Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
PLSKA
 STUDIA MATHEMATICA BULGARICA

ПЛИСКА

БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИ

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

EFFICIENT CONTROL IN MULTISTAGE STOCHASTIC OPTIMIZATION PROBLEM

G. A. Timofeeva

Abstract

An efficient control problem for bilinear multistage system with random perturbations is considered. The efficient solutions are choosen by two criteria: the first is maximization of a mean value, the second is minimization of a variance of utility function. Such approach has been suggested by Markovitz H. [13] to solve one-stage problem of the portfolio selection in financial analysis.

The existence conditions of the stationary efficient controls are obtained in case of incomplete information on the parameters of distributions. The randomization method for unknown parameters is used to construct a control problem solution. The concept of an adjoint stochastic optimization problem is introduced. The connection and separation problems of efficient control and observation are studied by means of adjoint problem solution.

Keywords: stochastic optimization, bilinear multistage system, efficient solution, adjoint problem, separation of control and observation.
AMS subject classification: 90C31, 90A09, 49K15, 49L20

1 Problem statement

Multistage bilinear control system with random and deterministic perturbations

$$
\begin{align*}
x_{k+1} & =A_{k} x_{k}+b_{k+1}+\xi_{k+1}, \quad k=0,1, \ldots \tag{1.1}\\
w_{k+1} & =r_{k} w_{k}+u_{k+1}^{\top} x_{k+1}+c_{k+1}^{\top}\left(u_{k+1}-u_{k}\right) \tag{1.2}
\end{align*}
$$

is considered. Here $x_{k} \in \mathbb{R}^{n}$ is a state vector, w_{k} is a scalar value connected with utility of control, ξ_{k} is an independent Gaussian random vector with known statistical moments:

$$
\begin{equation*}
E \xi_{k}=0, \quad E \xi_{k} \xi_{k}^{\top}=R_{k}>0 \tag{1.3}
\end{equation*}
$$

It is supposed that $x_{0} \in \mathbb{R}^{n}, u_{0} \in \mathbb{R}^{n}, w_{0} \in \mathbb{R}^{1}, r_{k}$ and matrices $A_{k}[n \times n]$ are given, b_{k}, c_{k} are unknown deterministic disturbances given by their possible values domains:

$$
\begin{equation*}
c_{k} \in C_{k}, \quad b_{k} \in B_{k}, \tag{1.4}
\end{equation*}
$$

where C_{k}, B_{k} are convex compacts sets in \mathbb{R}^{n}. The term $c_{k}^{\top}\left(u_{k+1}-u_{k}\right)$ represents the cost of control change.

Considered model (1.1) - (1.3) arises in particular in multistage portfolio selection problem in case of a linear regression model of the stock prices moving. In this case r_{k} is a riskless interest rate, $x_{k+1}^{(i)}$ is connected with a return on i-th stock, $x_{k+1}^{(i)}=s_{k+1}^{(i)}-r_{k} s_{k}^{(i)}$, where $s_{k}^{(i)}$ is a current price of i-th stock, $u_{k}^{(i)}$ is an amount of i-th stocks at k-th step, c_{k} is a transaction cost, w_{k} represents a current net wealth, w_{0} is an initial capital. The similar problems were considered in papers [1,5] for a geometrical Brounian model of the stock prices moving. The linear regression model may be more convenient for statistical identification and control especially in case of unstable money market.

Our purpose is to maximize a value $w_{N}=w_{N}(u, c, b, \xi)$ in a final moment N choosing a program control $u=\left\{u_{1}, \ldots, u_{N}\right\} \in U$ for the whole time interval, here $c=\left\{c_{1}, \ldots, c_{N}\right\}, b=\left\{b_{1}, \ldots, b_{N}\right\}, \xi=\left\{\xi_{1}, \ldots, \xi_{N}\right\}$ and $U \subset \mathbb{R}^{n N}$ is a convex set of the admissible controls. The problem may be considered as a multistage linear stochastic optimization problem with incomplete information about probabilistic distribution and with deterministic restrictions on the admissible solutions. The multistage stochastic optimization problems with incomplete information were considered in $[6,15]$ and others. On the other hand our problem (1.1) - (1.3) is a control problem for the bililear stochastic system [2]. The control problems in bilinear system with uncertainty were considered in $[10,18]$. We study the problem of the efficient program control but a positional control may be obtained on this base (see Section 4) using the method of decomposition [3]. The value w_{N} is a random one and its distribution depends upon the chosen control and unknown parameters. A formulated problem may be solved on the base of the minimax stochastic approach developed by Kurzhanski A. B. [8, 12] in linear control problem under uncertainty. The control $u=\left\{u_{1}, \ldots, u_{N}\right\}$ may be chosen by a criterion of maximization the least possible mean value:

$$
\begin{gathered}
f_{1}(u) \rightarrow \max , \quad u \in U \\
f_{1}(u)=\min \left\{E w_{N}(u, c, b, \xi) \mid c \in C, b \in B\right\}
\end{gathered}
$$

where $C=C_{1} \times \cdots \times C_{N}, B=B_{1} \times \cdots \times B_{N}$. In case of bilinear control problem the variance of the utility function $w_{N}=w_{N}(u, c, b, \xi)$ depends on chosen control u so the risk of decision making connected with the variance should be taken into account.

