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OPERATORS WITH POLYNOMIAL COEFFICIENTS AND
GENERALIZED GELFAND-SHILOV CLASSES

Daniela Calvo, Giuseppe De Donno, Luigi Rodino

Abstract. We study the problem of the global regularity for linear partial
differential operators with polynomial coefficients. In particular for multi-
quasi-elliptic operators we prove global regularity in generalized Gelfand-
Shilov classes. We also provide counterexamples of globally regular operators
which are not multi-quasi-elliptic.

1. Introduction. Aim of this paper is to study the global regularity of the
solutions for partial differential equations with polynomial coefficients in Rn

Au = f ,

where

(1) A =
∑

|α|+|β|≤m

aαβ xβ Dα , aαβ ∈ C, Dα = (−i)|α|∂α .

In Nicola-Rodino [21] different sufficient conditions on the symbol

(2) a(x, ξ) =
∑

|α|+|β|≤m

aαβ xβ ξα
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are reviewed, proving global regularity in the Schwartz spaces S(Rn), S′(Rn),
namely: if u ∈ S′(Rn) and Au ∈ S(Rn), then u ∈ S(Rn). In particular, this type
of global regularity is granted assuming Hörmander’s property on the polynomial
a(z), z = (x, ξ) ∈ R2n, in (2):

(3) |∂γ
z a(z)| ≤ C|a(z)| 〈z〉−ρ|γ|, |z| ≥ R,

for some ρ with 0 < ρ ≤ 1, 〈z〉 = (1 + |z|2)
1
2 , γ ∈ N2n, and C,R positive

constants. Relevant classes of polynomial a(z) satisfying (3) are given, with in-
creasing order of generality, by the elliptic, quasi-elliptic, and multi-quasi-elliptic
polynomials, cf. Boggiatto-Buzano-Rodino [1]. On the other hand, for elliptic
and quasi-elliptic symbol a(z), the regularity in the Schwartz spaces of the oper-
ator A in (1), can be improved in terms of Gelfand-Shilov classes, see Cappiello-
Gramchev-Rodino [9, 10]. Main subject of the present paper, in the Section 3,
will be to obtain a similar improvement of regularity for operators with multi-
quasi-elliptic symbols. To this end, we will introduce first a generalization of the
standard Gelfand-Shilov classes and then, following the proceeding in Gramchev-
Pilipovich-Rodino [17] we shall provide in this functional frame a result of regu-
larity for the more general problem of the iterates. In Section 4 we shall produce
an example of operator A in dimension n = 1, of the form

(4) A = Dm − xq + ixtDr ,

which satisfies (3), but which is not multi-quasi-elliptic, see De Donno-Oliaro [13]
for a similar result, in a different contest. Since (3) is verified, the operator (4) is
globally regular in the Schwartz space, whereas the corresponding Gelfand-Shilov
regularity remains an interesting open problem. In fact, we do not know exactly
how relate the parameter ρ in (3) to Gelfand-Shilov regularity. Instead, in the
next Section 2 we present a short survey on Gevrey and Gelfand-Shilov classes.

2. Definitions and first properties. Let us begin by recalling the defi-
nition of Gevrey classes Gs(Ω), 1 < s < ∞, Ω open subset of Rn, and Gelfand-
Shilov classes Ss

r(R
n), with s > 0, r > 0, s + r ≥ 1.

A function f belongs to Gs(Ω) if for every compact subset K ⊂⊂ Ω we have

sup
x∈K

|∂α
x f(x)| ≤ C |α|+1(α!)s, ∀α ∈ Nn,

for a suitable positive constant C independent of the multi-index α. We then
define Gs

0(Ω) = Gs(Ω) ∩ C∞
0 (Ω). Passing to L2-norms in Rn, this is equivalent
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to say that for f with compact support we have for some C < ∞:

‖∂α
x f‖ ≤ C |α|+1 (α!)s , ∀α ∈ Nn.

Willing to find a counterpart of the Schwartz space S(Rn), we are then led to the
classes of Gelfand-Shilov [15]. Namely, a function f belongs to the Gelfand-Shilov
class Ss

r(R
n), if there exists a constant C < ∞ such that

(5)
∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ C |α|+|β|+1(α!)s(β!)r, ∀α ∈ Nn,∀β ∈ Nn.

