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For a given abstract optimization problem in a Banach space subject to data
perturbations, conditions linking well-posedness to well-conditioning are obtained.
Explicit estimates of the modulus of well-posedness allow to bound the condition
number. Application to mathematical programming problems are presented.
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1 Introduction

An optimization problem is well-posed by perturbations if its unique solution attracts all
approximate solutions corresponding to small perturbations of the given problem. This
notion (firstly introduced in [1]) is relevant to the stability analysis of problems of the
calculus of variations [1], optimal control [2] and mathematical programming.

A further property of optimization problems is that of conditioning, which is relevant
to sensitivity analysis and the performance of numerical methods, see e.g [3]. In this paper
we link the two notions in an abstract setting, obtaining conditions of both qualitative
and quantitative nature which allows us to check well-conditioning from well-posedness
and conversely.

Several results are known obtaining well-conditioning in mathematical
programming problems from constraint qualification properties and some form of second-
order optimality conditions (see Section 6). However, as far as we know, no result con-
necting explicitly well-posedness with well-conditioning in a general setting is available.

1Work partially supported by MURST. A preliminary version was presented at the 17-th Symposium
on Mathematical Programming with Data Perturbations, Washington, May 1997.
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In [4], [5] and [6] conditioning is meant in a non-technical fashion (except for strongly
convex functions in [4]). The main emphasis in [4] and [5] is on stability estimates for
the minimizers and the optimal value function by using the epi-distance.

In Section 4 we link well-conditioning to well-posedness by exploiting the modu-
lus of well-posedness. In Section 5 we show how estimates of the epi-distance can be
used to obtain well-conditioning or well-posedness. In Section 6 and 7 we consider such
properties, in a global or local setting, for mathematical programming problems with
data perturbations. We obtain estimates of the modulus of well-posedness by perturba-
tions starting from the modulus of Tikhonov well-posedness, and then we estimate the
condition number.

2 Definitions and notations

Throughout the paper we consider real Banach spaces X and P , a given point p∗ ∈ P and
a closed ball L in P of center p∗ and positive radius. We are given extended real-valued
proper functions

f : X → (−∞, +∞], F : X × L → (−∞, +∞]

such that F (x, p∗) = f(x), x ∈ X. Let

V (p) = inf{F (x, p) : x ∈ X}, p ∈ L.

The global optimization problem (X, f), to minimize f(x) subject to x ∈ X , is called
well-posed by perturbations with respect to the embedding F , or well-posed for short, if
the following hold:

(1) there exists a unique minimizer u∗ = argmin(X, f);

(2) the value function V (p) is finite for every p ∈ L;

(3) for every sequences pn ∈ P, xn ∈ X such that pn → p∗

and F (xn, pn) − V (pn) → 0 one has xn → u∗.

Sequences xn as in (3) are called asymptotically minimizing corresponding to pn. This
definition was introduced in [1]; see also [7] for a partial survey and [8, 9, 10, 11, 12] for
characterizations, extensions to problems (X, f) without uniqueness and applications.

In the following we shall write argmin(p) instead of argmin[X, F (·, p)], and problem
(p) to denote the global optimization problem [X, F (·, p)]

Problem (X, f) will be called well-conditioned with respect to the embedding F if
(1) is true and the following hold:

(4) argmin(p) 6= Ø for each p ∈ L;

(5)
there exists a constant c > 0 such that for every p ∈ L
and m(p) ∈ argmin(p) we have

lim sup
p→p∗

([‖m(p) − m(p∗)‖/‖p− p∗‖) ≤ c.
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The infimum of those c such that (5) holds is called the condition number of problem (p∗).
The above definition is standard, however is not the only one possible since uniqueness
of the minimizer of problem (p) is not required.

A real-valued function

α : [0, +∞) × L → R

will be called forcing if

(6)
for every sequences pn → p∗, tn ≥ 0 such that

lim sup α(tn, pn) ≤ 0 we have tn → 0.

