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We present in this paper some recent developments dealing with dynamical con-
trolled systems with state constraints. After recalling the basic frame of Viability
Theory and it numerical aspects, we estimate the convergence of numerical schemes
for computing the optimal time for target problem. We give also a relaxation re-
sult for decomposable problems. These properties are enhanced through the study
of the Norvegian Fishermen problem arising in Dynamic of Population. Another
interesting application of this approach is shortly presented when considering the
approximation of the so-called the minimal time of crisis. This appears for problems
where some constraints are “soft” (reversibility) and others are “hard” (irreversibil-
ity).
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1 Introduction

The recent developments of the Viability Theory have led to the emergence of the concept
of the Viability Kernel associated with a constrained dynamic system.

This set appears to play a crucial role for studying qualitative and quantitative
problems mainly in automatic, in economy, in biology or in demography, for instance.
Moreover numerous characteristics of a dynamic system can be expressed in term of
Viability Kernel or of Invariant Kernel. In this way we can characterize the set of all
equilibria of a system. We can also characterize the Value function for optimal control
problem or the Minimal time function for target problems.

On the other hand approximation theory for set-valued maps allows to compute
numerical approximations of the Viability Kernel and we can give estimations of the
convergence of algorithms. These methods allow calculus of feed-back laws ensuring
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the state both to remain in the constraint set – viability criteria – and to preserve the
principles underlying these functions – optimality, stability or robustness criteria for
instance.

Many linear or nonlinear dynamic models have been studied through this approach.
Let us cite models in the economy of renewable resource (L. Doyen, D. Gabay [11]) or
models in demography and population evolution (N. Bonneuil [6], N. Bonneuil & P.S.-P.
[7]). For studying particular models, general results cannot be applied directly and it is
necessary to state adapted results. We give here a relaxation theorem giving sufficient
conditions for the Viability Kernel in non convex dynamic to coincide with the Viability
Kernel for the relaxed problem.

2 Control Problems with state constraints

Let us first recall some basic results and definitions in Set-Valued Analysis. Let us
consider a dynamic system where X = R

N denotes the state space and V the set of
possible controls.

Let f : X × V → X be the map describing the dynamic of the system

{

x′(t) = f(x(t), u(t)), p.p.t ≥ 0
u(t) ∈ U, ∀t ≥ 0

(1)

We assume that the state must remain in a closed set K: x(t) ∈ K, ∀t ≥ 0.
Let us denote F (x) := {f(x, u), u ∈ U} and SF (x) the set of solutions to (1) starting

from x at time t = 0.

2.1 The Viability Kernel

When constraints occur, we are interested in solutions to (1) which satisfy these con-
straints. The Viability Kernel of K for F – that we denote V iabF (K) – is precisely
the subset of all points in K from which at least one viable solution starts, that is to say
a solution which remains forever in K

V iabF (K) := {x ∈ K, ∃x(·) ∈ SF (x), x(t) ∈ K ∀t ≥ 0}

One can easily prove that any viable solution remains necessarily in the very Viability
Kernel.

The Viability Kernel has an interest only when constraints occur since, for any un-
constrained system, the whole space is trivially a viability domain. We refer to Viability

Theory (J. P. Aubin [3]) and Set-Valued Analysis (J. P. Aubin, H. Frankowska, [1])
for a general discussion about this subject. The approximation of the Viability Kernel
has first been studied in [14].

This set can be characterized by the mean of geometric conditions. Indeed, if K is
closed and if F : X X is a Marchaud1 map, then V iabF (K) is the largest closed subset

1A set-valued map is a Marchaud map if it is upper semicontinuous with convex compact nonempty
values and with linear growth: ∃c > 0, ∀x ∈ X, ‖F (x)‖ := supy∈F (x) ‖y‖ ≤ c(1 + ‖x‖
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D ⊂ K satisfying

∀x ∈ D, ∃p ∈ NPK(x) inf
u∈U

< f(x, u), p >≤ 0

where NPK(x) := {p ∈ X | dK(x + p) = ‖p‖} denotes the set of proximal normals to K
at x.

