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The aim of this article is to establish a definition of the viability kernel associated
with a differential inclusion of high order, which generalizes this notion for first
order differential inclusion. We present a sufficient condition ensuring the existence
of the viability kernel of high order. Some examples in the second order case are
analysed.
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1 Introduction

A viability problem for a first order differential inclusion consists in looking for absolutely
continuous functions x(·) such that x′(t) ∈ F (x(t)) for almost all t ≥ 0, starting from
x0 (i.e. x(0) = x0) and satisfying the viability condition x(t) ∈ K. Where F : D(F ) ⊂
X → 2X is a set-valued map, K a closed subset of the finite dimensional space X and
x0 ∈ K is the initial state. Viability theorems for first order differential inclusions have
been studied in recent years (see [3], [5] or [9] for more details).

It is known that a subset K ⊂ D(F ) is a viability domain of F if and only if K
is locally viable under F provided that F is upper semicontinuous (usc) with convex
compact values and K is locally compact.

If a closed subset K is not a viability domain, the question arises as to whether
there are closed viability subsets of K viable under F , whether there exists a largest
closed subset of K viable under F . The answer is positive assuming restrictions on the
set-valued map F and the largest closed subset viable under F contained in K is called
Viability Kernel of a closed subset K with respect to the set-valued map F ([5]).

The notion of viability kernel appeared in the framework of differential inclusions in
[1], and the relationship between viability kernels and zero dynamics in [2]. Properties of
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the viability kernels can be found in [7], [13], [14] and algorithms for approaching them
in [10] and [15].

In this paper we continue with the search on viability problems for differential inclu-
sions of high order started in [11, 12] by introducing and analysing the viability kernel
of higher order. Section 2 presents some topics in the framework and sets up notation
and terminology. Section 3 is devoted to introduce the notion of tangent set of n-th
order very useful in this framework. In section four we obtain sufficient and necessary
conditions ensuring the existence of viable global solutions. A counterexample showing
that we can not replace local existence by global existence even if the set valued map is
Marchaud is presented. The next section deals with viability kernels of high order and
we give a definition and a sufficient condition for its existence. We conclude with three
examples of viability kernels of second order.

2 Preliminaries

Let us first recall some notions and notation. Let X,Y be metric spaces. Given a set-
valued map F : X → 2Y , we will denote by domain of F the set D(F ) = {x ∈ X :
F (x) 6= Ø} and we say that F is nontrivial if D(F ) 6= Ø. The graph of F is said to be
the subset of the space X × Y defined by G(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}. It is said
that F is upper semicontinuous (u.s.c.) if F−1(C) = {x ∈ X : F (x) ∩ C 6= Ø} is closed
in D(F ) for every closed set C ⊆ Y . We say that

lim sup
x′→x

F (x′) = {y ∈ Y : lim inf
x′→F x

d(y, F (x′)) = 0}

is the upper limit of F (x′) when x′ → x, where the notation x′ →F x means that
x′ ∈ D(F ) and converges to x.

In the sequel we consider X a finite dimensional space, K ⊆ X a non-empty set and
F : Xn → 2X an usc non trivial set-valued map with convex compact values.

Let (x0, v1, · · · , vn−1) ∈ K ×X(n−1), we deal with the viability problem of order n
which consists in looking for absolutely continuous functions
x(·) : [0, T [→ X possesing absolutely continuous derivatives up to order n − 1 (i.e.
x ∈W

n,1
loc (0, T,X), such that

x(n)(t) ∈ F (x(t), x′(t), · · · , x(n−1)(t)); (a.e) t ∈ [0, T [(2.1)

x(0) = x0; x
′(0) = v1, . . . , x

(n−1)(0) = vn−1(2.2)

x(t) ∈ K, ∀ t ∈ [0, T [(2.3)

We denote by S(x0, v1, . . . , vn−1;T ) the set of solutions on [0, T [ of (2.1) satisfying ini-
tial condition (2.2). We denote by K(T ) the set of functions
ϕ : [0, T [→ X such that ϕ(t) ∈ K for all t ∈ [0, T [ (where 0 < T ≤ ∞). We say
that the set valued map F has linear growth if there exists c > 0 such that

‖F (x1, . . . , xn)‖ ≤ c(1 + |x1| + . . .+ |xn|)
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for all (x1, . . . , xn) ∈ D(F ) where ‖F (x1, . . . , xn)‖ = supy∈F (x1,...,xn) |y|. We will say
that an u.s.c. map with convex compact values and linear growth is a Marchaud map.