According to [11], this definition is equivalent to the following one, seemingly
weaker than (5). A function f belongs to the Gelfand-Shilov class Ss

r(R
n), if

f ∈ S(Rn) and there exists a constant C < ∞ such that f satisfies the following
two conditions

(6)
(i) ‖∂α

x f‖ ≤ C |α|+1 (α!)s , ∀α ∈ Nn,

(ii)
∥

∥xβf
∥

∥ ≤ C |β|+1 (β!)r , ∀β ∈ Nn.

The Gevrey classes Gs(Ω) have been generalized in different ways by several
authors. Here we address in particular to the multi-anisotropic Gevrey classes,
see Bouzar-Chaili [2, 3], Calvo [4], Calvo-Hakobyan [5], Gindikin-Volevich [16],
Zanghirati [23, 24].
In short, we fix a complete polyhedron P ⊂ Rn

+. Let us denote

k (α,P) = inf
{

t > 0 : t−1α ∈ P
}

, α ∈ Rn
+,

and let µ be the formal order of P, see the next section 3 for details. We may
introduce the multi-anisotropic class with compact support G

s,P
0 (Rn), s > 1, of

all the functions f ∈ C∞
0 (Rn) satisfying for suitable C < ∞

(7) ‖∂α
x f‖ ≤ C |α|+1k (α,P)sµk(α,P) , ∀α ∈ Nn.

We recapture the standard Gevrey classes Gs
0(R

n) when P is the polyhedron
of vertices {0,mej , j = 1, . . . , n} for some integer m ≥ 1. Another relevant
example is given by the anisotropic Gevrey classes, when P is the polyhedron
of vertices {0,mjej , j = 1, . . . , n} for some integers mj ≥ 1, see [23, 24]. In the
next section 3 we shall present a Gelfand-Shilov version of the multi-anisotropic
Gevrey classes. Namely, taking (7) as a model and fixing a complete polyhedron

P in dimension 2n, P ⊂ R2n
+ , we define SP,s(Rn), s ≥

1

2
, as the subset of S(Rn)

of all the functions f satisfying

(8)
∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ C |γ|+1k (γ,P)sµk(γ,P) , ∀γ = (α, β) ∈ N2n
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for some positive constant C < ∞. Main result in the following will be to show the
equivalence of (8) with suitable estimates of type (6), for xα∂

β
x f(x); let us address

to the next Theorem 1 for a precise statement. We leave to future papers possible
applications to partial differential equations in Rn with polynomial coefficients,
cf. Boggiatto-Buzano-Rodino [1], and a discussion of a generalization of the

definition (8) to the case when s <
1

2
, which presents difficult problems of non-

triviality for the class Ss,P(Rn). For a different class of multi-anisotropic Gelfand-
Shilov classes, we address to [6]. See also the bibliography in [22], about functions
of Gevrey type, and in [8], about recent applications of Gelfand-Shilov classes to
linear and non-linear partial differential equations.

3. Generalized Gelfand-Shilov classes and main results. To in-
troduce our study of Gelfand-Shilov classes of multi-anisotropic type, we start
by describing complete polyhedra and some related properties. For more prop-
erties and applications to the theory of partial differential equations, we can
refer to [1, 2, 3, 4, 5, 14, 16, 23, 24]. Let P be a convex polyhedron in Rd,
then P can be obtained as convex hull of a finite set V(P) ⊂ Rd of convex-
linearly-independent points, called the vertices of P and uniquely determined by
P. Moreover, if P has non-empty interior and the origin belongs to P, there is a
finite set N (P) = N0(P) ∪ N1(P), with |ν| = 1, ∀ν ∈ N0(P), such that

P = {z ∈ Rd|ν · z ≥ 0,∀ν ∈ N0(P), ν · z ≤ 1,∀ν ∈ N1(P)},

N1(P) is the set of the normal vectors to the faces of P.

Definition 1. A complete polyhedron is a convex polyhedron P ⊂ Rd
+ such

that the following properties are satisfied

1. V(P) ⊂ Nd (i.e. all vertices have non-negative integer coordinates);

2. the origin (0, 0, . . . , 0) belongs to P;

3. N0(P) = {e1, e2, . . . , ed}, with ej = (0, . . . , 0, 1j−th, 0, . . . , 0) ∈ Rd,

for j = 1, . . . , d;

4. every ν ∈ N1(P) has strictly positive components.