The above definition is an extension of the one used in [9], since the conditions α(t, p) ≥ 0
and α(0, p∗) = 0 are not required here (see also [9, remark 3.4,] ), nor α(t, ·) is required
to depend on ‖p − p∗‖ only. ind(A, x) denotes the indicator function of the set A at x,
i.e = 0 if x ∈ A and = +∞ elsewhere.

3 Examples

In general, well-posedness and well-conditioning are quite independent properties, as the
following examples (on the real line) show.

Example 3.1 Let F (x, p) = x4/4 − px, p∗ = 0. Here u∗ = 0, V (p) = −3p 3
√

p/4 and
problem (0) is well-posed and ill-conditioned, since m(p) = 3

√
p.

Example 3.2 Let F (x, p) = xe−px2

, p∗ = 1, x ≥ 0. Then m(p) = 0 for every p and
problem (1) is well- conditioned. However V (p) = 0 and xn = n is a minimizing sequence
for problem (1), whence (Tikhonov) ill-posedness.

In the final example we consider linear perturbations of the Vajnberg example [1]3[ex.
18 p. 8]13 of a Tikhonov ill-posed problem with a unique minimizer.

Example 3.3 Let X be an infinite-dimensional Hilbert space with inner product 〈·, ·〉
and a countable orthonormal basis en. Consider

F (x, p) =

∞∑

n=1

〈x, en〉2
n2

− 〈p, x〉, ‖x‖ ≤ 1, p ∈ X = P, p∗ = 0.

For every p, F (·, p) is strictly convex, continuous, Fréchet differentiable on ‖x‖ < 1, and
there exists a unique m(p) = argmin(p), p ∈ X . Denote by DF (·, p) the Fréchet gradient
of F (·, p) with respect to the first variable. If ‖m(p)‖ < 1 then DF (m(p), p) = 0 yielding

〈p, en〉 = 2
〈m(p), en〉

n2

hence
∞∑

n=1

n4〈p, en〉2 < +∞.
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This condition is violated by each

pk = (1/k)

∞∑

n=1

en/n2, k = 1, 2, 3, . . . .

It follows that ‖m(pk)‖ = 1, hence pk → 0 and m(pk) 6→ u∗, whence ill-posedness of
problem (0). Ill-conditioning follows because ‖m(pk)‖/‖pk‖ → +∞.

4 An approach by the modulus of well-posedness

A characterization of well-posedness by perturbations, obtained in [9], is based on suitable
estimates from below of F (x, p) − V (p) as p → p∗. By using such estimates, we show in
this section that one can link well-posedness to well-conditioning. So we need an extension
of the well-posedness criterion [9, th. 3.2] in order to allow more flexible estimates using
forcing functions as defined in Section 2.

Theorem 4.1 If problem (p∗) is well-posed, then there exist u∗ ∈ X and a forcing

function α such that

(7) F (x, p) ≥ V (p) + α(‖x − u∗‖, p) for every x ∈ X and p ∈ L.

Conversely, let V be finite on L and F (·, p∗) be lower semicontinuous at u∗ ∈ X. If (7)
holds with a forcing function α, then problem (p∗) is well-posed.

Proof. Let problem (p∗) be well-posed with solution u∗. Consider

α(t, p) = inf{F (x, p) − V (p) : ‖x − u∗‖ = t}, p ∈ L.

Let tn, pn be as in (6). Then there exists a sequence xn ∈ X such that

‖xn − u∗‖ = tn, 0 ≤ α(tn, pn) ≤ F (xn, pn) − V (pn) ≤ α(tn, pn) + 1/n

hence xn is an asymptotically minimizing sequence corresponding to pn. Well-posedness
yields xn → u∗, whence tn → 0, thus α is forcing. Conversely, assume (7). Let pn → p∗

and xn be asymptotically minimizing corresponding to pn. Then by (7)

lim sup α(‖xn − u∗‖, pn) ≤ 0

hence xn → u∗ and by semicontinuity

V (p∗) = lim inf F (xn, p∗) ≥ F (u∗, p∗),

as required. �

The best estimate in (7) is obtained making use of the modulus of well-posedness

β(t, s) = inf{F (x, p) − V (p) : x ∈ X, p ∈ L, ‖x − x∗‖ = t, ‖p− p∗‖ = s}
and

α(t, p) = β(t, ‖p − p∗‖)
(compare with the modulus of Tikhonov well-posedness, [13, p. 7]). Often, in a given
optimization problem, the modulus is quite difficult to obtain, and we must rely on
estimates making use of a suitable forcing function, as shown in the sequel. Given a