Other approaches [10] are to optimize the least confidence level $w_{\alpha}(u)$ corresponding to a fixed probability α :

$$
w_{\alpha}(u)=\min \left\{w_{\alpha}(u, c, b) \mid c \in C, b \in B\right\} \rightarrow \max
$$

where $P\left\{w_{N}(u, c, b, \xi) \geq w_{\alpha}(u, c, b)\right\}=\alpha$ or to optimize the least confidence probability corresponding to a given level w :

$$
\alpha(u)=\min \{\alpha(u, c, b) \mid c \in C, b \in B\} \rightarrow \max
$$

where $\alpha(u, c, b)=P\left\{w_{N}(u, c, b, \xi) \geq w\right\}$. These appoaches take into account the whole information about probabilistic distributions but they lead to the complicated decision
making algorithms. In this paper a bicriterial mean-variance appoach is used

$$
\left\{\begin{array}{l}
f_{1}(u) \rightarrow \max \tag{1.5}\\
f_{2}(u)=\operatorname{var} w_{N}(u, c, b, \xi) \rightarrow \min , \quad u \in U
\end{array}\right.
$$

Here a variance $f_{2}(u)=\operatorname{var} w_{N}(u, c, b, \xi)=E\left(w_{N}-E w_{N}\right)^{2}$ does not depend on the unknown parameters c and b. It results from linearity of equations (1.1), (1.2) with respect to these parameters [8].

Definition 1.1 A program control $u^{*} \in U$ is called efficient if it is the Pareto optimal solution in the bicriterial problem (1.1) - (1.5), i.e. for any admissible control $u \in U$ at least one of the following conditions hold [17]:

$$
\begin{equation*}
f_{1}(u)<f_{1}\left(u^{*}\right) \tag{i}
\end{equation*}
$$

(ii) $\quad f_{2}(u)>f_{2}\left(u^{*}\right)$
(iii) $\quad f_{2}(u)=f_{2}\left(u^{*}\right), f_{1}(u)=f_{1}\left(u^{*}\right)$.

It should be noted that optimization of the confidence level or quantile optimization leads to one of the efficient solutions since value $w_{N}(u, c, b, \xi)$ is Gaussian [9, 10]. With respect to our problem the equation (1.2) may be rewritten as

$$
w_{k+1}=r_{k} w_{k}+u_{k+1}^{\top} x_{k+1}-\varphi_{k+1}\left(u_{k}-u_{k+1}\right)
$$

where $\varphi_{k}(v)=\max \left\{v^{\top} c_{k} \mid c_{k} \in C_{k}\right\}$ is the support function of set C_{k}. In case of $C_{k}=\left[-\alpha_{1} ; \alpha_{1}\right] \times \ldots \times\left[-\alpha_{n} ; \alpha_{n}\right]$ the following equality holds:

$$
\varphi\left(u_{k}-u_{k+1}\right)=\sum_{i=1}^{n} \alpha_{i}\left|u_{k+1}^{(i)}-u_{k}^{(i)}\right| .
$$

2 Existence of stationary efficient solutions

Dynamic multistage problem (1.1) - (1.5) may be written as a bicriterial one-stage problem in $\mathbb{R}^{n N}$ space:

$$
w_{N}(u)=u^{\top} \Phi x+c^{\top} G u
$$

where $x=\left\{x_{1}, \ldots, x_{N}\right\} \in \mathbb{R}^{n N}$ is Gaussian vector

$$
E x=\bar{x}, \quad \operatorname{cov} x=E(x-\bar{x})(x-\bar{x})^{\top}=P>0
$$

Matrices Φ, P may be calculated from the equations (1.1) - (1.3). Values c and \bar{x} are not known exactly and are given by

$$
\bar{x} \in \bar{X}, \quad c \in C,
$$

where C is a convex compact set in $\mathbb{R}^{n N}, \bar{X}$ is an information set [8] of phase vectors for the system (1.1) - (1.3). The criterion (1.5) has the form

$$
\left\{\begin{array}{l}
f_{1}(u) \rightarrow \max , \tag{2.1}\\
f_{2}(u) \rightarrow \min , \quad u \in U
\end{array}\right.
$$

where $f_{1}(u)=\min \left\{u^{\top}\left(\Phi \bar{x}+G^{\top} c\right) \mid \bar{x} \in \bar{X}, c \in C\right\}, f_{2}(u)=u^{\top} \Phi P \Phi^{\top} u$.
If a domain U of admissible controls u is defined by linear restrictions then the problem (2.1) is reduced to a piecewise linear quadratic bicriterial problem. An algorithm suggested in [16] may be used to solve the problem.