As usual we regard the n-th order differential inclusion (2.1) as the system of first

order differential inclusion y′(t) ∈ F̃ (y(t)) where

y = (x, x′, . . . , x(n−1)) ∈ Xn, and F̃ (y) = (y2, . . . , yn, F (y))

Thus initial condition (2.2) becomes y(0) = (x0, v1, . . . , vn−1). In order to establish the
viable condition in terms of variable y we generalize the notion of Bouligand’s cone to
high order, by introducing the so called Tangent sets of High Order.

3 Higher order tangent sets

Definition 3.1 Let K ⊆ X be a non-empty set, and x1, x2, . . . , xn ∈ X. We denote by

A
(n)
K (x1, . . . , xn) the n-th. order tangent set of K at (x1, . . . , xn) defined by:

A
(n)
K (x1, . . . , xn) := lim sup

h→0+

n!

hn

(
K − x1 − hx2 − · · · − hn−1

(n− 1)!
xn

)
.

We have the following useful characterization.

Proposition 3.1 A vector y ∈ X, belongs to A
(n)
K (x1, . . . , xn) if and only if it satisfies

one of these equivalent statements

1. There exist hm → 0+ and ym → y such that

x1 + hmx2 + . . .+
hn−1

m

(n− 1)!
xn +

hn
m

n!
ym ∈ K; (m ∈ N)

2. lim inf
h→0+

n!

hn
d

(
x1 + hx2 + · · · + hn−1

(n− 1)!
xn +

hn

n!
y, K

)
= 0

We now list several basic facts about these tangent sets of higher order.

Proposition 3.2 A
(1)
K (x1) is a closed cone, (it is equal to Bouligand’s cone).

A
(n)
K (x1, . . . , xn) is closed and

A
(n)
K (x1, λx2, . . . , λ

n−1xn) = λn A
(n)
K (x1, . . . , xn)

for all λ > 0 and n ≥ 2.

If A
(n)
K (x1, . . . , xn) 6= Ø then x1 ∈ K and1 xr ∈ A

(r−1)
K (x1, . . . , xr−1) for each r =

2, · · · , n.

1If x1 ∈ intK, then A
(n)
K

(x1, . . . , xn) = X.
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From Proposition 3.2 it follows the following relationship between the domain of A
(n)
K

and the graph of A
(n−1)
K :

D(A
(n)
K ) ⊆ G(A

(n−1)
K ).

Notice that A
(2)
K coincides with Ben-Tal’s second order tangent set (see 1.7 in [6])2.

Proposition 3.3 Let ϕ : [0, T [→ X be a solution of (2.1). If ϕ(t) ∈ K for all t ∈ [0, T [
then

(ϕ(t), ϕ′(t), . . . , ϕ(n−1)(t)) ∈ G(A
(n−1)
K ), ∀ t ∈ [0, T [(3.1)

Conversely, if K is closed and (3.1) holds then ϕ(t) ∈ K for all t ∈ [0, T [

According to the above result the viable condition on x(t) (2.3) involves an under-
lying viability condition on x(t) and its derivatives up to order n − 1, that is, y(t) =

(x(t), x′(t), . . . , xn−1(t)) ∈ G(A
(n−1)
K ).

4 Local viability theorem of high order

We can obtain the following local viability theorem for higher order. (For the proof we
refer the reader to [11], [12])

Theorem 4.1 Let K ⊆ X such that G(A
(n−1)
K ) is locally compact and D(F ) ⊂ G(A

(n−1)
K ).

Are equivalent the following statements.
(i) For each (x, u1, . . . , un−1) ∈ Xn there exists T > 0 such that

S(x, u1, . . . , un−1;T ) ∩ K(T ) 6= Ø

(ii) F (x, u1, . . . , un−1) ∩ DA
(n−1)
K (x, u1, . . . , un−1)[u1, . . . , un−1] 6= Ø for all

(x, u1, · · · , un−1) ∈ G(A
(n−1)
K ).

Moreover given (x0, v1, . . . , vn−1) ∈ G(A
(n−1)
K ), there exist η > 0 and T0 > 0, such

that S(x, u1, . . . , un−1, T0) ∩ K(T0) 6= Ø, for each initial condition (x, u1, . . . , un−1) ∈
G(A

(n−1)
K ) ∩ ((x0, v1, . . . , vn−1) + η U), where U) is the unit ball.