Remark. The condition 4 implies that for every x ∈ P the set Q(x) =
{y ∈ Rd|0 ≤ y ≤ x} is included in P and if x belongs to a face of P and y > x,
then y 6∈ P (where for x, y ∈ Rd, y ≤ x means that yi ≤ xi, i = 1, . . . , d;
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and y < x means y ≤ x, y 6= x). In the definition of Gelfand-Shilov classes
in the sequel, we shall have d = 2n, i.e. we shall only need to consider P in
even dimension d. Let us now summarize some notations related to a complete
polyhedron P: k(γ,P) = inf{t > 0 : t−1γ ∈ P} = maxν∈N1(P) ν · γ, ∀γ ∈ Rd

+;

µj(P) = maxν∈N1(P) ν−1
j ; µ = µ(P) = maxj=1,...,d µj the formal order of P;

µ(0) = µ(0)(P) = minγ∈V(P)\{0} |γ| the minimum order of P; µ(1) = µ(1)(P) =
maxγ∈V(P) |γ| the maximum order of P. Finally, we define the weight function
associated to P:

(9) |ξ|P :=

(

∑

v∈V(P)

|ξv|

)
1
µ

, ∀ξ ∈ Rd.

It is a weight function according to the definition of Liess-Rodino [18]. The defi-
nition of the previous quantities is clarified by the following result (for the proof
we refer to [4]).

Proposition 1. Let P be a complete polyhedron in Rd with vertices vl =
(vl

1, . . . , v
l
d), for l = 1, . . . , N(P). Then

1. for every j = 1, 2, . . . , d, there is a vertex vlj of P such that vlj = v
lj
j ej ,

v
lj
j = maxγ∈P γj =: mj(P);

2. the boundary of P has at least one vertex lying outside the coordinate axes
if the formal order µ(P) is greater than the maximum order µ(1)(P);

3. if γ belongs to P, then |ξγ | ≤
∑N(P)

l=1 |ξvl
|, ∀ξ ∈ Rd, where ξγ =

∏d
j=1 ξ

γj

j

and N(P) is the number of vertices of P, including the origin;

4.
γ

k(γ,P)
, for any γ ∈ Nd, belongs to the boundary of P, and therefore γ =

k(γ,P)
∑m

i=1 λivli , λi ≥ 0, i = 1, . . . ,m,
∑m

i=1 λi = 1, where vl1 , . . . , vlm

are the vertices of the face of P where
γ

k(γ,P)
lies;

5. For all ξ ∈ Rd, saying N(P) the number of vertices of P, the following in-
equality is satisfied N(P)j−1

∑

v∈V(P) |ξ
vj | ≤ |ξ|jP ≤ 2N(P)(j−1)

∑

v∈V(P) |ξ
vj |,

for any j = 1, 2, . . . .

Proposition 2. For any complete polyhedron P and any s ∈ Rd
+, k(γ,P) is

bounded as follows:

|γ|

µ(1)
≤ k(γ,P) ≤

|γ|

µ(0)
.
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To clarify our treatment, we give now some examples of complete polyhedra (for
more details cf. [4]).

1. Consider the complete polyhedron of vertices {0,mej , j = 1, . . . , d}. The

set N1(P) is reduced to the point ν = m−1
∑d

j=1 ej , and mj(P) = µj(P) =

µ(0)(P) = µ(1)(P) = µ(P) = m, for all j = 1, . . . , d.

2. Consider the complete polyhedron P with vertices {0,mjej , j = 1, . . . , d},
where mj = mj(P) are fixed integers. The set N1(P) is reduced to a

point ν =
∑d

j=1 m−1
j ej ; then µj(P) = mj , for all j = 1, . . . , d, µ(0)(P) =

minj=1,...,d mj, µ(P) = µ(1)(P) = maxj=1,...,d mj . It is the anisotropic case.