An existence of a stationary efficient solutions is important in many applications. For example, one of the disadvantages of the geometrical growth model $[1,5]$ is an absense of stationary efficient solutions in the multistage portfolio selection problem: one has to sell or to buy stocks at every step even in case of constant statistical parameters of the return distribution.

As usual a program efficient control $u=\left\{u_{1}, \ldots, u_{N}\right\}$ is called stationary if it is does not depend on time, i.e. $u_{k}=u_{1}, k=2, \ldots, N$. The conditions of existence of stationary efficient solution may be obtained using the Pareto optimality conditions.

Let us consider a simple case of independent phase vectors x_{k} with no uncertainty in their distributions parameters and no restrictions on admissible controls.
Theorem 2.1 Let $A_{k}=0, B_{k}=\left\{b_{k}\right\}$ for all $k=0,1, \ldots, N, U=\mathbb{R}^{n N}$. If a condition

$$
\begin{equation*}
S=\bigcap R_{k}^{-1}\left(C_{k}-b_{k}\right) \neq \varnothing \tag{2.2}
\end{equation*}
$$

holds then problem (1.1) - (1.5) has a stationary nonzero efficient solution.
Proof. In the considered case the criterion (1.5) may be rewritten as

$$
\begin{aligned}
& \sum_{k=1}^{N}\left[u_{k}^{\top} b_{k}-\varphi_{k}\left(u_{k-1}-u_{k}\right)\right] \rightarrow \max \\
& \sum_{k=1}^{N} u_{k}^{\top} R_{k} u_{k} \rightarrow \min , \quad u_{k} \in \mathbb{R}^{N}, \quad k=1, \ldots, N
\end{aligned}
$$

The sufficient Pareto optimality conditions have the form [16]:

$$
0 \in \lambda R_{k} u_{k}^{*}-b_{k}+\partial \varphi_{k}\left(u_{k-1}^{*}-u_{k}^{*}\right),
$$

where $\partial \varphi_{k}(v)$ is subdifferential of function $\varphi_{k}(v)$. This function is a support function of the set C_{k} so $\partial \varphi_{k}(0)=C_{k}[14]$.

Pareto optimality conditions is rewritten as $0 \in \lambda R_{k} u_{k}^{*}-b_{k}+C_{k}, k=1, \ldots, N$.
Let condition (2.2) holds. Denote a vector $u_{1}^{*} \in-S$ and consider the stationary control $u^{*}=\left\{u_{1}^{*}, \ldots, u_{1}^{*}\right\}$. The relation $R_{k} u_{1}^{*} \in-C_{k}+b_{k}$ or $0 \in R_{k} u_{1}^{*}-b_{k}+C_{k}$ holds for $k=1, \ldots, N$. Therefore sufficient Pareto optimality conditions hold with $\lambda=1$ and control u^{*} is a stationary efficient one.
Corollary 2.1 If $U=\mathbb{R}^{n N}, A_{k}=0, R_{k}=R, B_{k}=\left\{b_{k}\right\}$ and $b_{k} \in b^{*}+C_{k}$ for all $k=1, \ldots, N$ then nonzero efficient solution of (1.1) - (1.5) exists.
Theorem 2.2 If $A_{k}=0, k=0, \ldots, N-1, U=\mathbb{R}^{n N}$, and a condition

$$
S=\bigcap_{k} R_{k}^{-1}\left(C_{k} \stackrel{*}{-} B_{k}\right) \neq \emptyset
$$

holds then nonzero efficient control in (1.1) - (1.5) exists. Here $C_{k} \stackrel{*}{-} B_{k}$ is geometrical difference of two sets: $C_{k} \stackrel{*}{-} B_{k}=\left\{v \in \mathbb{R}^{n}: v+B_{k} \subset C_{k}\right\}$.

