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EFFICIENT CONTROL IN MULTISTAGE STOCHASTIC
OPTIMIZATION PROBLEM

G. A. Timofeeva

An efficient control problem for bilinear multistage system with random perturba-
tions is considered. The efficient solutions are choosen by two criteria: the first is
maximization of a mean value, the second is minimization of a variance of utility
function. Such approach has been suggested by Markovitz H. [13] to solve one-stage
problem of the portfolio selection in financial analysis.

The existence conditions of the stationary efficient controls are obtained in case
of incomplete information on the parameters of distributions. The randomization
method for unknown parameters is used to construct a control problem solution.
The concept of an adjoint stochastic optimization problem is introduced. The con-
nection and separation problems of efficient control and observation are studied by
means of adjoint problem solution.
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1 Problem statement

Multistage bilinear control system with random and deterministic perturbations

xk+1 = Akxk + bk+1 + ξk+1, k = 0, 1, . . .(1.1)

wk+1 = rkwk + u⊤
k+1xk+1 + c⊤

k+1(uk+1 − uk)(1.2)

is considered. Here xk ∈ R
n is a state vector, wk is a scalar value connected with utility

of control, ξk is an independent Gaussian random vector with known statistical moments:

Eξk = 0, Eξkξ
⊤

k = Rk > 0.(1.3)

It is supposed that x0 ∈ R
n, u0 ∈ R

n, w0 ∈ R
1, rk and matrices Ak [n×n] are given, bk,

ck are unknown deterministic disturbances given by their possible values domains:

ck ∈ Ck, bk ∈ Bk,(1.4)
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where Ck, Bk are convex compacts sets in R
n. The term c⊤

k
(uk+1 − uk) represents the

cost of control change.

Considered model (1.1) – (1.3) arises in particular in multistage portfolio selection
problem in case of a linear regression model of the stock prices moving. In this case rk is a

riskless interest rate, x
(i)
k+1 is connected with a return on i-th stock, x

(i)
k+1 = s

(i)
k+1− rks

(i)
k

,

where s
(i)
k

is a current price of i-th stock, u
(i)
k

is an amount of i-th stocks at k-th step,
ck is a transaction cost, wk represents a current net wealth, w0 is an initial capital. The
similar problems were considered in papers [1, 5] for a geometrical Brounian model of the
stock prices moving. The linear regression model may be more convenient for statistical
identification and control especially in case of unstable money market.

Our purpose is to maximize a value wN = wN (u, c, b, ξ) in a final moment N

choosing a program control u = {u1, . . . , uN} ∈ U for the whole time interval, here
c = {c1, . . . , cN}, b = {b1, . . . , bN}, ξ = {ξ1, . . . , ξN} and U ⊂ R

nN is a convex set of the
admissible controls. The problem may be considered as a multistage linear stochastic
optimization problem with incomplete information about probabilistic distribution and
with deterministic restrictions on the admissible solutions.The multistage stochastic op-
timization problems with incomplete information were considered in [6, 15] and others.
On the other hand our problem (1.1) – (1.3) is a control problem for the bililear stochastic
system [2]. The control problems in bilinear system with uncertainty were considered in
[10, 18]. We study the problem of the efficient program control but a positional control
may be obtained on this base (see Section 4) using the method of decomposition [3].
The value wN is a random one and its distribution depends upon the chosen control and
unknown parameters. A formulated problem may be solved on the base of the minimax
stochastic approach developed by Kurzhanski A. B. [8, 12] in linear control problem under
uncertainty. The control u = {u1, . . . , uN} may be chosen by a criterion of maximization
the least possible mean value:

f1(u) → max, u ∈ U,

f1(u) = min{EwN (u, c, b, ξ) | c ∈ C, b ∈ B},

where C = C1 × · · · × CN , B = B1 × · · · × BN . In case of bilinear control problem the
variance of the utility function wN = wN (u, c, b, ξ) depends on chosen control u so the
risk of decision making connected with the variance should be taken into account.