3. If P ⊂ R2 is the polyhedron of vertices V(P) = {(0, 0), (0, 3), (1, 2), (2, 0)},

then P is complete and N1(P) =

{

ν1 =

(

1

3
,
1

3

)

, ν2 =

(

1

2
,
1

4

)}

. We have

m1(P) = µ(0)(P) = 2, m2(P) = m(P) = µ(1)(P) = 3, µ(P) = 4. We ob-
serve that in this case the formal order µ(P) is bigger than the maximum
order and P has a vertex lying outside the coordinate axes (cf. Proposi-
tion 1).

Basing on the definition of complete polyhedra, we now introduce the multi-
anisotropic version of the standard Gelfand-Shilov classes [15], cf. the Introduc-
tion.

Definition 2. Let P be a complete polyhedron in R2n. We say that a fun-

ction f belongs to the Gelfand-Shilov class SP,s(Rn), for s ≥
1

2
if there is a

constants C < ∞ such that

(10)
∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ C |γ|+1k (γ,P)sµk(γ,P) , ∀γ = (α, β) ∈ N2n.

We may note that polyhedra P and P ′, which are similar in the sense of the
Euclidean geometry, define the same class SP,s(Rn), since denoting µ and µ′

the respective formal orders we have µk (γ,P) = µ′k (γ,P ′). As first example,
consider the polyhedron of vertices {0,mej , j = 1, . . . , 2n}. By similarity, we
may limit ourselves to the case m = 1. Since then µ = µ(0) = µ(1) = 1, in view
of Proposition 2 we have k (γ,P) = |γ|, so that (10) reads

∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ C |γ|+1 |γ|s|γ| .
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From (5) and standard factorial estimates we obtain then for such P:

SP,s (Rn) = Ss
s (Rn) , s ≥

1

2
.

Before analysing other examples, it will be convenient to have equivalent defini-
tions of SP,s (Rn). Let us introduce, for p ∈ N:

(11) |f |p =
∑

γ=(α,β)∈ pP

∥

∥

∥
xβ∂α

x f
∥

∥

∥
,

where γ ∈ pP means that p−1γ ∈ P, i.e. k (γ,P) ≤ p, and morever

(12) |f |∗p =
∑

γ=(α,β)∈ pV(P)

∥

∥

∥
xβ∂α

x f
∥

∥

∥
,

where γ ∈ pV(P) means that γ = pvl for some vertex vl, l = 1, . . . , N(P). Our
main result is the following.

Theorem 1. For any f ∈ S (Rn), the following conditions are equivalent:

i) f belongs to SP,s (Rn).

ii) There exists a constant C < ∞ such that

(13) |f |p ≤ Cp+1 (p!)sµ , ∀p ∈ N.

iii) There exists a constant C < ∞ such that

(14) |f |∗p ≤ Cp+1 (p!)sµ , ∀p ∈ N.

In the proof we shall use the following lemma.

Lemma 1. There exists a constant C < ∞, depending on P, such that for
every p ∈ N and every γ = (α, β) ∈ pP we have

(15)
∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ Cp+1

(

‖f‖∗p + (p!)
µ
2 ‖f‖

)

.

P r o o f. Of Theorem 1. First, observe that i) is equivalent to ii). In fact, if
i) is satisfied, i.e. the estimates (10) are satisfied, for γ = (α, β) ∈ pP, i.e.
k (γ,P) ≤ p, then we have

∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ C |γ|+1k (γ,P)sµk(γ,P) ≤ C |γ|+1psµp.
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On the other hand |γ| ≤ µ(1)k (γ,P) ≤ µ(1)p by Proposition 2, and by standard
factorial estimates we obtain for a new constant C < ∞:

∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ Cp+1 (p !)sµ .

By observing that the number of the terms in the sum in (11) can be estimated
by Cp for a constant C < ∞, we obtain ii). To prove ii) ⇒ i), given γ = (α, β),
take the integer p such that p− 1 < k (γ,P) ≤ p. Then γ ∈ pP and from (13) we
have

∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ Cp+1 (p!)sµ ≤ C

p+1
1 (p − 1)!sµ

≤ C
p+1
1 (p − 1)sµ(p−1) ≤ C

p+1
1 k (γ,P)sµk(γ,P)

for a constant C1 independent of p. Hence i) is satisfied. Let us now prove that
ii) is equivalent to iii). That ii) ⇒ iii) is obvious, since V(P) ⊂ P. Assume that
iii) is satisfied. Given γ ∈ pP, we apply (15) in Lemma 1. Combining with (14),
we have for a new constant C:

∥

∥

∥
xβ∂α

x f
∥

∥

∥
≤ Cp+1

(

(p!)sµ + (p !)
µ
2 ‖f‖

)

.