Proof. In this case criterion (1.5) may be rewritten as

$$
\begin{aligned}
& -\left(\sum_{k=1}^{N} \psi_{k}\left(u_{k}\right)+\varphi_{k}\left(u_{k-1}-u_{k}\right)\right) \rightarrow \max \\
& \sum_{k=1}^{N} u_{k}^{\top} R_{k} u_{k} \rightarrow \min , \quad u_{k} \in \mathbb{R}^{N}, \quad k=1, \ldots, N .
\end{aligned}
$$

Here $\psi_{k}^{(v)}$ is the support function of the set $\left(-B_{k}\right)$,

$$
\partial \psi_{k}(v)=\left\{b \in-B_{k} \mid b^{\top} v=\psi_{k}(v)\right\} \subset-B_{k}
$$

[14]. The sufficient Pareto optimality conditions have a form $0 \in \lambda R_{k} u_{k}^{*}+\partial \psi_{k}\left(u_{k}^{*}\right)+$ $\partial \varphi_{k}\left(u_{k-1}^{*}-u_{k}^{*}\right), \lambda \geq 0$. Denote $u_{1}^{*} \in-S, u_{1}^{*} \in-R_{k}^{-1}\left(C_{k} \stackrel{*}{-} B_{k}\right)$ for all k. It results in $-R_{k}^{-1} u_{k}^{*}+B_{k} \subset C_{k}$ and $-R_{k}^{-1} u_{k}^{*}-\partial \psi_{k}\left(u_{k}\right) \subset C_{k}$. For a stationary control $u^{*}=$ $\left\{u_{1}^{*}, \ldots, u_{1}^{*}\right\}$ the Pareto optimality conditions hold so this control is stationary efficient one.

In general case of $A_{k} \neq 0$ the similar results may be obtained using an concept of adjoint problem (see Sect. 3).

3 Connection of efficient control and observation problems

Let us consider in detail a simple nondegenerate stochastic optimization problem (A) with a random utility function $w(u)=u^{\top} x$ and no restrictions on admissible controls $u \in \mathbb{R}^{n}$. Here x is n-dimensional Gaussian random vector with known moments $E x=\bar{x}$, $E(x-\bar{x})(x-\bar{x})^{\top}=P>0$. The corresponding bicriterial problem is

$$
\left\{\begin{array}{l}
E w(u)=u^{\top} \bar{x} \rightarrow \max \tag{3.1}\\
\operatorname{var} w(u)=u^{\top} P u \rightarrow \min , u \in \mathbb{R}^{n},
\end{array}\right.
$$

The vector x is called a random purpose vector of the problem (A).
Efficient solutions set of (3.1) is written as

$$
\begin{equation*}
U^{*}=\left\{\lambda u^{*} \mid \lambda \geq 0\right\}, \quad u^{*}=P^{-1} \bar{x} \tag{3.2}
\end{equation*}
$$

Definition 3.1 The efficient solution $u^{*}=P^{-1} \bar{x}$ is called a base efficient solution of the problem (A).

We introduce the notion of adjoint stochastic optimization problems for solving of the dynamic optimization problem. The notion of the adjoint stochastic optimization problem is closely connected with the adjoint relations for linear systems in the control theory $[4,11,12]$. Percularities of the considered consept are bilinearity of the dynamic system and mean-variance approach to the control choosing. So obtained result has a similar form (e.g. (4.7)) as the classical equations of the adjoint dynamic problem but they have a special properties.

Definition 3.2 Stochastic optimization $\operatorname{problem}(\tilde{A})$ with random utility function $\tilde{w}(x)=$ $u^{\top} x, x \in \mathbb{R}^{n}$, is adjoint to the problem (A) if u is Gaussian random n-dimensional vector with known moment $E u=\bar{u}, E(u-\bar{u})(u-\bar{u})^{\top}=D>0$ and

$$
\begin{equation*}
\bar{u}=P^{-1} \bar{x}, \quad D=P^{-1} \tag{3.3}
\end{equation*}
$$

Let us consider the properties of the adjoint problems.
Property 3.1 The problem adjoint to adjoint one coincides with the initial problem.
It results from the definition of adjoint problem.
Property 3.2 Let problem $\left(A_{i}\right), i=1,2,3$ have the random purpose vectors $x_{i} ; x_{1}, x_{2}$ are statistically independent and $x_{3}=x_{1}+G x_{2}$ with $n \times n$ matrice G. Then for the purpose vectors $u_{i}, i=1,2,3$ in the adjoint problem $\left(A_{i}\right)$ equations hold:

$$
\begin{align*}
& \bar{u}_{3}=D_{3}\left(D_{1}^{-1} \bar{u}_{1}+G D_{2}^{-1} \bar{u}_{2}\right) \\
& D_{3}=\left(D_{1}^{-1}+G D_{2}^{-1} G^{\top}\right)^{-1} \tag{3.4}
\end{align*}
$$

where $\bar{u}_{i}=E u_{i}, D_{i}=\operatorname{cov} u_{i}=E\left(u_{i}-\bar{u}_{i}\right)\left(u_{i}-\bar{u}_{i}\right)^{\top}$, i.e. distribution of u_{3} coincides with a posteriori distribution of unknown vector u_{3} after two observations $u_{1}=u_{3}$, $u_{2}=G^{\top} u_{3}$.