This geometric characterization provides numerical algorithms. For that purpose we
associate with the system x′(t) ∈ F (x(t)) the explicit discrete system of the form

xn+1 ∈ Gε(x
n) := xn + εFε(x)(2)

The discrete Viability Kernel of K for Gε denoted by
−→

V iabGε
(K) is the set of

initial values belonging to K such that at least one sequence exists which is a solution
to the discrete system (2) and which remains in K: ∀n ∈ N, xn ∈ K.

Let us consider a family of approximations Fε of F satisfying2:

Limsup
ε→0

Graph(Fε) ⊂ Graph(F ) and ∀ǫ ∈]0,
1

M
], F (x + εMBX) ⊂ Fε(x)(3)

where M := maxy∈K ‖F (y)‖.

Theorem 1 Let F be a Marchaud map satisfying (3) and let K ⊂ X be closed. Then

Lim
ε→0

−→

V iabGε
(K) = V iabF (K) ⊂

−→

V iabGε
(K)

The computation of the Viability Kernel is derived from the following approximation
Theorem based on the construction of a sequence of sets Kn defined by

K0
ε := K

Kn+1
ε := {x ∈ Kn

ε | Gε(x) ∩ Kn
ε 6= Ø}

Theorem 2 Let F be a Marchaud map satisfying (3) and let K ⊂ X be closed. Then

K∞
ε = Lim

n→∞
Kn

ε =
⋂

n

Kn
ε =

−→

V iabGε
(K)

and

Lim
ε→0

K∞
ε = V iabF K

2The limits of sets are taken at the sense of Painlevé-Kuratovski lower limit or upper limit.
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When projecting the discrete dynamic onto an integer lattice Xh of X we can define

fully discrete Viability Kernels – denoted
−→

V iabGh,ε
(Kh) – and we can approach numer-

ically V iabF (K) precisely with a sequence of fully discrete Viability Kernels. For that
purpose we apply the following Refinement Principle

Theorem 3 Let F be a Marchaud map satisfying (3) and let K ⊂ X be closed. Let Xh

be an integer lattice of X and let Gεh be defined by Gε,h(xh) := (Gε(xh)+hB)∩Xh. Let
be h > 0, h′ > 0, h′ < h and εh > 0 such that limh→0

εh

h
= 0 . Then

−→

V iabGε
h′ ,h′

(Kh′) =
−→

V iabGε
h′ ,h′

((
−→

V iabGεh,h
(Kh) + 2hB) ∩ Xh′)

where B denotes the unit ball of X, and

Lim
h→0

−→

V iabGεh,h
(Kh) = V iabF (K)

2.2 The Target Problem with State Constraints

Let C be a target and K the constraint set. Let us consider the system:

x′(t) ∈ F (x(t)) := {f(x(t), v), v ∈ V }, a.e. t > 0(4)

A first question which arises when studying target problems is to find the set of points
of K from which at least one solution starts, reaching C in a finite time while remaining
in K until it reaches K. We denote this set V ictF (K, C). Let us define F̃ the set-valued

map which coincides with F everywhere except on C and ∀x ∈ C, F̃ (x) = Co(F (x)∪{0}).

Proposition 1 Let F be a Marchaud map and let K and C be closed subsets of X. Let
us assume that V iabF (K) = Ø. Then

V ictF (K, C) = V iabF̃ (K)

A second question3 is to determine the Minimal Time function with values in R
+ ∪