Other approaches [10] are to optimize the least confidence level wα(u) corresponding
to a fixed probability α:

wα(u) = min{wα(u, c, b) | c ∈ C, b ∈ B} → max,

where P{wN (u, c, b, ξ) ≥ wα(u, c, b)} = α or to optimize the least confidence probability
corresponding to a given level w:

α(u) = min{α(u, c, b) | c ∈ C, b ∈ B} → max,

where α(u, c, b) = P{wN (u, c, b, ξ) ≥ w}. These appoaches take into account the whole
information about probabilistic distributions but they lead to the complicated decision
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making algorithms. In this paper a bicriterial mean-variance appoach is used
{

f1(u) → max,

f2(u) = varwN (u, c, b, ξ) → min, u ∈ U.
(1.5)

Here a variance f2(u) = varwN (u, c, b, ξ) = E(wN − EwN )2 does not depend on the
unknown parameters c and b. It results from linearity of equations (1.1), (1.2) with
respect to these parameters [8].

Definition 1.1 A program control u∗ ∈ U is called efficient if it is the Pareto optimal
solution in the bicriterial problem (1.1) − (1.5), i.e. for any admissible control u ∈ U at
least one of the following conditions hold [17]:
(i) f1(u) < f1(u

∗)
(ii) f2(u) > f2(u

∗)
(iii) f2(u) = f2(u

∗), f1(u) = f1(u
∗).

It should be noted that optimization of the confidence level or quantile optimization
leads to one of the efficient solutions since value wN (u, c, b, ξ) is Gaussian [9, 10]. With
respect to our problem the equation (1.2) may be rewritten as

wk+1 = rkwk + u⊤k+1xk+1 − ϕk+1(uk − uk+1),

where ϕk(v) = max{v⊤ck | ck ∈ Ck} is the support function of set Ck. In case of
Ck = [−α1;α1] × . . .× [−αn;αn] the following equality holds:

ϕ(uk − uk+1) =

n
∑

i=1

αi|u
(i)
k+1 − u

(i)
k
|.

2 Existence of stationary efficient solutions

Dynamic multistage problem (1.1) – (1.5) may be written as a bicriterial one-stage prob-
lem in R

nN space:

wN (u) = u⊤Φx+ c⊤Gu,

where x = {x1, . . . , xN} ∈ R
nN is Gaussian vector

Ex = x, covx = E(x − x)(x − x)⊤ = P > 0.

Matrices Φ, P may be calculated from the equations (1.1) – (1.3). Values c and x are
not known exactly and are given by

x ∈ X, c ∈ C,

where C is a convex compact set in R
nN , X is an information set [8] of phase vectors for

the system (1.1) – (1.3). The criterion (1.5) has the form
{

f1(u) → max,

f2(u) → min, u ∈ U,
(2.1)
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where f1(u) = min{u⊤(Φx+G⊤c) | x ∈ X, c ∈ C}, f2(u) = u⊤ΦPΦ⊤u.
If a domain U of admissible controls u is defined by linear restrictions then the

problem (2.1) is reduced to a piecewise linear quadratic bicriterial problem. An algorithm
suggested in [16] may be used to solve the problem.

An existence of a stationary efficient solutions is important in many applications. For
example, one of the disadvantages of the geometrical growth model [1, 5] is an absense
of stationary efficient solutions in the multistage portfolio selection problem: one has to
sell or to buy stocks at every step even in case of constant statistical parameters of the
return distribution.

As usual a program efficient control u = {u1, . . . , uN} is called stationary if it is does
not depend on time, i.e. uk = u1, k = 2, . . . , N . The conditions of existence of stationary
efficient solution may be obtained using the Pareto optimality conditions.

Let us consider a simple case of independent phase vectors xk with no uncertainty
in their distributions parameters and no restrictions on admissible controls.