Proof. Denote $\bar{x}_{i}=E x_{i}, P_{i}=\operatorname{cov} x_{i}, P_{i}>0$. Relation $x_{3}=x_{1}+G x_{2}$ implies

$$
\bar{x}_{3}=\bar{x}_{1}+G \bar{x}_{2}, \quad P_{3}=P_{1}+G P_{2} G^{\top}
$$

For adjoint problems $\left(A_{3}\right)$ we have by definition

$$
\bar{u}_{3}=P_{3}^{-1} \bar{x}_{3}=\left(P_{1}+G P_{2} G^{\top}\right)^{-1}\left(\bar{x}_{1}+G \bar{x}_{2}\right)
$$

and $D_{i}^{-1}=P_{i}^{-1}$, so (3.4) holds.
Property 3.3 Let x_{i}, $i=1,2$ be n-dimensional random purpose vectors in stochastic optimization problems $\left(A_{i}\right)$ and $x_{2}=G x_{1}$, $\operatorname{det} G \neq 0$. Then for purpose random vectors u_{i} in adjoint problems $\left(\tilde{A}_{i}\right)$ the following relation holds: $u_{2}=\left(G^{\top}\right)^{-1} u_{1}$.

Proof. The statistical moments of x_{2} are $E x_{2}=G \bar{x}_{1}, \operatorname{cov} x_{2}=G P_{1} G^{\top}$. From the definition of an adjoint problem the relations follow:

$$
\bar{u}_{2}=\left(G P_{1} G^{\top}\right)^{-1} G \bar{x}_{1}=\left(G^{\top}\right)^{-1} P_{1}^{-1} G^{-1} G \bar{x}_{1}=\left(G^{\top}\right)^{-1} P_{1}^{-1} \bar{x}_{1}
$$

It results in $\bar{u}_{2}=\left(G^{\top}\right)^{-1} \bar{u}_{1}$.
Property 3.4 Let $x_{i}, i=1,2,3$, be the random purpose vectors in stochastic optimization problems $\left(A_{i}\right)$ and x_{1}, x_{2} be independent Gaussian vectors with known distributions. Information on x_{3} is given by two observations: $x_{1}=x_{3}$ and $x_{2}=G x_{3}$. Then purpose random vectors u_{i} in adjoint problems $\left(\tilde{A}_{i}\right)$ are connected by relation

$$
u_{3}=u_{1}+G^{\top} u_{2}
$$

Proof. A posteriori statistical moments of x_{3} are described by relations [4, 7]:

$$
E x_{3}=\bar{x}_{3}=P_{3}\left(P_{1}^{-1} \bar{x}_{1}+G^{\top} P_{2}^{-1} \bar{x}_{2}\right), \operatorname{cov}\left(x_{3}\right)=P_{3}=\left(P_{1}^{-1}+G^{\top} P_{2}^{-1} G\right)^{-1}
$$

For the adjoint problem it follows from definition $\bar{u}_{3}=P_{3}^{-1} \bar{x}_{3}=P_{1}^{-1} \bar{x}_{1}+G^{\top} P_{2}^{-1} \bar{x}_{2}=$ $\bar{u}_{1}+G^{\top} \bar{u}_{2}$.

Theorem 3.1 Let $x_{i}, i=1,2,3$, be the random purpose vectors in stochastic optimization problems $\left(A_{i}\right) ; x_{1}, x_{2}$ are independent Gaussian vectors with known distributions. Information on x_{3} is given by two relations:

$$
x_{1}=x_{3}, \quad x_{2}=G x_{3} .
$$

Then efficient controls set for $\left(A_{3}\right)$ equals

$$
U_{3}^{*}=\left\{\lambda u_{3}^{*} \mid u_{3}^{*}=u_{1}^{*}+G^{\top} u_{2}^{*}\right\},
$$

where u_{i}^{*} is a base efficient control in problem $\left(A_{i}\right)$.
Theorem 3.1 immediately follows from property 3.4 and relation (3.2). This allows us to correct easily control u if an additional information is obtained on a random state vector x is obtained.