{+∞} defined on X by

ϑK
C (x0) := inf

x(·)∈SF (x0)
{τ | x(τ) ∈ C, x(t) ∈ K, ∀t ≤ τ}

Let us set H := {(x, y) ∈ K × R
+} and

Φ(x, y) =

{

F (x) × {−1} if x ∈ X\C
Co((F (x) × {−1}) ∪ (0, 0)) otherwise

The Minimal Time function enjoys the following properties

3Results dealing with this question are detailed in a joint work with P. Cardaliaguet and M. Quin-
campoix [9], [10].
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Proposition 2 If F is a Marchaud map and if K and C are closed, then

the function ϑK
C (·) is lower semicontinuous,

∀x0 ∈ Dom(ϑK
C ) there exists a viable solution x(·) such that x(ϑK

C (x0)) ∈ C and

Epigraph(ϑK
C ) = V iabΦ(H)

So we can compute the Minimal Time function in the lack of regularity or control-
lability assumptions on the boundary of the target or of the constraint set. The only
condition is that K is closed. Let be suitable τ > 0 and ρ > 0, depending on τ and
let us consider the sequence of functions defined by ϑ0

τ ≡ IK , where IK is the indicator
function of K, and

ϑn
τ (x) := (1 − ρ)τ + inf

v∈V,|w|≤1
ϑn−1

τ (x + τ(f(x, v) + ρw)).

Proposition 3 Under the previous assumptions, the functions ϑn
τ (·) are upper bounded

by ϑK
C (·) and the sequence ϑn

τ (·) converges pointwisely to ϑK
C (·).

The proof of this Proposition is a consequence of the Convergence Theorem 1.

2.2.1 T-Viability and upper stability

Let be T > 0 fixed and consider

ΦT (t, x) :=

{

{−1} × F (x) if t < T
Co((0, 0), {−1} × F (x)) if t ≥ T

Let us denote V iabT
F (K) := ΠX(V iabΦT

(R+ × K)).

Proposition 4 For any α > 0 we have

V iabT
F (K) ⊂ V iabT

F+αB(K) ⊂ V iabT
F (K +

α

ℓ
(eℓT − 1)B)

Sketch of the proof.
– The first inclusion is obvious.
– Let be x0 ∈ V iabT

F+αB(K) and x̃(·) ∈ SF+αB(x0) a T -viable solution in K.
From the Filippov Theorem, ∃x(·) ∈ SF (x0) satisfying the following estimations:

∀t ∈ [0, T ]






i) ‖x̃(t) − x(t)‖ ≤ eℓt
∫ t

0
αe−ℓsds ≤ α

ℓ
(eℓt − 1)

≤ α
ℓ
(eℓT − 1)

ii) ‖x̃′(t) − x′(t)‖ ≤ αeℓt ≤ αeℓT

Also, x(·) ∈ x̃(·) + α
ℓ
(eℓT − 1)B is T -viable in K + α

ℓ
(eℓT − 1)B and

x0 = x(0) ∈ V iabT
F (K +

α

ℓ
(eℓT − 1)B) �
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2.2.2 Relations between ϑK
ρ (·) and ΘK

C (·).

The following Proposition give an estimation between the approched minimal time, the
exact minimal time for some perturbation of the target and of the constaint set and the
exact minimal time out of perturbation.

Proposition 5 Assume the previous assumptions and moreover assume that F is ℓ Lip-

schitz and M bounded. At any point x0 where Θ
Kρ

C (x0) ≤ T , we have

Θ
Kρ

Cρ
(x0) −

α(ρ)

ℓ
(eℓT − 1) ≤ ϑρ(x0) ≤ ΘK

C (x0)

where Kρ := K + (Mρ +
αρ

ℓ
(eℓT − 1))B and Θ

Kρ

Cρ
(x0) is the minimal time for a solution

to (4) starting from x0 to reach Cρ and remaining in Kρ until the target is reached.