Well-posedness and conditioning of optimization problems 271

forcing function α, consider

(8) ω(p) = sup{t ≥ 0 : α(t, p) ≤ 0}, p ∈ L.

Since α is forcing, ω is finite for p sufficiently near to p∗ (otherwise we could find sequences
pn → p∗, tn → +∞ such that lim supα(tn, pn) ≤ 0.)

Theorem 4.2 Problem (p∗) is well-conditioned if argmin(p) 6= Ø for every p ∈ L and

the following conditions hold:

(9)
there exist a forcing function α fulfilling (7)
and a constant K > 0 such that

ω(p) ≤ K‖p − p∗‖, p ∈ L,

where ω is defined by (8).

Proof. Let m(p) ∈ argmin(p), p ∈ L. Then by (7), α(‖m(p) − u∗‖, p) ≤ 0 hence by
(9) ‖m(p) − u∗‖ ≤ ω(p) ≤ K‖p − p∗‖ so that well-conditioning follows (with condition
number ≤ K). �

Example 4.1 uniformly convex functions under linear perturbations. Let X be reflexive
and f be continuous and uniformly convex with modulus ϕ of uniform convexity, i.e.

(10) f [tx + (1 − t)y] ≤ tf(x) + (1 − t)f(y) − t(1 − t)ϕ(‖x − y‖)
for every x, y and t ∈ (0, 1), with ϕ ≥ 0 a given forcing function (as defined in [13, p.
5]). Without restriction we assume that ϕ is continuous and increasing ([13, p. 10]). Let
P = X∗ be the dual space of X and fix a ball L ⊂ X∗ with center 0 = p∗. Let

F (x, p) = f(x) − 〈p, x〉, x ∈ X, p ∈ X∗.

Since F (·, p) is again uniformly convex and continuous, there exists a global minimizer
m(p) = argmin(p), p ∈ L, see [14].

Proposition 4.1 Problem (0) is well-posed if

(11) lim inf
t→+∞

ϕ(t)/t is a positive real number or + ∞.

Problem (0) is well-conditioned if (11) holds and

(12)
there exists K > 0 such that

sup{t ≥ 0 : ϕ(t) ≤ ts} ≤ Ks for sufficiently small s > 0.

Proof. From (10) with u∗ = m(0)

f(x) ≥ f(u∗) + (1 − t)ϕ(‖x − u∗‖), x ∈ X, 0 < t < 1,

hence

(13) f(x) ≥ f(u∗) + ϕ(‖x − u∗‖)
which means that problem (p∗) is Tikhonov well-posed. By [15, th.3.8], we get

f(u∗) ≥ f [m(p)] + 〈p, u∗ − m(p)〉 + ϕ(‖u∗ − m(p)‖)
since p ∈ ∂f [m(p)]. Hence by (13)

(14) F (x, p) ≥ V (p) + 〈p, u∗ − x〉 + ϕ(‖x − u∗‖) ≥ V (p) + α(‖x − u∗‖, p)
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where

(15) α(t, p) = ϕ(t) − t‖p‖, t ≥ 0, p ∈ L,

and α is forcing by (11). Indeed, let pn → 0 and tn ≥ 0 be such that lim sup(ϕ(tn) −
tn‖pn‖) ≤ 0. Then tn is bounded, otherwise for a subsequence tn → +∞ and lim supϕ(tn)/tn ≤
0, against (11). Well-posedness then follows from Theorem 4.1. Well-conditioning follows
from Theorem 4.2. �

The particular case of a strongly convex function f has ϕ(t) ≥ θt2 for some θ > 0.
Then Proposition 4.1 applies, yielding a condition number c ≤ 1/θ. A better estimate of
the condition number, making specific use of strong convexity, yields c ≤ 1/2θ (as well
known, see e.g [4, prop.5.7]).