Theorem 2.1 Let Ak = 0, Bk = {bk} for all k = 0, 1, . . . , N , U = R
nN . If a condition

S =
⋂

R−1
k

(Ck − bk) 6= Ø(2.2)

holds then problem (1.1) − (1.5) has a stationary nonzero efficient solution.

Proof. In the considered case the criterion (1.5) may be rewritten as

N
∑

k=1

[u⊤
k
bk − ϕk(uk−1 − uk)] → max

N
∑

k=1

u⊤
k
Rkuk → min, uk ∈ R

N , k = 1, . . . , N.

The sufficient Pareto optimality conditions have the form [16]:

0 ∈ λRku
∗

k − bk + ∂ϕk(u∗k−1 − u∗k),

where ∂ϕk(v) is subdifferential of function ϕk(v). This function is a support function of
the set Ck so ∂ϕk(0) = Ck [14].

Pareto optimality conditions is rewritten as 0 ∈ λRku
∗

k
− bk + Ck, k = 1, . . . , N .

Let condition (2.2) holds. Denote a vector u∗1 ∈ −S and consider the stationary
control u∗ = {u∗1, . . . , u

∗

1}. The relation Rku
∗

1 ∈ −Ck + bk or 0 ∈ Rku
∗

1 − bk + Ck holds
for k = 1, . . . , N . Therefore sufficient Pareto optimality conditions hold with λ = 1 and
control u∗ is a stationary efficient one. �

Corollary 2.1 If U = R
nN , Ak = 0, Rk = R, Bk = {bk} and bk ∈ b∗ + Ck for all

k = 1, . . . , N then nonzero efficient solution of (1.1) − (1.5) exists.

Theorem 2.2 If Ak = 0, k = 0, . . . , N − 1, U = R
nN , and a condition

S =
⋂

k

R−1
k

(Ck

∗

− Bk) 6= Ø

holds then nonzero efficient control in (1.1) − (1.5) exists. Here Ck

∗

− Bk is geometrical

difference of two sets: Ck

∗

− Bk = {v ∈ R
n : v +Bk ⊂ Ck}.
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Proof. In this case criterion (1.5) may be rewritten as

−(
N
∑

k=1

ψk(uk) + ϕk(uk−1 − uk)) → max

N
∑

k=1

u⊤
k
Rkuk → min, uk ∈ R

N , k = 1, . . . , N.

Here ψ
(v)
k

is the support function of the set (−Bk),

∂ψk(v) = {b ∈ −Bk | b⊤v = ψk(v)} ⊂ −Bk

[14]. The sufficient Pareto optimality conditions have a form 0 ∈ λRku
∗

k
+ ∂ψk(u∗

k
) +

∂ϕk(u∗
k−1 − u∗

k
), λ ≥ 0. Denote u∗1 ∈ −S, u∗1 ∈ −R−1

k
(Ck

∗

− Bk) for all k. It results

in −R−1
k
u∗

k
+ Bk ⊂ Ck and −R−1

k
u∗

k
− ∂ψk(uk) ⊂ Ck. For a stationary control u∗ =

{u∗1, . . . , u
∗

1} the Pareto optimality conditions hold so this control is stationary efficient
one. �

In general case of Ak 6= 0 the similar results may be obtained using an concept of
adjoint problem (see Sect. 3).

3 Connection of efficient control and observation prob-

lems

Let us consider in detail a simple nondegenerate stochastic optimization problem (A)
with a random utility function w(u) = u⊤x and no restrictions on admissible controls
u ∈ R

n. Here x is n-dimensional Gaussian random vector with known moments Ex = x,
E(x− x)(x− x)⊤ = P > 0. The corresponding bicriterial problem is

{

Ew(u) = u⊤x→ max,

varw(u) = u⊤Pu→ min, u ∈ R
n,

(3.1)

The vector x is called a random purpose vector of the problem (A).

Efficient solutions set of (3.1) is written as

U∗ = {λu∗ | λ ≥ 0}, u∗ = P−1x.(3.2)

Definition 3.1 The efficient solution u∗ = P−1x is called a base efficient solution

of the problem (A).