Sketch of the proof. Let be
−→
x ∈

−→

S Gρ
(x0) which is viable in K and optimal for

the function ϑK
ρ (·) : if Nρ = ϑρ(x0)/ρ, then xNρ

∈ Cρ.
Let us denote by xρ(·) the linear interpolation of the sequence (xn)n: for any n < Nρ

and for any t ∈ [nρ, (n + 1)ρ[ we have

xρ(t) = xn +
t − nρ

ρ
(xn+1 − xn)

It is clear that xρ(t) ∈ (K + MρB) and for any t ≥ Nρρ, xρ(t) = xNρ
. We have

x′
ρ(t) =

xn+1 − xn

ρ
∈ Fρ(xn) ⊂ Fρ(xρ(t)) + ℓ‖xρ(t) − xn‖B

so x′
ρ(t) ∈ F (xρ(t)) + αρB, with αρ = Mℓρ

2 (3 + ℓρ).
Let us define

Γ̃ρ(xρ, yρ) =

{

(F (xρ) + αρB)× {−1} if xρ /∈ Cρ

Co(((F (xρ) + αρB)× {−1}) ∪ {0}) if xρ ∈ Cρ

and

Φ̃ρ(x, y) =

{

F (x) × {−1} if x /∈ Cρ

Co((F (x) × {−1}) ∪ ({0} × {0})) if x ∈ Cρ

We have (x0, ϑρ(x0)) ∈ V iabΓ̃ρ
(K ×R

+). We derives from Theorem 1 the inequality

ϑρ(x0) ≤ ΘK
C (x0) ≤ T . Consequently

(x0, ϑρ(x0)) ∈ V iabT
Γ̃ρ

(K × R
+) ⊂ V iabT

Φ̃ρ+αρ(B×BR)
((K + MρB)× R

+)

From Proposition 4

(x0, ϑρ(x0)) ∈ V iabT
Φ̃ρ

(Kρ × (R+ − {
αρ

ℓ
(eℓT − 1)}BR)

where Kρ := K + (Mρ +
αρ

ℓ
(eℓT − 1))B
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This holds true for any x0 such that ΘK
C (x0) ≤ T . So

Graph(ϑK
ρ ) ∩ (Kρ × [0, T ]) ⊂ V iabT

Φ̃ρ
(Kρ × (R+ − {

αρ

ℓ
(eℓT − 1)}BR)

This inclusion means that at least there exists one trajectory remaining in a neigh-

borhood of K of order ρ and reaching Cρ in a time Θ
Kρ

Cρ
(x0) which satisfies

Θ
Kρ

Cρ
(x0) −

αρ

ℓ
(eℓT − 1) ≤ ϑK

ρ (x0)

From the very definition of the minimal time function, we always have

Θ
Kρ

Cρ
(x0) ≤ ΘK

Cρ
(x0)

Let xρ(·) ∈ SΦ(x0) the solution satisfying xρ(Θ
Kρ

Cρ
(x0)) ∈ Cρ. Since C and K

are closed and since the set of solution is compact in W 1,1([0,∞], X) there exists a
subsequence of solutions which converges to x(·) ∈ SΦ(x0) satisfying x(t) ∈ K∀t ≥ 0 and
x(ϑ⋆) ∈ C where

ϑ⋆ = lim inf
ρ→0

Θ
Kρ

Cρ
(x0)

This implies that

ΘK
C (x0) ≤ ϑ⋆ ≤ ϑρ(x0) +

αρ

ℓ
(eℓT − 1) + o(ρ) �

Corollary 1 Let us assume that the following controlability assumption holds true:
(A1) ∃ρ0 > 0 such that for any x0 ∈ C + ρ0B a trajectory exists that reaches C in a

time of order o(dC(x0)). Then

Θ
Kρ

C (x0) −
αρ

ℓ
(eℓT − 1) − o(ρ) ≤ ϑK

ρ (x0)

Moreover, if K = X, then for any x0 such that ΘK
C (x0) ≤ T , we have

ΘC(x0) −
αρ

ℓ
(eℓT − 1) − o(ρ) ≤ ϑρ(x0) ≤ ΘK

C (x0)

Let us mention a second relation, due to P. Cardaliaguet, between ϑρ(·) and ΘC(·)
which states that at any point x0 where ΘC(x0) ≤ T , we have

inf
‖y−x0‖≤rT

ρ

ΘC(y) − rT
ρ ≤ ϑρ(x0) ≤ ΘC(x0)

where rT
ρ := (2(1 + ℓ)eℓT − 1)Mρ.