The approach followed in this example is based on obtaining a forcing function
α (fulfilling (14)) based on an estimate of the modulus of Tikhonov well-posedness of
problem (p∗). This approach will be extended in Section 6 to mathematical programming
problems.

A further link between well-posedness and well-conditioning can be obtained as fol-
lows. Suppose that u∗ = argmin(p∗),

(16) argmin(p) 6= Ø, p ∈ L,

and consider, for any selection m(p) ∈ argmin(p), p ∈ L,

c(m) = lim sup
p→p∗

‖m(p) − m(p∗)‖/‖p− p∗‖;

k(m, t, p) = inf{F (x, p) − V (p) : x ∈ X, ‖x − m(p)‖ = t}, t ≥ 0, p ∈ L.

The condition c(m) < +∞ can be viewed as a weak form of well-conditioning of problem
(p∗). Well-conditioning as defined in Section 2 by (5) means that sup{c(m) : m(p) ∈
argmin(p) for every p ∈ L} < +∞.

Theorem 4.3 Let (16) hold. If k(m, ·, ·) is forcing and c(m) < +∞ for some selection

m, then problem (p∗) is well-posed. Conversely, if problem (p∗) is well-posed and c(m) <
+∞ for some m, then k(m, ·, ·) is forcing.

Proof. Let pn → p∗ and xn be asymptotically minimizing coresponding to pn.
Then k(m, pn, ‖xn − m(pn)‖) → 0 hence ‖xn − m(pn)‖ → 0. Since c(m) < +∞ we
have m(pn) → u∗ yielding xn → u∗, whence well-posedness. Conversely , let tn ≥
0, pn → p∗, k(m, tn, pn) → 0 and m(p) ∈ arg min (p), p ∈ L. Let xn ∈ X be such that
‖xn − m(pn)‖ = tn and

F (xn, pn) ≤ V (pn) + k(m, tn, pn) + 1/n.

Then xn is asymptotically minimizing corresponding to pn, hence xn → u∗ by well-
posedness. Moreover ‖m(pn) − u∗‖ ≤ (constant) ‖pn − p∗‖ → 0 hence tn → 0 as
required. �

A sufficient condition to both well-posedness and well-conditioning, making use of
the approximate solutions to problem (p), is obtained as follows. Let V (p) be finite, and
write

ǫ − argmin(p) = {u ∈ X : F (u, p) ≤ V (p) + ǫ},
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γ(ǫ, p) = sup{‖u∗ − x‖/‖p− p∗‖ : p ∈ P, p 6= p∗, x ∈ ǫ − argmin(p)}.

Proposition 4.2 If lim sup
(ǫ,p)→(0,p∗)

γ(ǫ, p) < +∞ and problem (p∗) is Tikhonov well-posed,

then problem (p∗) is well-posed and well-conditioned.

Proof. For every selection m(p) ∈ argmin(p), p ∈ L we have

‖m(p) − u∗‖/‖p− p∗‖ ≤ γ(ǫ, p), ǫ > 0,

whence well-conditioning. Now let pn → p∗ and xn be asymptotically minimizing
corresponding to pn. Then there exists a positive sequence ǫn → 0 such that xn ∈
ǫn − argmin(pn). Let pn 6= p∗ for every sufficiently large n. Then

‖u∗ − xn‖ ≤ (constant) ‖pn − p∗‖,
hence xn → u∗. If otherwise pn = p∗ for infinitely many n, a subsequence fulfills xn ∈
ǫn − argmin(p∗) yielding xn → u∗ by Tikhonov well-posedness. The previous argument
shows that the original sequence xn converges toward u∗, yielding well-posedness. �

Example 4.2 The assumption of Proposition 4.2 is not necessary for well-posed-
ness. Let F (x, p) = |lnx| + p|x − 1|, p ≥ 0 = p∗. Then m(p) = 1 for
every p, hence well-conditioning. Moreover problem (p∗) is well-posed, however

ǫ − argmin(p) = [e−ǫ, eǫ],

and γ(ǫ, p) ≥ e−ǫ(eǫ − 1)/p.

