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1 On some principles of the theory of extrema

We will use the following procedure of investigation of extremal problems. At first we
formalize the problem, i.e. we express the problem by means of equalities, inequalities
and inclusions.

Then we use Lagrange principle for formulating necessary conditions of extremum or
formulate the dual problem (if the initial problem was convex).

After that we investigate the equations, which were obtained after application of the
Lagrange principle or solve the dual problem.

And at last we formulate the final result.

Let us give a more precise explanation of “Lagrange principle” and “dual problem”.
The first method of solution of extremal problems goes back to Fermat. Here it is:

if f(x) → extr is a smooth (or convex) problem without constraints and x̂ is a solution
of the problem, then

f ′(x̂) = 0 (0 ∈ ∂f(x̂)).

(∂f(x̂) is the subdifferential of f at x̂.)
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Since 1759, Lagrange began to investigate extremal problems with constraints. La-
grange formulated the following general idea for finding extremum of an extremal prob-
lem. His idea can be expressed in the following form: if one looks for the maximum or
minimum in a problem with constrains, it is necessary to form the Lagrange function and
after that write the necessary condition “as if the variables are indepndent”.

We modify the main idea of Lagrange for the following extremal problem:

(P ), f0(x, u) → min, fi(x, u) ≤ 0, 1 ≤ i ≤ m, F (x, u) = 0, u ∈ U

where fi : X × U → R ∪ {+∞}, X (usually) is a normed space, U is some set, F :
X × U → Y , where Y also is a normed space.

The function L(x) =
m∑

i=0

λifi(x)+ 〈y∗, F (x, u)〉 is called the Lagrange function of this

problem, the numbers λi are called Lagrange multipliers.
Let functionals and mappings be smooth over variables of the first group and be

convex over the second one and let (x̂, û) be a solution of the problem, then (according
to Lagrange’s idea) “it suffices” to write the necessary condition in the (smooth) problem

L(x, û) → min

“as if the variables are independent” (in other words to apply the Fermat theorem) and
besides that we must apply a criterium for the solution of the convex problem

L(x̂, u) → min, u ∈ U

(together with conditions of complementary slackness: λi ≥ 0, 1 ≤ i ≤ m).
We call this procedure Lagrange principle. It is important to remark, that in convex

case necessary conditions coincide with sufficient one, i. e. Lagrange principle has the
most complete form: the solution of the problem is an absolute minimum of the Lagrange
function.

Along with Lagrange principle, we use some results of convex analisis.
The most important of them is one of the form of duality in the convex programming,

namely the principle of constructing of the dual problem.
If a prime problem is: f(x) → min (f : X → R ∪ {+∞}) and the function F :

X × Y → R∪ {+∞}, f(x) = F (x, 0) is the perturbation of f , then the dual problem has
the form g(y∗) → max, g(y∗) = −F ∗(y∗, 0) where F ∗ is a Legendre transform of F .

Besides all this, we will use the following two important theorems.

Theorem of Dubovitski-Milyutin. Let f1 f2 be convex and continuous functions
at x and f1(x) = f2(x). Then ∂(f1∨f2)(x) = co{∂f1(x)∪∂f2(x)} (co is the convex hull,
(f1 ∨ f2)(x) = max(f1(x), f2(x)).

Decomposition theorem. Let T be a compact, F : T × R
n → R, F = F (t, x). Let

F be upper semicontinuous over t for all x and convex over x for all t. Then there exists
a number r ≤ n + 1 and r points {τi}

r
i=1, τi ∈ T, such that

inf
x

sup
t

F (t, x) = inf
x

max
1≤i≤r

F (τi, x)
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See about all this [1].

2 Solution of concrete problems

2.1 Tchebyshev alternance theorem and its generalizations

In the first article devoted to approximation theory Tchebyshev formulated a necessary
condition for an algebraic polynomial of the best approximation of a given continuous
function (in uniform metric). We solve this problem using considerations of p.1.

1. Formalization.

(i) f(x) := max
t∈[t0,t1]

∣∣∣∣∣x(t) −

n+1∑

k=1

xktk−1

∣∣∣∣∣ → min, x = (x1, · · · , xn+1).