At this moment we use the assumption s ≥
1

2
. Summing up in (11) for γ ∈ pP,

we obtain ii). Theorem 1 is proved.
� The proof of Lemma 1 is omitted for brevity. A corresponding result in the
case of standard Gelfand-Shilov semi-norms is in [7], Lemma 2.2; see also [17],
Proposition 4.1. The proof of Lemma 1 follows the lines of [7], by using 3, 4, 5 in
the preceding Proposition 1. Since the number of the vertices in V(P) is finite,
from iii) in Theorem 1 we may obtain for the classes SP,s (Rn) the following
counterpart of the result of [11] for standard Gelfand-Shilov classes.

Corollary 1. We have f ∈ SP,s (Rn), s ≥
1

2
, if and only if there exists a

constant C < ∞ such that

‖xpβ1
1 . . . xpβn

n ∂pα1
x1

. . . ∂pαn
xn

f‖ ≤ Cp+1(p !)sµ, ∀p ∈ N,

for every vertex v = (α1, . . . , αn, β1, . . . , βn) ∈ V(P), v 6= 0. As before, µ denotes
the formal order of P.

As a first example, consider the polyhedron P with vertices

{0,m1e1, . . . ,mnen,M1en+1, . . . ,Mne2n}
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in R2n. The formal order is µ = max {m1, . . . ,mn,M1, . . . ,Mn}. By Corollary
1, and after easy computations, we have that the function f belongs to the
corresponding spaces SP,s (Rn) if and only if for every j = 1, . . . , n:

(16) ‖∂p
xj

f‖ ≤ Cp+1(p !)
sµ
mj , ∀p ∈ N,

(17)
∥

∥

∥
x

p
jf

∥

∥

∥
≤ Cp+1(p !)

sµ
Mj , ∀p ∈ N.

We then recapture the anisotropic classes of Gelfand-Shilov [15]. In particular,

under the assumptions s, r ∈ Q, r ≥ s ≥
1

2
, we obtain the classes Ss

r (Rn) defined

in (5), by taking m1 = · · · = mn = m, M1 = · · · = Mn = M , with m and M

positive integers such that
r

s
=

m

M
. In the case when P has at least one vertex

lying outside the coordinate axes, estimates (16) and (17) are not sufficient to
characterize the class SP,s (Rn). For example, consider as before the polyhedron
of vertices V(P) = {(0, 0), (0, 3), (1, 2), (2, 0)}, with formal order µ = 4. From

Corollary 1 we have that the corresponding space SP,s(R), s ≥
1

2
, is defined by

the estimates

‖f (p)‖ ≤ Cp+1(p !)2s, ∀p ∈ N,

‖xpf‖ ≤ Cp+1(p !)
4s
3 ∀p ∈ N,

to which we add the further condition

‖x2pf (p)‖ ≤ Cp+1(p !)4s, ∀p ∈ N.

Let us now present our result of regularity for operators with polynomial coeffi-
cients. We write the symbol in the form

a(z) =
∑

|γ|≤m

aγ zγ , z = (x, ξ) ∈ R2n , γ ∈ N2n.

Consider the Newton Polyhedron P of a(z), i.e. the convex hull of Q
⋃

{0} with

Q =
{

γ ∈ N2n , aγ 6= 0
}

.
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Definition 3. We say that a(z) is multi-quasi-elliptic if the corresponding
Newton Polyhedron is complete, cf. Definition 1, and if

|z|P ≤ C |a(z)| , |z| ≥ R,

where |z|P is defined as in (9), with C and R positive constants.

Multi-quasi-elliptic polynomials satisfy the Hörmander’s estimates (3), see Bog-
giatto-Buzano-Rodino [1].

Theorem 2. Let a(z) be multi-quasi-elliptic, z = (x, ξ) ∈ R2n, and write
A for the corresponding partial differential operator with polynomial coefficients

in R2n. Let P be its complete Newton polyhedron and let SP,s(Rn), s ≥
1

2
,

the generalized Gelfand-Shilov-classes as in Definition 2. Then u ∈ S′(Rn),
Au ∈ SP,s(Rn) imply u ∈ SP,s(Rn). In particular all the solutions u ∈ S′(Rn)

of Au = 0 belong to SP, 1
2 (Rn).