The proof is also based on Filippov Theorem but applied to the backward dynamical
system. It implies namely the existence of some optimal solution to the continuous
problem starting close to x0 and remaining in a tube – in the timexstate space – around
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the computed piecewise linear optimal solution to the discrete problem starting exactly
from x0.

In other words, these results estimate the rate of convergence of the approached min-
imal time function to the exact one of order ρ at points where the minimal time function
is continuous. At points od discontinuity of the minimal time function, convergence of
order ρ still occurs but the epigraphic sense.

All these results can be extended to Bolza problem or to infinite horizon control
problem.

2.2.3 The Norvegian Fishermen, an example of Target Problem without

convexity

As an example let us now describe the following Norvegian Fishermen model studied by
F. Barth ([4]). This problem deals with the behavior of the population of fishermen. N.
Bonneuil ([5]) has proposed to exhibit what are the “good decisions” that the captains
must choose, between following the group of fishermen who exploits a known site and
taking risk for finding new site, so as to assure the survival of the population.

From a mathematical point of view, the main interest of this problem lies in the
fact that the right hand side of the differential inclusion is not convex valued and not
Lipschitz at points y = 0. Our aim is to prove that in this case the viability kernels
for the initial problem and for the relaxed problem coincide so that the Viability Kernel
Algorithm can be implemented. We state that this system in fact is relevant to a class
of uncoupled dynamical systems.

Let us briefly summarize the model:
– the wealth of the population at time t is denoted by z(t).
– the known level of resource of fish at time t is known through a density variable

y(t).
– the probability p “not to discover somewhere else a new site which density is higher

than the known one” y is given through a repartition law of the form p = 1 − e−λy. Its
evolution depends on the ratio 1 − u of captains who exploit together the known site.
The complement u represents the ratio of thoses captains who explore the sea in order
to discover some new abundant sites

Following N. Bonneuil in [5], we consider the dynamical system







z′(t) = c − (1 − u(t))y(t)
y′(t) = −α(1 − u(t))y(t)

p′(t) = p(t)[(1 − e−λy(t))u(t) − 1]
(5)

where c is the flow of irreductible expenses, for instance to keep boats in repair.
Considering the two first equations it necessarily comes out that the population

becomes ruined in a finite time. That is to say that the Viability Kernel is necessarily
empty. Also the question is to choose a suitable regulation u such that, at bankrupt
x = 0, the population is “sure” (say with a probability greater than 0.95) to be able to
discover a more abundant site somewhere else and so to restart a new fishing campaign.

Solving this problem amounts first to find the set of initial situations from which at
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least one trajectory starts remaining in the constraint set

K = R
+ × R

+ × [0, 1]

until it reaches the target
C = {0} × R

+ × [0, 0.05]

and second to find the feedback law (z, y) → u(z, y) assuring success.

2.2.4 Decomposable inclusion systems

Let us consider the differential inclusion system

x′(t) ∈ F (x(t) := {f(x(t), u), u ∈ U(x)}(6)

Let us assume that a decomposition X = X1 × X2 exists such that K := K1 × K2

and that the differential inclusion system (6) can be written under the form
{

i) x′
1 = f1(x1) + g1(x1)u

ii) x′
2 = f2(x1, x2, u)

(7)

Let us consider F (·) the relaxed set-valued map associated with F

F (x) = F (x1, x2) = Co{(f1(x1, u), f2(x1, x2, u)), u ∈ U}

Let us define the relaxed differential inclusion system

x′(t) ∈ F (x(t) := Co{f(x(t), u), u ∈ U(x)}(8)

Proposition 6 Assume that ∀x, U(x) is convex and that F is a set-valued map such
that K2 is invariant4 for f2 when (x1, u) covers K1 × U .