We introduce the notion of adjoint stochastic optimization problems for solving of
the dynamic optimization problem. The notion of the adjoint stochastic optimization
problem is closely connected with the adjoint relations for linear systems in the control
theory [4, 11, 12]. Percularities of the considered consept are bilinearity of the dynamic
system and mean-variance approach to the control choosing. So obtained result has a
similar form (e.g. (4.7)) as the classical equations of the adjoint dynamic problem but
they have a special properties.
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Definition 3.2 Stochastic optimization problem (Ã) with random utility function w̃(x) =
u⊤x, x ∈ R

n, is adjoint to the problem (A) if u is Gaussian random n-dimensional vector
with known moment Eu = u, E(u− u)(u − u)⊤ = D > 0 and

u = P−1x, D = P−1.(3.3)

Let us consider the properties of the adjoint problems.

Property 3.1 The problem adjoint to adjoint one coincides with the initial problem.

It results from the definition of adjoint problem.

Property 3.2 Let problem (Ai), i = 1, 2, 3 have the random purpose vectors xi; x1, x2

are statistically independent and x3 = x1 + Gx2 with n × n matrice G. Then for the
purpose vectors ui, i = 1, 2, 3 in the adjoint problem (Ai) equations hold:

u3 = D3(D
−1
1 u1 +GD−1

2 u2),

D3 = (D−1
1 +GD−1

2 G⊤)−1,
(3.4)

where ui = Eui, Di = covui = E(ui − ui)(ui − ui)
⊤, i.e. distribution of u3 coincides

with a posteriori distribution of unknown vector u3 after two observations u1 = u3,
u2 = G⊤u3.

Proof. Denote xi = Exi, Pi = covxi, Pi > 0. Relation x3 = x1 +Gx2 implies

x3 = x1 +Gx2, P3 = P1 +GP2G
⊤.

For adjoint problems (A3) we have by definition

u3 = P−1
3 x3 = (P1 +GP2G

⊤)−1(x1 +Gx2),

and D−1
i

= P−1
i

, so (3.4) holds. �

Property 3.3 Let xi, i = 1, 2 be n-dimensional random purpose vectors in stochastic
optimization problems (Ai) and x2 = Gx1, detG 6= 0. Then for purpose random vectors
ui in adjoint problems (Ãi) the following relation holds: u2 = (G⊤)−1u1.

Proof. The statistical moments of x2 are Ex2 = Gx1, covx2 = GP1G
⊤. From the

definition of an adjoint problem the relations follow:

u2 = (GP1G
⊤)−1Gx1 = (G⊤)−1P−1

1 G−1Gx1 = (G⊤)−1P−1
1 x1

It results in u2 = (G⊤)−1u1. �

Property 3.4 Let xi, i = 1, 2, 3, be the random purpose vectors in stochastic optimiza-
tion problems (Ai) and x1, x2 be independent Gaussian vectors with known distributions.
Information on x3 is given by two observations: x1 = x3 and x2 = Gx3. Then purpose
random vectors ui in adjoint problems (Ãi) are connected by relation

u3 = u1 +G⊤u2.
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Proof. A posteriori statistical moments of x3 are described by relations [4, 7]:

Ex3 = x3 = P3(P
−1
1 x1 +G⊤P−1

2 x2), cov(x3) = P3 = (P−1
1 +G⊤P−1

2 G)−1

For the adjoint problem it follows from definition u3 = P−1
3 x3 = P−1

1 x1 + G⊤P−1
2 x2 =

u1 +G⊤u2. �

Theorem 3.1 Let xi, i = 1, 2, 3, be the random purpose vectors in stochastic optimiza-
tion problems (Ai); x1, x2 are independent Gaussian vectors with known distributions.
Information on x3 is given by two relations:

x1 = x3, x2 = Gx3.