This is a convex problem without constraints. Existence of a solution x̂ ⇔ p̂(·) =
n+1∑
k=1

x̂ktk−1 follows from the principle of compactness.

2. Fermat’s theorem leads to the inclusion 0 ∈ ∂f(x̂).
3. Investigation. From the decomposition theorem it follows that there exists a

natural number r ≤ n + 1 and r points {τi}
r
i=1 on the segment [t0, t1] such that

(ii) f(x̂) = |y(τi)|, 1 ≤ i ≤ r, y(t) =

∣∣∣∣∣x(t) −

n+1∑

k=1

x̂ktk−1

∣∣∣∣∣ .

We see that r functions fi(x) = |x(τi) −
n+1∑
k=1

xkτk−1
k | attain the unique value f(x̂) at

the point x̂, and this point is a solution of the problem (i). From Dubovitsky-Milyutin
theorem it follows that zero vector (which belongs to ∂f(x̂)) is represented as a convex
hull of ∂fi(x̂) = f ′(x̂) = sgny(τi)(1, τi, . . . , τ

n
i ). Hence

(iii)

r∑

i=1

αisgn(x(τi) −

n+1∑

k=1

x̂kτk−1
i )(1, τi, · · · , τ

n
i ) = 0, αi > 0,

r∑

k=1

αi = 1

We see that the homogeneous system with n + 1 equations and r ≤ n + 2 unknowns
(and determinants of Wandermond type) has nonlinear solution. Hence r = n + 2, and
from the explicit expression of solution of these equations it is easy to show that numbers
αisgn(x(τi) − p̂(τi)) change their signs.

We have proved

Tchebyshev alternance theorem. The polynomial p̂(·) =
n+1∑
k=1

x̂ktk−1 is a poly-

nomial of the best approximation of a function x(·) in C([t0, t1]) iff there exist n + 2
points in which the function x(·) − p̂(·) obtains its maximum and minimum values with
alternation.
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Remark. The analogous considerations immediately lead to criterium of an element
of the best approximation of a function from C(T, Y ), (where T is a compact and Y is a
normed space or even Y may be a linear space with Minkovsky metric) by an arbitrary
convex set. This result generalizes many previous theorems of Bernstein, Kolmogorov
and others (see [2]).

2.2 Tchebyshev extrapolation problem

The statement of the problem is the following. Let a polynomial of degree n be bound
by a definite constant on a segment of the real line. The question is: what are the limits
of a value of the polynomial in a fixed point?

1. Formalization

(i) x(τ) → max, max
t∈[−1,1]

|x(t)| ≤ 1, x(t) =

n+1∑

k=1

xktk−1,

|τ | > 1, x(·) ⇔ x = (x1, . . . , xn+1).

It is a problem of convex programming. From the principle of compactness it follows
that a solution x̂ of the problem exists.

2. Lagrange principle here (because of convexity of the problem) has the following
form: Lagrange function

L = f(x) + λg(x), f(x) =
n+1∑

k=1

xrτ
k−1, g(x) = max

t∈[−1,1]

∣∣∣∣∣

n+1∑

k=1

xktk−1

∣∣∣∣∣

attains its absolute minimum at x̂.
3. Investigation. Applying the decompozition and Dubovitsky-Milyutin theorems,

we come to the following identity

−x(τ) + λ

r∑

k=1

αrsgnx̂(τk)x(τk) = 0 ∀x(·) ∈ Pn,

r ≤ n + 2, αk > 0, 1 ≤ k ≤ r,
∑

αk = 1,

−1 ≤ τ1 < · · · < τr ≤ 1, |x̂(τk)| = 1.

It is evident that r 6= n + 2 (otherwise, the polynomial ˙̂x(·) of degree n− 1 has n zeroes
at {τk}

n+1
k=2 , but it is impossible).

If we assume that r < n +1, then we come to contradiction substituting the polyno-

mial x1(t) =
r∏

k=1

(t− τk) into our identity. Hence r = n+1 and consequently the solution

is the polynomial cosn arccos t. We have proved

Theorem on extrapolaton of polynomials. Tchebyshev polynomial Tn(·) gives
the solution of the problem of extrapolation.