Then we have
Viab

F
(K) = ViabF (K)

and
∀x ∈ Viab

F
(K), F (x) ∩ TViab

F
(K)(x) 6= Ø.

Proof. a) Since F (x) ⊂ F (x), we always have ViabF (K) ⊂ ViabF (K). It is
sufficient to state the converse inclusion.

Let be x0 = (x0
1, x

0
2) ∈ Viab

F
(K) and x(·) ∈ S

F
(x0) a solution of (8) viable in K.

From the very definition of F , there exists n+1 measurable functions ui(·) ∈ U(x(·)) and

n+1 positive measurable real valued functions αi(·) such that for any t :
∑n+1

i=1 αi(t) = 1
and























x′
1(t) = f1(x1(t)) + g1(x1(t))

n+1
∑

i=1

αi(t)ui(t)

x′
2(t) =

n+1
∑

i=1

αi(t)f2(x1(t), x2(t), ui(t))

(9)

4that is to say that for any absolutely continuous function x(·) with values in K1 and for any mea-
surable function u(·), the solution to the equation x′

2(t) = f2(x1(t), x2(t), u(t)) starting from any initial
point x2(0) ∈ K2 remains in K2 forever.
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Let be u(·) =
∑n+1

i=1 αi(t)ui(t) and let us consider the solution x̃(·) of the differential
system

{

i) x̃′
1(t) = f1(x̃1(t)) + g1(x̃1(t))u(t), x1(0) = x0

1

ii) ˜̃x
′

2(t) = f2(x̃1(t), x̃2(t), u(t)), x2(0) = x0
2

(10)

It is clear that x̃1(·) = x1(·). Then if we consider any solution x̃2(·) of equation

x′
2(t) = f2(x1(t), x2(t), u(t))

the pair x̃(·) := (x1(·), x̃2(·)) is a solution to the initial system (6) viable in K. So
x0 = (x0

1, x
0
2) ∈ ViabF (K). �

2.2.5 Application to the Norvegian Fishermen problem

We can apply this result to system (5). Let be X1 = R
2 and X2 = R, x1 = (z, y) and

x2 = p, f1(x1) = (c − y,−αy), g1(x1) = (y, αy) and f2(x1, x2, u) = x2[(1 − e−λy)u − 1].
Then we define

F (x) :=

{

{f1(x1) + g1(x1)u, f2(x1, x2, u), u ∈ U(x)} if (x1, x2) /∈ C

(0, 0) if (x1, x2) ∈
o

C
(11)

Let K = R
+ × R

+ × [0, 1]. Since for any x1 = (z, y) ∈ K1, f2(x1, x2, u) ≤ 0, it is easy to
check that K2 = [0, 1] is an invariant set with respect to f2 whatever are x1 ∈ K1 and
u ∈ U(x).

Figure 1 shows the “victory domain” for the Norvegian Fishermen problem.

Fig. 1. Victory Domain for F : VictF (K, C). From any point in this set, there exists at least
one trajectory which reaches the stage of ruin. x = 0 with a probability lower than 5 %.
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2.3 The Minimal Time of Crisis

Let us consider the reference system (1). Now we admit that the state of the system can
violate “temporarily” the constraint K. In such situation we say that a “crisis” occurs.
We want to determine the Minimal Time of Crisis function5 defined by

CK
F (x0) := inf

x(·)∈SF (x0)
µ(t | x(t) /∈ K) = inf

x(·)∈SF (x0)

∫ +∞

0

XKc(x(s))ds

where µ denotes the Lebesgue’s measure in R and XKc(·) denotes the characteristic
function of the complement of K

XKc(x) :=

{

0 if x ∈ K
1 if x /∈ K

Let us introduce the upper semicontinuous set-valued map:

X ♮
Kc(x) :=







[0, 1] if x ∈ ∂K
1 if x /∈ K
0 otherwise

and let us consider the extended system

{

x′(t) ∈ F (x(t))

y′(t) ∈ −X ♮
Kc(x).