Then efficient controls set for (A3) equals

U∗

3 = {λu∗3 | u∗3 = u∗1 +G⊤u∗2},

where u∗
i

is a base efficient control in problem (Ai).

Theorem 3.1 immediately follows from property 3.4 and relation (3.2). This allows
us to correct easily control u if an additional information is obtained on a random state
vector x is obtained.

4 Construction of the efficient solutions

Let us consider our dynamic optimization problem (1.1) – (1.5). Assume that there are
no restrictions on admissible controls and there are no deterministic perturbations in
dynamic equation (1.1). We use the method of substitution of unknown parameters ck
to Gaussian random perturbations ηk [11, 12]. Equations are obtained

xk+1 = Akxk + bk+1 + ξk+1, k = 0, . . . , N − 1,(4.1)

wk+1 = rkwk + u⊤
k+1xk+1 + η⊤

k+1(uk+1 − uk)(4.2)

in place of (1.1), (1.2). Here ξk, ηk are independent Gaussian random vectors with known
moments

Eξk = Eηk = 0, Eξkξ
⊤

k = Rk > 0, Eηkη
⊤

k = Qk > 0,(4.3)

values rk ≥ 0, bk, x0, w0, u0 and matrices Ak are given. There is a bicriterial problem in
space R

nN with complete information on distributions of the random parameters. The
criterion (1.5) is written as

{

E(wN (u)) → max,

var(wN (u)) → min, u ∈ R
n,

(4.4)

here f2(u) = varwN (u, ξ, η) depends on covariance matrices Rk and Qk [4]. Problem
(4.1) – (4.4) may be solved by means of the adjoint problem formulation.

Theorem 4.1 Let Ak = 0, rk = 1 for all k = 0, . . . , N − 1, then a base efficient control
u∗ = {u∗1, . . . , u

∗

N
} of (4.1) − (4.4) coincides with a posteriori mean value of a phase
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vector for the following system with observation:

vk = vk−1 + η̃k, k = 1, . . . , N,

dk = vk + ξ̃k, v0 = u0.
(4.5)

Here dk = R−1
k
bk, ξ̃k, η̃k are independent Gaussian vectors with known moments:

Eη̃k = Eξ̃k = 0, Eξ̃k ξ̃
⊤

k
= R̃k, Eη̃kη̃

⊤

k
= Q̃k,

R̃k = R−1
k
, Q̃k = Q−1

k
.

(4.6)

Proof. In case of Ak = 0, rk = 1, k = 0, . . . , N − 1 the random function wN of a
control utility is written as

wN =
N

∑

k=1

u⊤
k

(bk + ξk) +
N−1
∑

k=0

(uk+1 − uk)⊤ηk+1.

The purpose vector for the problem is a sum of independent Gaussian vectors. From
property 3.2 it is clear that the distribution of the purpose vector in adjoint problem
coincides with a posteriori distribution of vector u = {u1, . . . , uN} after observations

uk = dk + ξ̃k, uk+1 − uk = η̃k+1.

Here ξ̃k, η̃k are independent Gaussian vectors with known moments (4.6). Hence the
theorem statement is obtained. �

Corollary 4.1 If Ak = 0, rk = 1 for all k = 0, . . . , N − 1 then a base efficient control
in problem (4.1) − (4.4) is described by the Kalman equations of the filtration:

u∗k+1 = u∗k + Λk+1(dk+1 − u∗k), Λk = PkRk,

Pk+1 = (Pk +Q−1
k+1)

−1 +Rk+1, k = 0, . . . , N − 1, u∗0 = u0, P0 = 0.

This results from theorem 4.1 and the standard equations for linear system states
estimation [7].

Theorem 4.2 In case of rk = 1, k = 0, . . . , N − 1, a base efficient control u∗ =
{u∗1, . . . , u

∗

N
} in problem (4.1) − (4.4) coincides with a posteriori mean value of a phase

vector for the following system in reverse time

vN = dN + ξ̃N ,

vk−1 = −A⊤

k−1vk + dk−1 + ξ̃k−1, k = N, . . . , 1
(4.7)

with observation

vk = vk−1 + η̃k, v0 = u0,(4.8)

where dk = R−1
k
bk, k = 2, . . . , N ; d1 = R−1

1 (b1 +A0x0), ξ̃k, η̃k are independent Gaussian
vectors with known moments (4.6).