Principles of extremum and application to some problems of analysis 231

Remarks

1. The similar results hold for an arbitrary T -system in the space C([t0, t1]) with
a weight: the solution of extrapolation problem is in some sence analog of Tchebyshev
polynomials.

2. If in the problem (i) τ is a complex number (but coefficients are real) then the
solution of the problen is either Tchebyshev or Zolotarev polinomials. These and some
other questions are discussed in the paper [3].

2.3 A. Markov’s problem on polynomial derivatives on a fixed

point.

The initial information about a polynomial is the same as in p.2.2. The problem is: what
are the limits for a value of a derivative of the polynomial at a fixed point.

1. Formalization.

f(x) = ẋ(τ) → max, f1(x) = max
t∈[−1,1]

|x(t)| ≤ 1,

x(t) =

n+1∑

k=1

xktk−1, x(·) ⇔ x = (x1, . . . , xn+1).

This is also the problem of convex programming and the solution of it exists.

2. Lagrange principle leads to the identity

(i) ẋ(τ) + λ
r∑

j=1

αjsgnx̂(τj)x(τj) = 0,

where r ≤ n + 2, αj ≥ 0,
r∑

j=1

αj = 1 and |x̂(τj)| = 1.

3. Investigation.
Similarly to the previous case, it can be proved that r 6= n + 2 and r ≥ n.
Let us show that extremal polynomial has n-alternance. If x̂(τj) = x̂(τj+1), we sub-

stitute the polynomial x2(t) = (t− τ)2
∏

k 6=j,j+1

(t− τk) into (i) and come to contradiction.

(Polynomials of degree n which have n-alternance were described by Zolotarev. They
are called Zolotarev polynomials.)

We have proved

Theorem of A. Markov on polynomial derivatives at a fixed point. Solution
of the problem coincides either with Tchebyshev or Zolotarev polynomial.

Remark. It is very easy to describe all functionals on an arbitrary T -space for which
the extremal polynomial is (generalised) Tchebyshev polynomial. In the partiqular case
of A. Markov’s problem, this criterion is equivalent to well known Markov’s criterion.

In [3] we discuss some analogs of Markov’s problem for ECT -subspaces of C([t0, t1]).
(Nonzero function on T -space degree n have not more than n − 1 zeroes; ECT is gener-
alized Markov system.)
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2.4 Inequalities for derivatives on line and half line.

The goal here is to find the best constant in the inequality

(∗) ‖x(k)(·)‖Lq(T ) ≤ K‖x(·)‖α
Lp(T )‖x

(n)(·)‖β

Lr(T )

(where 0 ≤ k < n n ∈ N , 1 ≤ p, q, r ≤ ∞, α, β ≥ 0, T = R or R+), x(·) ∈ Lp(T ),
x(n−1)(·) is locally absolutely continuous on T and x(n)(·) ∈ Lr(T ).

When T is fixed, the inequality (∗) depends on 5 parameters: n, k, p, q and r ( α
and β are equal to α = (n−k−1/r+1/q)/(n−1/r+1/p), β = 1−α). The best constant
in (∗) we denote by KT (n, k, p, q, r).

First results: T = R+, n = 2, k = 1, p = q = r = ∞ and T = R, n = 2, k = 1,
p = q = r = ∞ are due to E. Landau (1913) and Hadamard (1914). One of the most
interesting results (T = R, p = q = r = ∞, i.e for all n ≥ 2 and 0 < k < n) was
considered and solved by Kolmogorov.

Analogous general inequalities were obtained only in six cases:
1) p = q = r = 2, T = R — Hardy-Littlewood-Polya,
2) p = r = 2, q = ∞, T = R — Taykov,
3) p = q = 2, q = ∞, T = R+ — Gabushin,
4) p = q = r = 2, T = R+ — Liubich-Kupzov,
5) Kolmogorov, and
6) Stein: p = q = r = 1, T = R.
The article [4] written by the author in collaboration with Magaril-Il’yaev is devoted

to consideration of these cases and their generalizations. Here we give some comments
to results of [4].