We denote F̃ = F × −X ♮
Kc .

Proposition 7 If F : X X is a Marchaud map and if K is closed in X, then

the function CK
F (·) is lower semicontinuous,

∀x0∈Dom(CK
F ), there exists x⋆(·) ∈ SF (x0) such that CK

F (x0)=
+∞
∫

0

XKc(x⋆(s))ds, and

Epi(CK
F ) = V iabF̃ (X × R

+)

In particular, as for the Minimal Time function, the Minimal Time of Crisis function
can be approached by an increasing sequence of functions defined on successively refined
grids Xh of X .

2.3.1 A numerical example

We consider the following controlled non linear equation
{

ẋ = x(1 − x/10)− yx
ẏ = u ∈ [−1, 1]

5The following results are presented in a joint paper with L. Doyen [12].
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and the domain of constraints K defined by

y(x − 1) ≥ 1.

The figure 2 represents the crisis map associated with this problem.

Fig. 2. Approximation of the graph of the crisis map for the dynamic
ẋ = x(1 − x/10) − yx, ẏ ∈ B and the constraint y(x − 1) ≥ 1.

2.3.2 Equilibria and Stability

Let be F : X Y . Let us denote EquiF (K) := {x ∈ K | 0 ∈ F (x)} the set of all
equilibria contained in a given set K.

We first give a characterization of EquiF (K) by the mean of the viability kernel of
an extended dynamic system



Viability, optimality and stability 225

Proposition 8 Let F be a Marchaud map satisfying assumption (3) and let us consider
the set-valued map Φ : X × R X × R defined by
Φ(x, y) := (0, infu∈F (x) ‖u‖Y ). Then Φ is a Marchaud map and

EquiF (K) × 0 = V iabΦ(K × 0)

From this result and from the convergence Theorem 1 we can deduce a numerical
method for finding either all the root of a polynomial P (x) = 0 or of piecewise lipschitz
function 0 ∈ [lim infx′→x f(x′), lim supx′→x f(x′)].

We are looking in second to the problem of finding the set of initial points from
which a solution to (1) starts converging asymptotically to an equilibria. The following
approach6 is deeply related with continuity methods defining some paths following the
graph of the given function.

Let us denote F := Graph(F ).
A simple way to follow F is given by the differential inclusion

{

(x′(t), y′(t)) ∈ BX×Y

(x(t), y(t)) ∈ F

We can explore the graph of F in such a way that y(t) → 0. Thus we obtain an
algorithm for finding all equilibria of the dynamic.

Let us then consider the following dynamic system

{

i) x′(t) ∈ BX

ii) y′(t) = −ay(t)

Then the Viability Kernel of F for this dynamic is the graph (closed) of a set-valued map
F∞ containing all trajectories (x(·), y(·)) which now converges exponentially in y to an
equilibrium. The set-valued maps F and F∞ have the same equilibria. The following
algorithm allows to approach F∞ :

Let be F a closed graph set-valued map. Let us set F 0
ρ := F and let us consider the

sequence of maps Fn
ρ defined by

Fn
ρ (x) := Fn−1

ρ (x) ∩

(

1

1 − ah

⋃

u∈B

Fn−1
ρ (x + ρu)

)

Then we get

F∞
ρ (x) := Lim

n→∞
Fn

ρ (x)

and ∀(x0, y0) ∈ Graph(F∞
ρ ) there exists (xn, yn) ∈ Graph(F∞

ρ ) such that

yn = (1 − aρ)ny0 ∈ F (xn).

6We refer to a joint work with J.P. Aubin [2]
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The knowledge of F∞
ρ lead to the certitude that starting from any initial value in its

graph, any trajectory which remain in the graph converges to an equilibrium.
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