5 An approach by epidistance

Here we link Tikhonov well-posedness of problem (p∗) with well-conditioning under any
perturbation which is Lipschitz stable at p∗ with respect to the epigra-
phical distance. We make use of the stability results of Lipschitz type in [4]. Fol-
lowing concepts introduced in [16] (see also [4]) , for a given ρ > 0 denote by dρ(g, h)
the ρ-epi-distance between two extended real-valued functions g, h defined on X . We
shall consider Tikhonov well-posed problems (X, f) with an associate forcing function
α = α(t) ≥ 0 (independent of p). Consider

α∗(t) = inf{α(s) + |t − s| : s ≥ 0}, t ≥ 0.

Lemma 5.1 If α is forcing, then α∗ is.

Proof. Let tn ≥ 0 be such that α∗(tn) → 0. Then for some sequences sn ≥ 0 we have
α(sn) ≤ 1/n+α∗(tn) → 0 hence sn → 0, moreover |tn − sn| ≤ 1/n+α∗(tn) → 0, whence
tn → 0. �

If problem (p∗) is Tikhonov well-posed, then there exists a forcing function α ≥ 0
such that

(17) f(x) ≥ f(u∗) + α(‖x − u∗‖), x ∈ X

([13, th. 12 p. 6]).
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Theorem 5.1 Let problem (p∗) be Tikhonov well-posed with α fulfilling (17) and argmin(p) 6=
Ø, p ∈ L. Then problem (p∗) is well-conditioned provided the following hold:

(18)
there exists A > 0 such that

sup{t ≥ 0 : α∗(t) ≤ s} ≤ As, s > 0;

(19) argmin(p) and V (p) are uniformly bounded on L;

(20) for every sufficiently large ρ > 0 there exists K > 0 such that

dρ[f, F (·, p)] ≤ K‖p− p∗‖, p ∈ L.

Proof. By (19), it follows from [4, th.3.8] that

α∗(‖u∗ − m(p)‖) ≤ 4dρ[Tf, TF (·, p)]

for every sufficiently large ρ; here

(Tg)(x) = g(x + u∗) − f(u∗).

Then by (18)

(21) ‖u∗ − m(p)‖ ≤ 4Adρ[Tf, TF (·, p)].

Elementary computations show that

dρ(Tf, TF (·, p)] ≤ dσ[f, F (·, p)]

where σ = ρ + ‖u∗‖ + |f(u∗)|. Then by (21) ‖u∗ − m(p)‖ ≤ 4AK‖p − p∗‖ yielding
well-conditioning. �

Well-posedness in the form of convergence of bounded asymptotically minimizing
sequences requires weaker conditions than those of Theorem 5.1, as follows.

Theorem 5.2 Let pn → p∗ and xn be an asymptotically minimizing sequence corre-

sponding to pn such that xn and F (pn, xn) are bounded. Then xn → u∗ provided that the

following hold:

(22) problem (p∗) is Tikhonov well-posed;

(23) dρ[f, F (·, p)] → 0 as p → p∗ for every ρ sufficiently large .

Proof. Denote by epih the epigraph of h : X → R ∪ {+∞}. By (23), there exists a
sequence un ∈ X such that

(24) ‖xn − un‖ + |F (xn, pn) − f(un)| → 0.

Then

V (p∗) ≤ f(un) − F (xn, pn) + F (xn, pn) − V (pn) + V (pn)

yielding

(25) V (p∗) ≤ lim inf V (pn).