Proof. A phase vector of system (4.1) on k-th step may be written as

xk =

k−1
∑

i=1

Φkiyi + yk, Φki = Ai · · ·Ak−1,
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where y1 = A0x0+b1+ξ1, yk = bk+ξk, k = 2, . . . , N . We obtain the linear relation x = Φy
for nN -dimensional random vectors x = {x1, . . . , xN}, y = {y1, . . . , yN}. Function wN (u)
of the control utility has the form

wN (u) = u⊤Φy + η⊤Gu

and random purpose vector in problem (4.1) – (4.4) is z = Φy + G⊤η. Property 3.2
implies that distribution of the purpose vector in the adjoint problem coincides with a
posteriori distribution of vector u = {u1, . . . , uN} after two observations:

u = (Φ−1)⊤ỹ, Gu = η̃,(4.9)

where ỹ = {d1 + ξ̃1, . . . , dN + ξ̃N}, d1 = R−1
1 (A0x0 + b1), dk = R−1

k
bk, ξ̃k, η̃k are

independent Gaussian vectors with known moments (4.6). By direct calculation of an
inverse matrix (Φ−1)⊤ we obtain equations (4.7). �

We can not write recurrent equations for u∗1, . . . , u
∗

N
as in the simple case of Ak ≡ 0.

But we may calculate a base efficient control at the first step. It is enough for constructing
an adaptive control in the problem (4.1) – (4.4).

The standard estimation of a posteriori mean value for system (4.7), (4.8) results in
the following statement.

Corollary 4.2 The base efficient control u∗1 on the first step in case of rk ≡ 1 is defined
by the equations:

uN = dN ,

uk−1 = −A⊤

k−1uk + dk−1, k = N, . . . , 2,(4.10)

Pk−1 = A⊤

k−1PkAk−1 +R−1
k
, PN = R−1

N
,(4.11)

u∗1 = u1 + Λ1(u0 − u1), Λ1 = (P−1
1 +Q1)

−1R1.(4.12)

Theorem 4.3 Control u∗1 defined by equations (4.10) − (4.12) is an efficient control on
the first step for problem (4.1)− (4.4) with arbitrary coefficients rk > 0, k = 0, . . . , N−1.

Proof. In case of arbitrary rk > 0 the utility function wN (v) has the form:

wN (v) =
N

∑

k=1

lkx
⊤

k
vk +

N−1
∑

k=0

η⊤
k+1(vk+1 − vk)lk+1,

where lk = rk · · · rN−1, lN = 1. We may write wN = v⊤L(Φy + G⊤η), where L is a
diagonal matrix, v is unknown control.

From property 3.3 a relation v = L−1u is obtained for a purpose vector v in the
problem adjoint to (4.1) – (4.4) and a purpose vector v in this problem in case of rk = 1,
k = 0, 1, . . . , N − 1, considered in theorem 4.2. As a result we have for a base efficient
control v∗ = {v∗1 , . . . , v

∗

N
} in (4.1) – (4.4) a following representation v∗ = L−1u∗, or

v∗
k

= l̃ku
∗

k
, l̃k = l−1

k
, k = 1, . . . , N , where u∗

k
= {u∗1, . . . , u

∗

N
} is a base efficient control

in (4.1) – (4.4) in case of rk = 1, k = 0, . . . , N − 1. The set of all efficient controls in the
problem is U∗ = {λv∗ | λ ≥ 0}, therefore u∗1 = l1v

∗
1 = r1 · · · rN−1v

∗
1 is an efficient control

at the first step for system (4.1) – (4.4) with arbitrary positive values rk. �
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