n
S:nilz(xi—x)(xi—x), x:ﬁz;x,-.
P

i=1

Then, the joint distribution of the elements of the matrix S is Wishart distribution
W,(n—1, 1/(n—1)X) (see [1], [4]). Hence, the joint distributions of sets of elements of
the matrix S are marginal distributions of the Wishart distribution.

A p x p random matrix W with Wishart distribution Wp(n, X), where p < n+ 1 and
Y is a positively definite p X p matrix, has probability density function of the form

1
L JV) = 272/2T, (n/2) (det X2)n/2
for any real p x p positively definite matrix V, where I'y(-) is the multivariate gamma
function defined as T',(y) = aP(P—1/4 [[—, Ty + (1 —j)/2] and det(-), tr(-) denote the
determinant and the trace of a matrix.

Let W = (W; ;). The marginal distribution of the Wishart distribution W, (n, %),
corresponding to a set of elements of the form {W; ;,k <1i < j < s} for arbitrary integer
k, s, such that 1 <k < s < p,is Ws_r1+1(n, Z[{k,...,s}]), where B[{k,...,s}] denotes
the submatrix of the matrix X, composed of the rows and columns with numbers from the
set {k,...,s} (see [1], [4]). These marginal distributions correspond to all the elements

(det V)(nfpfl)/2eftr(\/2’1)/2
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of a submatrix of the random matrix W of the form W[{k, ..., s}]. Marginal densities
for the sets of the form {W; ;, k < i < j < s]\{W,,}, where 1 <k <g<r <s <p,
can be obtained by integration the density of the Wishart distribution (1) with respect
to the element v, , of the positively definite matrix V. The result is given by Theorem
1.

Subsequently, by I,,(-) we denote the modified Bessel function of the first kind (see [3],
8.445). Throughout the paper, the elements of ¥ =1 are denoted by o®7, 1 <i < j < p.

Let o and § be nonempty subsets of the set {1,...,p}. By V][q, 3] we denote the
submatrix of V, composed of the rows with numbers from a and the columns with
numbers from 3. When § = «, V[a, o] is denoted simply by V]a]. For the complement of
ain {1,...,p} we use the notation . For instance, V[{q}¢, {r}¢] denotes the submatrix,
which can be obtained from V by deleting its g-th row and r-th column.

Theorem 1. Let W = (W, ;) has Wishart distribution Wp(n,X) and g, r be integers,
1 < qg <r < p. Then, the marginal density, corresponding to the set of elements
{Wij, 1 <i<j<p\{Wg.} has the form

(2) fq,'r (Ui,j; 1 S ) S.j S D, (’La.j) 7& (qa’r)) =
L (det Vol{a}] det Vo[{r}D " vy 51)0
2727y (n/2) (det 2)™/2 (det Vo[{g, r}e]) " PH1/2 ’

where Vo is the symmetric matriz with elements v;; = v; ;, 1 <i<j <p, (i,7) # (q,7)
and vg,r = vrg =0, for all v;;, 1 < i < j < p, (i,5) # (¢,7) for which the matrices
Vol{q}c] and Vu[{r}°] are both positively definite. If 07" =0, then

I((n-p+1)/2) U (1/2)

¥ E N (ORI Y e
For %" #0,
o\ (n-p)/2
0 L=T(-p+ DD T2 (5) TmnalB),
where

4= COTT et Vo) ()] ey —VAetVo{a) Tdet Vol y]
det Vo[{q, 7}<] ’ det Vo[{g,7}] '

Proof. The next Lemma gives the bounds of the integration of the Wishart density
f(V), given by (1) with respect to the variable vy ..