For sufficiently large ρ > 0 one has dist[(u∗, V (p∗)), epiF (·, pn)] ≤ e[(epif)ρ, epiF (·, pn)],
where dist[(x, a), (y, b)] = max{‖x − y‖, |a − b|} for x, y in X, a, b in R, e denotes the
Hausdorff excess within the normed space X × R, and (epi)ρ denotes the intersection of
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epif with the closed ball of center 0 and radius ρ. By (23) there exists a sequence yn ∈ X
such that

‖yn − u∗‖ + |V (pn) − F (yn, pn)| → 0.

Then, remembering (25), we see that V (pn) → V (p∗), hence f(un) → V (p∗). Tikhonov
well-posedness yields un → u∗, and by (24) we get xn → u∗. �

6 Application to mathematical programming

Stability properties and well-conditioned behavior of mathematical programming prob-
lems are of the utmost importance for theoretical and practical reasons, as well known.
In this section we take X a real Hilbert space and consider global optimization prob-
lems with more specific structure than previously treated. In addition to p∗ and the
unperturbed objective function f , we are given a multifunction

G : L −→ X

with nonempty values, modeling the perturbations acting on the feasible set G(p∗). Then
we take

F (x, p) = f(x) + ind [G(p), x].

Consider the excess

(26) e[G(p), G(p∗)] = sup{dist[z, G(p∗)] : z ∈ G(p)}, p ∈ L.

In the next result we extend the approach of Example 4.1, Section 4. We obtain explicitly
a forcing function α as in (7) in terms of an estimate of the modulus of Tikhonov well-
posedness of problem p∗, of the excess defined by (26) and the value function. From
such explicit estimates, sufficient conditions for well-conditioning can be derived. The

modulus of Tikhonov well-posedness of problem (p∗) (see [13, p.7]), given by

β(t) = inf{f(x) − f(u∗) : x ∈ G(p∗), ‖x − u∗‖ = t}, t ≥ 0,

is called superquadratic if there exists Q > 0 such that

(27) β(t) ≥ Qt2, t ≥ 0 sufficiently small .

Condition (27) is sometimes referred to as the growth condition of order 2.

Among the several results dealing with Lipschitz stability of perturbed minimizers,
hence well-conditioning, obtained as a consequence of constraint qualification and second-
order optimality conditions , we mention [17, 18, 19, 20, 21, 22, 23, 24, 25]. The approach
presented in this section is however different, and independent of such conditions (see
also [26]).

Theorem 6.1 Problem (p∗) is wellposed if G(p∗) is closed and the following conditions

hold:

(28) f is Lipschitz on G(L);

(29) V is upper semicontinuous at p∗;
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(30) ϕ(p) = e[G(p), G(p∗)] → 0 as p → p∗;

(31) problem (p∗) is Tikhonov well-posed with a superquadratic modulus.

In such a case,

(32) α(t, p) = Qt2 − (2Qt + H)(ϕ(p) + ‖p − p∗‖) + V (p∗) − V (p)

is a forcing function verifying (7), where Q is given by (27) and H is a Lipschitz constant

of f .

Proof. For every p 6= p∗ and x ∈ G(p) there exists y ∈ G(p∗) such that

‖x − y‖ ≤ ϕ(p) + ‖p − p∗‖ = ϕ(p) say .

Then by (28) and (31) we get

f(x) ≥ f(y) − H‖x − y‖ ≥ V (p∗) + Q‖y − u∗‖ − H‖x − y‖ ≥

≥ V (p∗) + Q‖x − u∗‖2 − ϕ(p)(2Q‖x − u∗‖ + H).

Hence V (p) is finite, p ∈ L, and α given by (32) fulfills (7). The proof will be ended, by
Theorem 4.1, showing that α is forcing. Let pn → p∗, tn ≥ 0 be such that

(33) lim supα(pn, tn) ≤ 0.