4 Construction of the efficient solutions

Let us consider our dynamic optimization problem (1.1) - (1.5). Assume that there are no restrictions on admissible controls and there are no deterministic perturbations in dynamic equation (1.1). We use the method of substitution of unknown parameters c_{k} to Gaussian random perturbations $\eta_{k}[11,12]$. Equations are obtained

$$
\begin{gather*}
x_{k+1}=A_{k} x_{k}+b_{k+1}+\xi_{k+1}, \quad k=0, \ldots, N-1, \tag{4.1}\\
w_{k+1}=r_{k} w_{k}+u_{k+1}^{\top} x_{k+1}+\eta_{k+1}^{\top}\left(u_{k+1}-u_{k}\right) \tag{4.2}
\end{gather*}
$$

in place of (1.1), (1.2). Here ξ_{k}, η_{k} are independent Gaussian random vectors with known moments

$$
\begin{equation*}
E \xi_{k}=E \eta_{k}=0, \quad E \xi_{k} \xi_{k}^{\top}=R_{k}>0, \quad E \eta_{k} \eta_{k}^{\top}=Q_{k}>0 \tag{4.3}
\end{equation*}
$$

values $r_{k} \geq 0, b_{k}, x_{0}, w_{0}, u_{0}$ and matrices A_{k} are given. There is a bicriterial problem in space $\mathbb{R}^{n N}$ with complete information on distributions of the random parameters. The criterion (1.5) is written as

$$
\left\{\begin{array}{l}
E\left(w_{N}(u)\right) \rightarrow \max \tag{4.4}\\
\operatorname{var}\left(w_{N}(u)\right) \rightarrow \min , \quad u \in \mathbb{R}^{n}
\end{array}\right.
$$

here $f_{2}(u)=\operatorname{var} w_{N}(u, \xi, \eta)$ depends on covariance matrices R_{k} and Q_{k} [4]. Problem (4.1) - (4.4) may be solved by means of the adjoint problem formulation.

Theorem 4.1 Let $A_{k}=0, r_{k}=1$ for all $k=0, \ldots, N-1$, then a base efficient control $u^{*}=\left\{u_{1}^{*}, \ldots, u_{N}^{*}\right\}$ of (4.1) - (4.4) coincides with a posteriori mean value of a phase
vector for the following system with observation:

$$
\begin{align*}
& v_{k}=v_{k-1}+\tilde{\eta}_{k}, \quad k=1, \ldots, N, \\
& d_{k}=v_{k}+\tilde{\xi}_{k}, \quad v_{0}=u_{0} . \tag{4.5}
\end{align*}
$$

Here $d_{k}=R_{k}^{-1} b_{k}, \tilde{\xi}_{k}, \tilde{\eta}_{k}$ are independent Gaussian vectors with known moments:

$$
\begin{gather*}
E \tilde{\eta}_{k}=E \tilde{\xi}_{k}=0, \quad E \tilde{\xi}_{k} \tilde{\xi}_{k}^{\top}=\tilde{R}_{k}, \quad E \tilde{\eta}_{k} \tilde{\eta}_{k}^{\top}=\tilde{Q}_{k} \tag{4.6}\\
\tilde{R}_{k}=R_{k}^{-1}, \quad \tilde{Q}_{k}=Q_{k}^{-1}
\end{gather*}
$$

Proof. In case of $A_{k}=0, r_{k}=1, k=0, \ldots, N-1$ the random function w_{N} of a control utility is written as

$$
w_{N}=\sum_{k=1}^{N} u_{k}^{\top}\left(b_{k}+\xi_{k}\right)+\sum_{k=0}^{N-1}\left(u_{k+1}-u_{k}\right)^{\top} \eta_{k+1} .
$$

The purpose vector for the problem is a sum of independent Gaussian vectors. From property 3.2 it is clear that the distribution of the purpose vector in adjoint problem coincides with a posteriori distribution of vector $u=\left\{u_{1}, \ldots, u_{N}\right\}$ after observations

$$
u_{k}=d_{k}+\tilde{\xi}_{k}, \quad u_{k+1}-u_{k}=\tilde{\eta}_{k+1}
$$

Here $\tilde{\xi}_{k}, \tilde{\eta}_{k}$ are independent Gaussian vectors with known moments (4.6). Hence the theorem statement is obtained.
Corollary 4.1 If $A_{k}=0, r_{k}=1$ for all $k=0, \ldots, N-1$ then a base efficient control in problem (4.1) - (4.4) is described by the Kalman equations of the filtration:

$$
\begin{gathered}
u_{k+1}^{*}=u_{k}^{*}+\Lambda_{k+1}\left(d_{k+1}-u_{k}^{*}\right), \quad \Lambda_{k}=P_{k} R_{k} \\
P_{k+1}=\left(P_{k}+Q_{k+1}^{-1}\right)^{-1}+R_{k+1}, \quad k=0, \ldots, N-1, \quad u_{0}^{*}=u_{0}, \quad P_{0}=0
\end{gathered}
$$