Theorem 4.2 Let K be a closed subset such that G(A
(n−1)
K ) is locally compact and con-

tained in D(F ). Under the assumption (ii) of Theorem 4.1 for every (x0, x1, . . . , xn−1) ∈
2The contingent set of high order, was introduced by Aubin & Frankowska in [4] by

T
(n)
K

(x1, . . . , xn) = lim sup
h→0+

h−n(K − x1 − hx2 − · · · − hn−1 xn)

There exists the following relationship between T
(n)
K

and A
(n)
K

A
(n)
K

(x1, . . . , xn) = n!T
(n)
K

�
x1, x2, · · · ,

1

(n − 1)!
xn

�
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G(A
(n−1)
K ) there exists a maximal solution

ϕ ∈ S(x0, x1, . . . , xn−1, T ) viable in K, such that either T = ∞ or T < ∞ and in
this case either

lim sup
t→T−

‖(ϕ(t), . . . , ϕ(n−1)(t))‖ = ∞

or there exists limt→T ϕ
(j)(t) = ϕ(j)(T ) for j = 0, . . . , n− 1 and

(ϕ(T ), . . . , ϕ(n−1)(T )) ∈ G(A
(n−1)
K ) \ G(A

(n−1)
K )

Remark 4.1 Let us mention an important consequence about the existence of global
viable solutions in the preceding theorem:

Replacing the assumptions “F u.s.c. with convex compact values” by “F is a Mar-
chaud map” we obtain lim supt→T− ‖(ϕ(t), . . . , ϕ(n−1)(t)‖ < ∞. Thus, assuming the

hypotheses G(A
(n−1)
K ) is closed and F is a Marchaud map we obtain T = ∞ in the

preceding theorem.

A sufficient condition to prove local existence of viable solution for second order
differential inclusions without the assumption of G(TK) is closed is given by:

(x0, v0) ∈ G(AIK )

where AIK is the Dubovickii-Miljutin cone (see [8]).
The following example shows that this result is not longer true when “local existence”

is replaced by “global existence”, even if F is a Marchaud map.

Example 4.1 Let K = [a, b] with 0 < a < b. We show that sufficient conditions of

the local existence theorem are satisfied by the problem,

x′′(t) = x(t), x(0) = x0 ∈]a, b[, x′(0) = 0(4.1)

Howewer there is not any viable solution in K on [0,∞[.

• Firstly we show that (x0, 0) ∈ G(AIK). In fact since K is convex AIK(x) =
int TK(x) so if x0 ∈]a, b[ then 0 ∈ AIK(x0).

• Next we prove that tangential condition

F (x, v) ∩DTK(x, v)[v] 6= Ø; ∀ (x, v) ∈ G(TK)

holds.

It is easily seen that TK(x) =






[0,+∞[ for x = a

R for x ∈]a, b[
] −∞, 0[ for x = b

hence the graph of TK is

not a closed set (see Fig. 1).
In a similiar way we check that

TG(TK)(x, v) =





[0,∞[×R for x = a, v ≥ 0
R

2 for x ∈]a, b[, v ∈ R

] −∞, 0] × R for x = b, v ≤ 0
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-

6

x

v

0 a
b

Figure 1: G(TK)

for all (x, v) ∈ G(TK). Hence we have

(v, a) ∈ TG(TK)(a, v); v ≥ 0

(v, x) ∈ TG(TK)(x, v), x ∈]a, b[, v ∈ R

(v, b) ∈ TG(TK)(b, v); v ≤ 0

which implies,

x = F (x, v) ∈ DTK(x, v)[v] 6= Ø

for all (x, v) ∈ G(TK), that is the tangential condition.

Finally, we prove that there is no viable solution in K. The only solution of the

second order problem (4.1) is x(t) =
x0

2
(et + e−t) that is not viable on [0,∞[ in [a, b].

Notice that x(t) → +∞ as t→ +∞.

5 Existence of viability kernel of high order

We introduce the notion of Viability Kernel of n-th order First of all we give the
following

Definition 5.1 A subset L contained in G(A
(n−1)
K ) is said to be a viable set under F

if and only if

S(x0, . . . , xn−1;∞) ∩ K 6= Ø

for all (x0, x1, . . . , xn−1) ∈ L, here K = K(∞).

Let K be a closed subset, if G(A
(n−1)
K ) is not a viable set under F the question arises

as to whether there are closed subsets of G(A
(n−1)
K ) viable under F , whether there exists

a largest closed subset of G(A
(n−1)
K ) viable under F .
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Definition 5.2 We call the viability kernel of K of n-th order associated with (2.1),

denoted by V iab
(n)
F (K), the largest closed subset in G(A

(n−1)
K ) viable under F .