Theorem 2 will be a consequence of the following more general result, concerning
the so-called problem of the iterates.

Theorem 3. Let a(z), A, P, SP,s(Rn), s ≥
1

2
, be as in Theorem 2, and let

be µ = µ(P) the formal order of P. Then u ∈ SP,s(Rn) if and only if for some
positive constant C, we have

(18) ‖Apu‖ ≤ Cp+1(p !)sµ, ∀p ∈ N.

In fact, if Au = f , where f ∈ SP,s(Rn) then

‖Apu‖ = ‖Ap−1f‖ ≤ Cp+1|f |p ≤ C̃p+1(p !)sµ,

in view of Theorem 1, ii), hence (18) is satisfied. Therefore Theorem 3 implies
Theorem 2. In turn, to prove Theorem 3 we use the following two propositions.
For P as before, we define |f |∗p as in (12), and k(γ,P), γ = (α, β) ∈ N2n as in
Definition 1 and sequel.

Lemma 2. There exist a positive constant C such that for any given p ∈ N,
for every γ = (α, β) ∈ N2n with p < k = k(γ,P) < p + 1, and for every ǫ > 0:

(19) ‖xαDβu‖ ≤ ǫ |u|∗p+1 + Cp ǫ
− k−p

n+1−k |u|∗p + Ck kk µ
2 ‖u‖.
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The proof is omitted for brevity. The counterpart of (19) in the elliptic case is
proved in Calvo-Rodino [7], Proposition 2.1.

Lemma 3. Let A be an operator with multi-quasi-elliptic symbol. Then there
exists a positive constant C such that for every v ∈ S(Rn)

(20)
∑

γ=(θ,η)∈V(P)

‖xθ Dη v‖ ≤ C ( ‖Av‖ + ‖v‖ ).

For the proof we address to Boggiatto-Buzano-Rodino [1].
P r o o f o f, T h e o r em 3. We shall limit ourselves to a sketch of the proof.

Note first that, if u ∈ SP,s(Rn), then the estimates (18) are obviously satisfied,
since as before we apply Theorem 1, ii). In the opposite direction, let us assume
formulas (18) and prove that u ∈ SP,s(Rn). In view of Theorem 1, iii), it will
be sufficient to check the boundedness of the sequence

σp(u, λ) = (p µ)!λ−p |u|∗p , p = 0, 1, . . .

for λ sufficiently large. The basic step is to prove the recurrence estimate

σp+1(u, λ) ≤ [(p µ + 1) · · · (p µ + µ)]−sσp(Au, λ)+ σp(u, λ)+ σp−1(u, λ)+ σ0(u, λ).

This is obtained by applying to each term xδD
γ
xu, γ = (α, β) ∈ (p + 1)V(P), the

estimates in Lemma 3. Namely, we take (γ, δ) ∈ pV(P) so that (α − γ, β − δ) ∈
V(P), and then apply (20) to v = xδ D

γ
xu, with θ = β−δ, η = α−γ. We now write

Av = xδ Dγ Au + [A, xδ Dγ ]u and estimate finally the terms in the commutators
by Lemma 2. At this moment the proceeding is the same as in Calvo-Rodino [7]
and Gramchev-Pilipovic-Rodino [17], so we omit further details. �

4. A hypoelliptic polynomial, which is not multi-quasi-elliptic.

This section regards with the global regularity in Schwartz space for the operator,
in dimension n = 1,

(21) A = Dm − xq + ixtDr ,

where m, q, r, t ∈ N, m ≥ 1, 1 ≤ q ≤ m, 1 ≤ r + t ≤ m.
Let

(22) a(x, ξ) = ξm − xq + ixtξr, (x, ξ) ∈ R2,

be the symbol associated to the differential operator A with polynomial coeffi-
cients, in (21). In order to check the Hörmander’s conditions (3) for the symbol
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in (22), we consider the following equivalent conditions listed by Hörmander in
[19]:

1) ∀ǫ > 0,
|∂γ

z a(z)|

1 + |a(z)|
< ǫ, z = (x, ξ) ∈ R2n, |z| > R, ∀γ ∈ N2n, R = R(ǫ) >

0;

2) |∂γ
z a(z)| ≤ C|a(z)| 〈z〉−ρ|γ|, |z| ≥ R, for some ρ, 0 < ρ ≤ 1, C > 0, R > 0.