This results from theorem 4.1 and the standard equations for linear system states estimation [7].
Theorem 4.2 In case of $r_{k}=1, k=0, \ldots, N-1$, a base efficient control $u^{*}=$ $\left\{u_{1}^{*}, \ldots, u_{N}^{*}\right\}$ in problem (4.1) - (4.4) coincides with a posteriori mean value of a phase vector for the following system in reverse time

$$
\begin{align*}
& v_{N}=d_{N}+\tilde{\xi}_{N} \\
& v_{k-1}=-A_{k-1}^{\top} v_{k}+d_{k-1}+\tilde{\xi}_{k-1}, \quad k=N, \ldots, 1 \tag{4.7}
\end{align*}
$$

with observation

$$
\begin{equation*}
v_{k}=v_{k-1}+\tilde{\eta}_{k}, \quad v_{0}=u_{0} \tag{4.8}
\end{equation*}
$$

where $d_{k}=R_{k}^{-1} b_{k}, k=2, \ldots, N ; d_{1}=R_{1}^{-1}\left(b_{1}+A_{0} x_{0}\right), \tilde{\xi}_{k}, \tilde{\eta}_{k}$ are independent Gaussian vectors with known moments (4.6).

Proof. A phase vector of system (4.1) on k-th step may be written as

$$
x_{k}=\sum_{i=1}^{k-1} \Phi_{k i} y_{i}+y_{k}, \quad \Phi_{k i}=A_{i} \cdots A_{k-1}
$$

where $y_{1}=A_{0} x_{0}+b_{1}+\xi_{1}, y_{k}=b_{k}+\xi_{k}, k=2, \ldots, N$. We obtain the linear relation $x=\Phi y$ for $n N$-dimensional random vectors $x=\left\{x_{1}, \ldots, x_{N}\right\}, y=\left\{y_{1}, \ldots, y_{N}\right\}$. Function $w_{N}(u)$ of the control utility has the form

$$
w_{N}(u)=u^{\top} \Phi y+\eta^{\top} G u
$$

and random purpose vector in problem (4.1) - (4.4) is $z=\Phi y+G^{\top} \eta$. Property 3.2 implies that distribution of the purpose vector in the adjoint problem coincides with a posteriori distribution of vector $u=\left\{u_{1}, \ldots, u_{N}\right\}$ after two observations:

$$
\begin{equation*}
u=\left(\Phi^{-1}\right)^{\top} \tilde{y}, \quad G u=\tilde{\eta} \tag{4.9}
\end{equation*}
$$

where $\tilde{y}=\left\{d_{1}+\tilde{\xi}_{1}, \ldots, d_{N}+\tilde{\xi}_{N}\right\}, d_{1}=R_{1}^{-1}\left(A_{0} x_{0}+b_{1}\right), d_{k}=R_{k}^{-1} b_{k}, \tilde{\xi}_{k}, \tilde{\eta}_{k}$ are independent Gaussian vectors with known moments (4.6). By direct calculation of an inverse matrix $\left(\Phi^{-1}\right)^{\top}$ we obtain equations (4.7).

We can not write recurrent equations for $u_{1}^{*}, \ldots, u_{N}^{*}$ as in the simple case of $A_{k} \equiv 0$. But we may calculate a base efficient control at the first step. It is enough for constructing an adaptive control in the problem (4.1) - (4.4).

The standard estimation of a posteriori mean value for system (4.7), (4.8) results in the following statement.

Corollary 4.2 The base efficient control u_{1}^{*} on the first step in case of $r_{k} \equiv 1$ is defined by the equations:

$$
\begin{align*}
\bar{u}_{N} & =d_{N}, \\
\bar{u}_{k-1} & =-A_{k-1}^{\top} \bar{u}_{k}+d_{k-1}, \quad k=N, \ldots, 2, \tag{4.10}\\
P_{k-1} & =A_{k-1}^{\top} P_{k} A_{k-1}+R_{k}^{-1}, \quad P_{N}=R_{N}^{-1}, \tag{4.11}\\
u_{1}^{*} & =\bar{u}_{1}+\Lambda_{1}\left(u_{0}-\bar{u}_{1}\right), \quad \Lambda_{1}=\left(P_{1}^{-1}+Q_{1}\right)^{-1} R_{1} . \tag{4.12}
\end{align*}
$$

Theorem 4.3 Control u_{1}^{*} defined by equations (4.10) - (4.12) is an efficient control on the first step for problem (4.1) - (4.4) with arbitrary coefficients $r_{k}>0, k=0, \ldots, N-1$.