Let us note that V iab
(n)
F (K) is equal to V iab

(1)eF (G(A
(n−1)
K )). We prove the following

technical lemma

Lemma 5.1 Let F be a Marchaud map and K a closed non-empty set such that G(A
(n−1)
K ) ⊂

D(F ). Let ϕ ∈ S(x0, . . . , xn−1;T ) ∩ K then:

|ϕ(j)(t)| ≤ (1 + ‖y0‖) exp (at); t ∈ [0, T [, (0 ≤ j ≤ n− 1)

|ϕ(n)(t)| ≤ c(1 + ‖y0‖) exp(at); t ∈ [0, T [ (a.e.)

where ‖y0‖ = (|x0|2 + . . .+ |xn−1|2)1/2 and a = 1 + c
√
n.

Proof. We set ψ = (ϕ, . . . , ϕ(n−1)) and

‖ψ(t)‖ =
(
|ϕ(t)|2 + . . .+ |ϕ(n−1)(t)|2

)1/2
.

It is sufficient to prove that

‖ψ(t)‖ ≤ (1 + ‖y0‖) exp (at) − 1.

In fact

‖ψ′(t)‖ = (

n∑

j=1

|ϕ(j)(t)|2)1/2

≤ (
n−1∑

j=0

|ϕ(j)(t)|2)1/2 + c(1 +
n−1∑

j=0

|ϕ(j)(t)|)

≤ ‖ψ(t)‖ + c(1 +
√
n‖ψ(t)‖) = (1 + c

√
n)‖ψ(t)‖ + c ≤ a(‖ψ(t)‖ + 1)

and the result follows by Gronwall’s Inequality. �

Note 5.1 We observe that if G(A
(n−1)
K ) is not closed (or locally compact) we can not

obtain (local) existence of viable solutions of the n-th order inclusion by using the first
order theory because one of the main assumptions on the local viability theory for first
order differential inclusion is that the viability set must be closed. Howewer we show that
with respect to the existence of viability kernel of high order we can obtain a proof without
using the results of first order.

The existence and a characterization of viability kernels of high order are established
by our next theorem.

Theorem 5.1 Let F be a Marchaud map and K a closed non-empty set such that

G(A
(n−1)
K ) ⊂ D(F ). The Viability Kernel of K of n-th order associated to (2.1), ex-

ists (possibly empty) and is equal to the subset of the n-th initial states such that at least
one solution starting from them is viable in K.
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Proof. We set A = {y ∈ G(A
(n−1)
K ):S(y,∞) ∩ K 6= Ø} The proof will be divided into

three steps.

Step 1. First of all notice that V iab
(n)
F (K) ⊆ A.

Step 2. We check that A is closed.

Let a sequence ym = (x0m, . . . , xn−1,m) ∈ A converging to the vector

y = (x0, . . . , xn−1). By definition of A there exists ϕm ∈ S(ym,∞) ∩ K for each
m ∈ N.

Since {ym} is convergent, from the preceding lemma it follows

|ϕ(j)
m (t)| ≤M exp aT ; t ∈ [0, T ]

for each j = 0, 1, . . . , n− 1, and

|ϕ(n)
m (t)| ≤ cM exp aT ; t ∈ [0, T ] a.e

Thus by Ascoli’s theorem a subsequence (again denoted by) ϕ
(j)
m (.) converges uni-

formly inW 1,1(0, T,X) to some function vj(.) ∈W
1,1
loc (0,∞, X) for each j = 0, 1, . . . , n−1

and by the other hand Alaoglu’s theorem implies that a subsequence (again denoted)

ϕ
(n)
m (.) converges weakly to some function w ∈ L1

loc(0,∞).

Writing ϕ = u0 we prove that vj = ϕ(j) for all j = 1, . . . , n− 1 and w is actually the
nth-derivative, ϕ(n), of ϕ. In fact, letting m→ ∞ in

ϕ(j)
m (t) − ϕ(j)

m (s) =

∫ t

s

ϕ(j+1)
m (τ) dτ

for j = 0, 1, . . . , n − 1, the desired result is obtained. We proceed to show that ϕ ∈
S(y,∞) ∩K.

Obviously, ϕ(t) ∈ K for all t ∈ [0,∞[ being K closed.