In order to obtain the condition 1), Hörmander showed in [19, 20] that it suffices
to consider only the first order derivatives of the symbol a; see also an alternative
proof in De Donno [12]. Then, in the case of the symbol a(x, ξ) in (22), the
property 1) is equivalent to the conditions:

(23) i)
|aξ(x, ξ)|2

|a(x, ξ)|2
< ǫ and ii)

|ax(x, ξ)|2

|a(x, ξ)|2
< ǫ , x2 + ξ2 ≥ R.

Now, we shall prove the global regularity in Schwartz space of the operator (21)
by proving the two conditions in (23) . The conditions i) and ii) in (23) will be
studied separately in the following three regions of the plane Πx,ξ of axes x, ξ:

I) c|x|q < |ξ|m < C|x|q,

II) |ξ|m ≥ C|x|q,

III) |ξ|m ≤ c|x|q,

where C > 2 and c <
1

2
. Let us limit attention, for simplicity, to the cases x ≥ 0,

and ξ ≥ 0.
We start to prove the condition i) in (23) regarding the first derivative with

respect to ξ:

|aξ(x, ξ)|2

|a(x, ξ)|2
=

m2ξ2(m−1) + r2x2tξ2(r−1)

(ξm − xq)2 + x2tξ2r
, r ≥ 1, t ≥ 0.

By using the inequality (ξm − xq)2 + x2tξ2r ≥ ξ2rx2t, and the second part of I),
we obtain:

(24)
m2ξ2(m−1) + r2x2tξ2(r−1)

(ξm − xq)2 + x2tξ2r
≤ m2 ξ2(m−1)

x2tξ2r
+

r2

ξ2

< const
ξ2(m−1)

ξ
2r+2mt

q

+
r2

ξ2
−→ 0, ξ → ∞,
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provided r +
mt

q
> m − 1, i.e. qr + mt > q(m − 1), for all r ≥ 1 and t ≥ 0.

We have set const =
m2

C
2t
q

. Here and in the next pages we use const for all the

constants in the formulas. Formula (24) is satisfied also for r = 0, (t ≥ 1).

In the region II), we get (ξm − xq)2 + x2tξ2r ≥

(

1 −
2

C

)

ξ2m + x2tξ2r, so we

have:

(25)
m2ξ2(m−1) + r2x2tξ2(r−1)

(ξm − xq)2 + x2tξ2r
≤

m2ξ2(m−1)

(1 − 2
C

)ξ2m + x2tξ2r
+

r2x2tξ2(r−1)

(1 − 2
C

)ξ2m + x2tξ2r
;

by removing x2tξ2r in the first part at the right-hand side of (25) and ξm in the
second part, we may further estimate by:

const
1

ξ2
→ 0, ξ → ∞, ∀r ≥ 1, ∀t ≥ 0.

The conclusion remains valid for r = 0, (t ≥ 1), too.

In the region III) we have (ξm − xq)2 + x2tξ2r ≥ (1− 2c)x2q + x2tξ2r, and we
can estimate as:

(26)
m2ξ2(m−1) + r2x2tξ2(r−1)

(ξm − xq)2 + x2tξ2r
≤

m2ξ2(m−1)

(1 − 2c)x2q + x2tξ2r
+

r2x2tξ2(r−1)

(1 − 2c)x2q + x2tξ2r
.

By using again inequality III) at the numerator in the first part of the right-hand
side of (26), and factoring out x2t at the denominator in the second part, we
further estimate by:

const x2q m−1
m

(1 − 2c)x2q + x2tξ2r
+ r2 ξ2(r−1)

(1 − 2c)x2(q−t) + ξ2r
,

and hence by

(27) const
1

x2 q
m

+ r2 ξ2(r−1)

(1 − 2c)x2(q−t) + ξ2r
→ 0,

x → ∞, ∀r ≥ 1, t ≥ 0, t < q.