Lemma 1. Let V = (v; ;) be a real p X p symmetric matriz and g, be fized integers,
1 <qg<r <p. Let Vo be the matrixz, obtained from the matriz V by replacing the
elements vq,, and v, q with zeros. Then the matriz V is positively definite if and only if
the matrices V[{q}°] and V[{r}°] are positively definite and the element v, satisfies the
inequalities
(6) a < vgr <b,

where

(=19 det Vo[{q}*, {r}°] — V/det V[{g}] det V[{r}<]
det V[{g, r}°] ’

a =
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(=19 det Vo[{q}*, {r}] + V/det V[{g}] det V[{r}]

b= det V{1

For convenience of the reader, the proof of Lemma 1 is given in Appendix A. Using
Lemma 1,

b
(7) hmmmléiﬁjén(hﬂ#@w»=/fWM%w

Let us change the variable of the integration by the substitution
(8) o (SD)det Vol{g}e, {r}] + ty/det V[{g} det V[{r}]
o det V[{g,r}]
The new variable t ranges from —1 to 1 and
Vdet V[{g}] det V[{r}]
dvg,, =
det V[{g,7}]
A simple representation of detV in terms of the new variable tis given by the next
Lemma.
Lemma 2. Let t be defined by equality (8). Then,
det V[{g}“] det V[{r}*]
det V[{g,r}]

dt.

(9) det v = (1 —t%).

The proof of Lemma 2 is given in Appendix B.
Since the matrices V and ¥ ! are symmetric, we have the representation

P
t?‘(V 271) = Z ’Uiﬂ'O'i’i + 2 Z’Uz‘,ja'i’j = t?‘(VQ 271) + 2’Uq7,«0‘q’r.
i=1 i<j
Hence, changing the variable of the integration, the marginal density (7) takes the
form (2) with
1
(10) L=¢e" / (1 — ) (n=p=D)/2Bt gy
-1
where A and B are given by (5). If 02" =0, then A = B = 0. Now, using the equalities
3.196 3 and 8.384 4 in [3], we obtain (3).

When o%" # 0, then using 8.431 in [3], (10) can be written in the form (4).
As an immediate consequence of Theorem 1, we get the next Corollary.

Corollary 1. Let W = (W, ;) has Wishart distribution W,(n,X) and g, r be integers,
1< g <r <p. Then, the conditional density of Wy, given that W; ; = v;;, 1 <i < j <
p, (i,5) # (g,) has the form

g(“q,r | Ui,j7 1 S 1 S .j S D, (l,]) 7é (qa’r))
(det V[{g, r})" "% (det v) " P2
(det V[{g}] det V[{r})" ""* L

_ q,r
Vq,r0 ,
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where L is given by the equalities (3)—(5), for all v; ;, 1 < i < j < p for which the matriz
V = (v 5) is positively definite.

Appendix A.
Proof of Lemma 1. If « is a nonempty subset of the set {1,...,p} and the matrix
V(a] is invertible, then the Schur complement V / V[a] of V[a] in V is defined as (see [6])

V/Vla] = V[a] = V[a®, o] (V[a]) 7' V]a, a?].
An important property of the Schur complement is that (see [6])
- det Vv
~ det V[a]
The Schur complement of V[{g,7}¢] in the matrix V is the 2 x 2 matrix
t
\WWM@?=<%”ZW>—<X3>WWWH>WVqu%
T,q r,r '

where V, and V., are the vectors V4 = V[{q,r}°, {q}], V. = V[{q, 7}, {r}]. Since V is a

symmetric matrix,
Vgq — Ve(Va, 73N Vo v = VE(VHg, 73DV,
11 RN .
vt Qm%WMﬂmIWQWWWMAm1w>
The Schur complements of V[{g,7}°] in V[{¢}°] and V[{r}‘] are numbers,

det(V /Via])

VU Vi) = o = VEVHa )V, = S
VI V7] = vy = VoV vy = e L

The Schur complement of the matrix V[{g,7}¢] in the matrix
o ( VHaeryl v,
Vil = (VBT
is again a number,
: : .. det V[{g, r}q,r
c cl _~rt c 1 o q, )
Va7 Lo/ VHa Y] = v = VaVHa ) ™ v, = Sl

Replacing in (11), we obtain the representation

1 det V[{r}*] det V[{g,7}q.r
det V[{g,r}] \ det V[{g,7}],r det V[{q}°] '

Let a be a nonempty set of indexes. A square matrix V is positively definite if and
only if the matrices V[a] and V / V]a] are positively definite (see [6]). Using this property
of the Schur complement, the matrix V is positively definite if and only if the matrices
V[{g,7}¢] and V /V[{q,r}°] are both positively definite. Consequently, the positively
definiteness of the matrix V is equivalent to the conditions:

1.1. The matrix V[{q,r}¢] is positively definite;

1.2. det V[{r}¢] > 0;

1.3. det V[{¢}‘] > 0;

1.4. —/det V[{g}<]det V[{r}c] < det V[{q,7}%]q.r < \/det V[{g}]det V[{r}e].
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Let us consider the matrix V[{g,7}%]q,q = V[{i}/j‘} ] ;/q ), which can be ob-
tained from the matrix V[{r}¢], placing its g-th row anqd colun?r’f after the last row and
column, respectively. With this transformation the determinant remains unchanged,
det V[{q,7}%)q.q = det V[{r}c]. A symmetric matrix is positively definite if and only if
all principal minors of the matrix are positive (see [2]). Hence, the conditions 1.1 and
1.2 are equivalent to

2.1. The matrix V[{g,7}°]q,q is positively definite.

Another well-known property of the positively definite matrices is that their eigen-
values are all positive. Since, obviously, the matrices V[{¢,7}°]q.q and V[{r}°] have the
same eigenvalues, the condition 2.1 is equivalent to

3.1. The matrix V[{r}9] is positively definite.

Analogically, the conditions 1.1 and 1.3 are equivalent to

3.2. The matrix V[{¢}°] is positively definite.

From the expansion of det V[{g, 7}¢]4,»by the elements of its last row, we have
Vg, ¥ vy )
, :
Vyq 0
The last matrix in (12) can be obtained from the matrix Vo[{r}¢, {¢}°], placing its
g-th row below the last row and its (r — 1)-th column after its last column. Consequently,

(12) det V[{gq, 7} )q.r = vg,r det V[{g, r}°] + det <

V{g,r}] Ve e
(13) det = (=1)"" 7V det Vo[{r}*, {q}].
A 0
Since the transposition preserves the value of a determinant,
(14) det Vo[{r}*, {q}] = det Vo[{g}*, {r}].

Now, using (12)—(14) and 1.1, we obtain that the condition 1.4 is equivalent to
3.3. The element v, , satisfies the inequalities (6).

Appendix B.
Proof of Lemma 2. From equality (8) we have that
_ Vgrdet V[{g,r}] + (—1)""7" T det Vo[{q}*, {r}°]

Vdet V[{g}det V[{r}]

From the expansion of det V[{q}, {r}¢] by the elements of its r-th row it can be seen
that det V[{g}, {r}¢] = v,.4(—1)"" 91 det V[{q, r}¢] + det Vo[{q}¢, {r}¢]. Consequently,
_ (=) det VI{g}©, {r}]
Vet V[{g}det V{r}e -

Hence,

L g2 = det VH{g}]det V[{r}<] — (det V[{q}*, {r}])
det V[{g}¢] det V[{r}e] '
Now, using the equality
det v det V[{g,7}¢ = det V[{g}]det V[{r}°] — (det V[{g}*, {r}])?,
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which is a special case of the Sylvester’s determinant identity (see [5]), we obtain that

(1]

| g detvdet(V[{g,7}])
det V[{g}<] det V[{r}]
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HAKOUN MAPIMHAJIHU IIJTBTHOCTUN HA PA3SITPEAEJIEHUETO

278

HA YUIIAPT

EBesmmua Mauesa Besnesa

Pasnpenenennero Ha Ywumapr ce cpela B IDpakTHUKaTa KaTO PA3IPENEIEHHETO Ha
M3BaIbYHATA KOBapUAIIMOHHA MAaTPUIA 338 HAOJIIOJEHUs HAJT MHOTOMEDHO HOPMAJTHO
pasnpesenenue. 3Beienn ca HAKOW MAPTUHAJIHY IJITBTHOCTH, OJYIE€HN YPE3 UHTET-
prpaHe Ha ILIBTHOCTTA Ha YHWINApT pasupeieseHnero. Jlokaszanu ca HeoOXOIUMU U
JOCTAT'bIHU yCJIOBUS 33 IOJIOXKUTETHA OIIPE/IEJIEHOCT Ha e/lHa MATPUIlA, KOUTO JaBaT
HY>KHUTE TDAHUIIM 38 HHTEI'DUPAHETO.