Proof. In case of arbitrary $r_{k}>0$ the utility function $w_{N}(v)$ has the form:

$$
w_{N}(v)=\sum_{k=1}^{N} l_{k} x_{k}^{\top} v_{k}+\sum_{k=0}^{N-1} \eta_{k+1}^{\top}\left(v_{k+1}-v_{k}\right) l_{k+1}
$$

where $l_{k}=r_{k} \cdots r_{N-1}, l_{N}=1$. We may write $w_{N}=v^{\top} L\left(\Phi y+G^{\top} \eta\right)$, where L is a diagonal matrix, v is unknown control.

From property 3.3 a relation $v=L^{-1} u$ is obtained for a purpose vector v in the problem adjoint to (4.1) - (4.4) and a purpose vector v in this problem in case of $r_{k}=1$, $k=0,1, \ldots, N-1$, considered in theorem 4.2. As a result we have for a base efficient control $v^{*}=\left\{v_{1}^{*}, \ldots, v_{N}^{*}\right\}$ in (4.1) - (4.4) a following representation $v^{*}=L^{-1} u^{*}$, or $v_{k}^{*}=\tilde{l}_{k} u_{k}^{*}, \quad \tilde{l}_{k}=l_{k}^{-1}, \quad k=1, \ldots, N$, where $u_{k}^{*}=\left\{u_{1}^{*}, \ldots, u_{N}^{*}\right\}$ is a base efficient control in (4.1) - (4.4) in case of $r_{k}=1, k=0, \ldots, N-1$. The set of all efficient controls in the problem is $U^{*}=\left\{\lambda v^{*} \mid \lambda \geq 0\right\}$, therefore $u_{1}^{*}=l_{1} v_{1}^{*}=r_{1} \cdots r_{N-1} v_{1}^{*}$ is an efficient control at the first step for system (4.1) - (4.4) with arbitrary positive values r_{k}.

REFERENCES

[1] M. Akian, J. L. Menaldi, A. Sulem. On an investment-consumption model with transaction costs. SIAM J. Control Optim. 34, 1 (1995), 329-364.
[2] D. P. Bertsekas, S. E. Shreve. Stochastic Optimal Control. The discrete Time Case. New York, Acad. Press, 1978.
[3] J. R. Berge. Decomposition and partitioning methods for multi-stage linear programming. Oper. Res. 33 (1985), 989-1007.
[4] A. E. Braison, Yu. C. Ho. Applied Optimal Control Revised. Optimization, Estimation and Control. Washington, Hemisphere Publ. co., 1975.
[5] M. Davis, A. Norman. Portfolio selection with transaction costs. Math. Oper. Res. 15 (1990), 676-713.
[6] Yu. Ermoliev, R. J.-B. Wets. Numerical Techniques for Stochastic Optimization Problem. Berlin etc., Springer, 1988.
[7] R. E. Kalman, R. S. Busy. New results in linear filtering and prediction theory. Trans. ASME, ser. D 83 (1961), 95-107.
[8] I. Ya. Katz, A. B. Kurzhanski. Minimax estimation for multistage systems. Dokl. Akad. Nauk SSSR 221, 3 (1975), 535-538.
[9] I. Ya. Katz, G. A. Timofeeva. Bicriterial problem of stochastic optimization. Avtomatika i Telemekhanika 3 (1997), 116-124.
[10] A. I. Kibzun, Yu. S. Kan. Stochastic Programming Poblems with Probability and Quantile Functions. New York, Wiley, 1996.
[11] N. N. Krasovski, A. I. Subbotin. Game-theoretical Control Problems. Berlin etc., Springer, 1988.
[12] A. B. Kurzhanski. Control and Observation under Unsertainty. Moscow, Nauka, 1977.
[13] H. Markowitz. Portfolio selection. Journal of Finance 7, 1 (1952), 77-91.
[14] R. T. Rockafellar. Convex Analysis. Princeton, Univ. Press, 1970.
[15] W. Romisch, R. Schultz. Stability analysis for stochastic programs. Ann. Oper. Res. 30 (1991), 241-266.
[16] G. A. Timofeeva. Statistically indeterminate problem of linear optimization. Internat J. Comput. System Sci. 6 (1996), 115-119.
[17] R. E. Steuer. Multiple Criteria Optimization: Theory Computation and Application. New York, Wiley, 1990.
[18] V. Ya. Turetsky, E. S. Lemsh. A feedback control in linear system identification. In: Control System of Optimization: A postprint. vol. from 10th IFAC Workshop, Haifa, Israel. New York etc., Pergamon Press, 1996.

Ural State Academy of Railway Transport

Kolmogorov str. 66
620034 Ekaterinburg
Russia
e-mail: tim@ac.usart.ru