In [4] the approach we spoke about is applied to the following generalization of
the problem of Hardy-Littlewod-Polya and Taikov. Let Dα, α ∈ R

d be an operator
of α-th derivarive in R

d in the sence of H. Weyl (Dαx(·) = F−1EαFx(·), where F is
Fourier transform, F−1 is inverse mapping and Eα is the operator of multiplication

Eατ =
d∏

j=1

(iτj)
αj ). Consider the problem

(∗∗) ‖Dα0

x(·)‖Lp(Rd) → max, (p = 2,∞), ‖Dαj

x(·)‖L2(Rd) ≤ γj.

Let us consider at the beginning the case p = 2.
1) Generalized Hardy-Littlewood-Polya problem. Denote (2π)d|Fx(t)|2dt = dµ(t).

Then the problem (∗∗) with p = 2 have the following formalization:

(1) −

∫

Rd

|τ |2α0

dµ(τ) → min,

∫

Rd

|τ |2αj

dµ(τ) ≤ γ2
j , µ ≥ 0.

It is the problem of linear progravmming. Application of the duality method immediately
leads to solution of the problem.

The same method solves the analogous problems on other manifolds, for example,
on Sd.
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2) Generalized Taikov’s problem. After Fourier transform we obtain the following
formalization of the problem (∗∗) with p = ∞:

(2) −

∫

Rd

Fx(τ)dt → min,

∫

Rd

|τ |2αj

|Fx(τ)|2dt ≤ γ2/(2π)d.

This is the problem of quadratic programming. Duality method reduces (2) to a finite
dimensional problem, and if N = d + 1 the answer could be expressd in an explicit form.

3) Gabusin’s case. Here is one of the possible formalizations of Gabushin’s problem:

(3) x(k)(0) → min,

∫

R+

(x2 + (x(n))2)dt ≤ 1.

It is a convex problem of calculus of variations. After applying Lagrange principle we
obtain a linear differential equation of the 2n-th order and transversality conditions,
which give the possibility to find (the unique) solution of the equation. From convexity
of the problem this solution gives absolute minimum of (3).

4) Liubich-Kupzov’s case. One of the formalizations of the problem is similar to the
previous:

(4)

∫

R+

(x(k)(t))2dt → max,

∫

R+

(x2 + (x(n))2)dt ≤ 1.

The Lagrange function of the problem has the form

L(x(·)) =

∫

R+

((x(n))2 − λ(x(k))2 + x2)dt,

A solution of Euler equation (−1)nx(2n)−λ(−1)kx(k)+x = 0. together with transversality
conditions leads to a solution which depends on λ. Fhe following identity takes place (kj

are roots of characteristic equation (−1)nz2n − λ(−1)kz2k + 1 = 0, lying at the left
halfspace):

∫

R+

(x(n) +
n−1∑

j=1

kj(λ)x(n−j) + x)2dt + Qλ(x(0), . . . , x(n−1)(0)),

where Qλ is a quadratic form. (This identity could be checked directly, although it
is nothing else but the general formula of Weierstrass in calculus of variations.) The
form Qλ is positive when λ = 0 and not nonnegative if λ is large enough. The solution
corresponds to λ̂ for which Qλ is nonneganive.

5) Kolmogorov’s case. It is the most substantial case. Using the method we are
speaking about it is possible to solve many new Kolmogorov-type problems connected
with extrapolation of smooth functions, inequalities for derivatives of smooth functions
at a fixed point, recovery of smooth functions etc.
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Stein’s case is unique when this method does not solve the problem. (Stein reduced
the problem to Kolmogorov’s case).

The method we discussed has an extremely wide circle of applications. But limits
of this ideology is bounded by limits of Lagrange principle. The most important class
of problems where the form of Lagrange principle is unknown and must be modified is
the class of multidimentional (where t ∈ R

d) versions of problems being considered in
this paper (on extrapolation, inequality of derivatives at fixed points, Kolvogorov’s type
inequalities in d-dimensional case and so on).
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