If for some subsequence tn → +∞, then for every ǫ > 0 we obtain

Qtn ≤ 2Qϕ(pn) + [V (pn) − V (p∗)]/tn + ǫ

for every sufficiently large n. However by (30) this contradicts (29). It follows that tn is
bounded. For a subsequence we have tn → T, T ≥ 0. Then by (33) we get T = 0 because
of (29), (30) and this shows that α is forcing. �

Remark 6.1 If more realistic estimates are available such that

(34) δ(p) ≤ V (p∗) − V (p), ϕ1(p) > ϕ(p) if p 6= p∗

and lim inf δ(p) ≥ 0, ϕ1(p) → 0 as p → p∗,

then

(35) α1(t, p) = Qt2 − (2Qt + H)ϕ1(p) + δ(p)

is still a forcing function verifying (7).

A sufficient condition for upper semicontinuity (29) (equivalent to continuity under
the assumptions of Theorem 6.1) can be obtained making use of the gap

θ(p, ǫ) = inf{‖y − z‖ : y ∈ ǫ − argmin(p∗), z ∈ G(p)}, ǫ > 0, p ∈ L.

Theorem 6.2 Let f be Lipschitz on G(L). Then V is upper semicontinuous at p∗ pro-

vided

(36) θ(p, ǫ) → 0 as p → p∗ for every sufficiently small ǫ > 0.

Proof. For every z ∈ F (p) and y ∈ ǫ − argmin(p∗) we get, for some constant H

V (p∗) + ǫ ≥ f(y) ≥ f(z) − H‖y − z‖ ≥ V (p) − H‖y − z‖.
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By taking the infimum with respect to y and z we obtain

V (p) ≤ Hθ(p, ǫ) + ǫ + V (p∗).

The conclusion comes from (36). �

Example 6.1 Condition (36) with ǫ = 0 only does not imply upper semicontinuity of
V . Consider N = 2, 0 < p < 1, p∗ = 1/2,

G(p) = {(p, x2) ∈ R2 : p2 + (x2 − 1)2 ≤ 1 or 4p2 + 4(x2 + 1)2 ≤ 1}, f(x1, x2) = x2.

Remark 6.2 If (36) holds and ǫ − argmin(p) is bounded, ǫ > 0, then the conclusion of
Theorem 6.1 obtains assuming f Lipschitz continuous on bounded sets. Indeed, in the
proof we can assume θ(p, ǫ) bounded for sufficiently small ‖p−p∗‖, and ‖z−y‖ ≤ q+θ(p, ǫ)
for any prescribed q > 0. Then ‖z−u∗‖ ≤ V (p∗)+ǫ+h[q+θ(p, ǫ)], hence the conclusion.

Theorem 6.3 Problem (p∗) is well-posed and well-conditioned if the assumptions of

Theorem 6.1 hold, δ and ϕ1 are as in (34), and there exist constants Q1, Q2 such that

ϕ1(p) ≤ Q1‖p‖, δ(p) < Hϕ1(p) ≤ δ(p) + Q2‖p‖2.

The elementary proof is based on applying Theorem 4.2 with α1 given by (35).

Remark 6.3 Let g1, ..., gM be given real-valued functions on X = RN , let P = RM , p∗ =
0 and let x ∈ G(p) iff

g1(x) ≤ p1, · · · , gM (x) ≤ pM .

This model encompasses the standard mathematical programming problem with data
perturbations, see [27, p.33-34], (and well-posedness is invariant under the corresponding
transformation allowing us to consider only constraint perturba-
tions). Then (27) holds provided f, g1, · · · , gM are smooth and the weak version [27,
p.29] of the second order sufficient conditions are fulfilled at u∗ (compare [28, th.5.2],
[29] and the previously listed references for more general results). However, Theorems
6.1 and 6.3 can be applied without requiring second-order conditions or smooth data.