To handle the second term in (27) we have used the following lemma:
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Lemma 4. For all α, β, γ, δ ∈ N, with γ, δ 6= 0, x + ξ → ∞, ξ ≥ 0, x ≥ 0,
we have:

xαξβ

x2γ + ξ2δ
→ 0 ⇔ (2γ − α)(2δ − β) > αβ.

The proof is direct and we omit it. Formula (27) holds for r = 0, (t ≥ 1), too.
Now we study the condition ii) in (23) involving the derivative with respect

x of the symbol a(x, ξ). By starting from region I) we have as above:

q2x2(q−1) + t2x2(t−1)ξ2r

(ξm − xq)2 + x2tξ2r
< const

x2(q−1)

x2r q
m

+2t
+

t2

x2
−→ 0, x → ∞

provided t +
rq

m
> q − 1, i.e. qr + mt > m(q − 1), for r + t ≥ 1, which is less

restrictive than what required for formula (24), since m ≥ q. For region II) we
get:

(28)

q2x2(q−1) + t2x2(t−1)ξ2r

(ξm − xq)2 + x2tξ2r
≤ const ξ

2m
q−1

q

(1− 2
C

)ξ2m+x2tξ2r
+ t2 x2(t−1)ξ2r

(1− 2
C

)ξ2m+x2tξ2r

≤ const
1

ξ
2m

q

+ t2
x2(t−1)

(1 − 2
C

)ξ2(m−r) + x2t
−→ 0,

x + ξ → ∞

provided r < m, and r + t ≥ 1. For r = m, and therefore t = 0, the second part
of formula (28) vanishes, so the result is true for s = 0, too.

In the region III) we get:

q2x2(q−1) + t2x2(t−1)ξ2r

(ξm − xq)2 + x2tξ2r
≤

q2x2(q−1) + t2x2(t−1)ξ2r

(1 − 2c)x2q + x2tξ2r
≤ const

1

x2
→ 0, x → ∞.

Summing up, a(x, ξ) satisfies the estimates (22) if:

(29)

{

rq + mt > q(m − 1)
t < q

.

It is easy to see that for r = 0, by (27) and the first of (29), a(x, ξ) is hypoelliptic
if t ≥ q. For t = 0 we obtain hypoellipticity only for r = m. One can also easily
check that the previous conditions are necessary for hypoelliptcity. Let r + t = p,
from formula (29) by replacing r with p − t we then obtain:

(30)
q

m − q
(m − 1 − p) < t < q, m > q.
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If m = q, from (29) we obtain r + t > m − 1, then there is hypoellipticity only
for r + t = m.

Remark. Let p ≤ q − 1, we then obtain from the first part of the formula
(30):

t >
q

m − q
(m − 1 − p) ≥

q

m − q
(m − 1 − q + 1) = q,

contradicting the second part, so we have hypoellipticity only for r + t = p,
where p ≥ q. Similar computations, shows that there is hypoellipticity for some
couple (r, t) on the straight line p = r + t = q + α, α = 0, . . . ,m − q, if and only
if:

m

q
< α + 2.

More precisely there are at least β values of t, β = 1, . . . , q−1, for hypoellipticity
on the straight line p = q + α, α = 0, . . . ,m − q, if and only if:

m

q
<

α + β + 1

β
.

In particular we obtain all the q − 1 values of t for having hypoellipticity, on the

straight line p = q, if
m

q
<

q

q − 1
, and m ≥ q, which imply q = m − 1. It is

convenient to distinguish two regions, in the set of all the possible couples (r, t)
giving hypoellipticity:

(31) q(m − 1) < rq + mt ≤ qm,

and,

(32) rq + mt > qm, t < q.

In the case when (31) is valid with rq + mt = qm, or (32) is satisfied, the
polynomial (22) is multi-quasi-elliptic, cf. Boggiatto-Buzano-Rodino [1]. In the
follow we shall be mainly interested in non multi-quasi-elliptic polynomials.

Remark. We find hypoellipticity on straight line p = q + α in the region
(31) if and only if:

α + 1 <
m

q
< α + 2 .
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More precisely There are at least β values of t, β = 1, . . . , q − 1, for having
hypoellipticity on the straight line p = q +α, α = 0, . . . ,m−q, in the region (31),
if and only if:

α + 1 <
m

q
<

α + β + 1

β
.
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