By the other hand, since (ϕm(t), . . . , ϕ
(n)
m (t)) ∈ G(F ) almost everywhere and F is

u.s.c., a convergence theorem (see p. 67 in [5] for instance) shows: (ϕ(t), . . . , ϕ(n)(t)) ∈
G(F ). Finally, by Proposition 3.3 we have

(ϕ(t), . . . , ϕ(n−1)(t)) ∈ G(A
(n−1)
K )

hence y ∈ A, which completes the proof of step 2.

Step 3. A is viable under F and the largest one.

Let y = (x0, . . . , xn−1) ∈ A, then there exists a viable solution x(·) such that
(x(0), . . . , xn−1)(0)) = (x0, . . . , xn−1). For all t > 0, the function

φ(s) = x(t+ s); s ∈ [0,+∞[

is also a viable solution in K such that

(φ(0), . . . , φ(n−1)(0)) = (x(t), . . . , xn−1)(t))

and by Proposition 3.3 (φ(s), . . . , φn−1)(s)) ∈ G(A
(n−1)
K ) hence we obtain (x(t), . . . , xn−1)(t)) ∈

A. �
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Next example shows a viability kernel of second order V iab
(2)
F (K) empty. In this

case we said that K is a repeller for F because any solution leaves K in finite time.

Example 5.1 Let K = [a, b] with 0 < a < b and F (x, v) = x. Given (x0, v0) ∈ G(TK).
The problem:

x′′ = x, x(0) = x0, x′(0) = v0

has the only solution

x(t) =
x0 + v0

2
et +

x0 − v0

2
e−t(5.1)

If
x0 + v0

2
> 0 we have x(t) → ∞ as t → ∞. If

x0 + v0

2
< 0 we have x(t) → −∞ as

t → ∞. If
x0 + v0

2
= 0 we have x(t) = x0e

−t → 0 as t → ∞. Thus, x(·) is not viable

in K on [0,+∞[, because of a > 0. Hence, there is no global viable solution for this
problem. (i.e. every solution x(·) is not viable in K on [0,+∞[).

Howewer, if we take a ≤ 0 in the preceding example the viability kernel is not empty.

Example 5.2 Let K = [a, b] with a ≤ 0 < b and F (x, v) = x. We show that

Viab
(2)
F (K) = {(x,−x); x ∈ [a, b]}

Let (x0, v0) ∈ G(TK) such that x0 + v0 = 0 we prove that there exists a viable solution in
[a, b] on [0,∞[.

In fact, let x0 ∈ [a, b] then v0 = −x0 ∈ TK(x0). The solution of

x′′(t) = x(t); x(0) = x0, x′(0) = v0

is x(t) = x0e
−t. So if b ≥ x0 > 0 then a ≤ 0 ≤ x0e

−t ≤ x0 ≤ b for all t ∈ [0,∞[. If
a ≤ x0 ≤ 0 then a ≤ x0 ≤ x0e

−t < 0 < b for all t ∈ [0,∞[.

Conversely, if (x0, v0) ∈ Viab
(2)
F (K) and x0 + v0 6= 0 analysis carried out in Example

5.1 shows that x(·) given by (5.1) is not viable in [a, b] on [0,∞[, which is impossible.

Notice that x(t) + x′(t) = 0 for all t ≥ 0. That is, (x(t), x′(t)) ∈ Viab
(2)
F (K) i.e. the

viability kernel is also viable under F .

In Example 5.2 a non-empty viability kernel is presented, but it has empty interior.
Next example provides a viability kernel with non-empty interior.

Example 5.3 Let K = [a, b] with 0 < a < b and F (x, v) = −v. We obtain

Viab
(2)
F (K) = {(x, v) ∈ G(TK); a− x ≤ v ≤ b− x}

Let (x0, v0) ∈ G(TK). The second order problem:

x′′(t) = −x′(t); x(0) = x0, x′(0) = v0

has the only solution x(t) = x0 + v0(1 − e−t). If (x0, v0) ∈ Viab
(2)
F (K) then a ≤ x0 +

v0(1 − e−t) ≤ b for all t ∈ [0,∞[ so a− x0 ≤ v0 ≤ b − x0. Conversely, if this condition
holds we have:
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If v0 > 0 (v0 < 0) then v0(1 − e−t) is increasing (uncreasing). Therefore a − x0 ≤
0 < v0(1 − e−t) < v0 ≤ b − x0, (a − x0 ≤ v0 < v0(1 − e−t) ≤ 0 ≤ b − x0). If v0 = 0
then x(t) = x0 and a − x0 ≤ 0 ≤ b − x0. Hence, x(·) is a global viable solution, which
completes our claim.
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