Example 6.2 Let X = R2, f(x1, x2) = x1, and x ∈ G(p) iff

−x3
1 ≤ x2 ≤ x3

1 + p2e−px1 ,

p ≥ 0 = p∗. Here problem (p∗) does not fulfill the Mangasarian-Fromovitz const-
raint qualification condition, and the second order sufficient conditions fail. Theo-
rems 6.1 and 6.3 apply with Q = 1, δ(p) = 0, ϕ1(p) = 2p2. Problem (p∗) is both well-
posed and well-conditioned.

Example 6.3 Let X = R2, f(x1, x2) = x1, and x ∈ G(p) iff

−√
x1 − p ≤ x2 ≤ √

x1 + p,

0 ≤ x1 ≤ 1, p ≥ 0 = p∗. Problem’s data are not smooth. Theorem 6.1 applies with
Q = 1/2, δ(p) = 0, ϕ1(p) = p. Problem (p∗) is well-conditioned since for every m(p) ∈
argmin(p) we have |m(p) − u∗| ≤ p (however Theorem 6.3 is not applicable).
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7 Local well-posedness

The notion of local solution of mathematical programming problems is often more sig-
nificant than the global one. Accordingly, a definition of local well-posedness, similar
to the one of [10], is appropriate in such a context. We limit ourselves to the finite-
dimensional framework of Section 6 with X = RN . Problem (p∗) will be called locally

Tikhonov well-posed with local solution u∗ if u∗ ∈ G(p∗), there exists a closed ball B in
X centered at u∗ of positive radius such that f(u∗) = inf f [B ∩ G(p∗)], and xn → u∗

for every sequence xn ∈ B ∩ G(p∗) verifying f(xn) → inf f [B ∩ G(p∗)]. The point u∗ is
a strict local minimizer of problem (p∗) if u∗ ∈ G(p∗) and there exists a closed ball B
centered at u∗ such that

f(y) > f(u∗) for every y 6= u∗ and y ∈ G(p∗) ∩ B.

Proposition 7.1 Let G(p∗) be closed and f be lower semicontinuous. Then problem

(p∗) is locally Tikhonov well-posed with solution u∗ iff u∗ is a strict local minimizer.

The proof is trivial (owing to compactness of G(p∗) ∩ B and semicontinuity).

Problem (p∗) is locally well-posed by perturbations with solution u∗ if u∗ ∈ G(p∗)
and there exists a ball B centered at u∗, with positive radius, such that

u∗ is the unique global minimizer of f on G(p∗) ∩ B;

V (p) = inf{f(x) : x ∈ G(p) ∩ B} is finite, p ∈ L;

pn → p∗ in P and xn ∈ G(pn) ∩ B fulfilling f(xn) − V (pn) → 0 imply xn → u∗.

This definition is slightly more general than that of [10] (uniqueness of local minimizers
is not required here).

Proposition 7.2 Let f be continuous and G be continuous at p∗ with closed values. If

f has a strict local minimizer on G(p∗), then problem (p∗) is locally well-posed.

Proof. By assumption, G is simultaneously upper and lower semicontinuous at p∗, and
(G(p∗) ∩ B, f) is Tikhonov well-posed for some compact ball B centered at u∗, [13, th.
23 p.13]. Then the conclusion will follow by checking the assumptions required by [7,
prop. 5.1 p. 234]. Let

F (x, p) = f(x) + ind (G(p) ∩ B, x), V (p) = inf{F (x, p) : x ∈ RN}.
We need to show that

(37) F is lower semicontinuous at RN × {p∗};

(38) V is finite on L and upper semicontinuous at {p∗}.
To prove (37) let xn → x in RN , pn → p∗. If xn 6∈ G(pn)∩B for every n sufficiently large,
then lim inf F (xn, pn) = +∞ ≥ F (x, p∗). If xn ∈ G(pn) ∩ B for infinitely many n, then
for some subsequence yn of xn we have lim inf F (xn, pn) = lim F (yn, pn) = lim f(yn).
By compactness, for some further subsequence yn → x ∈ G(p∗) ∩ B because of upper
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semicontinuity. Then lim inf F (xn, pn) ≥ f(x) = F (x, p∗), proving (37). The (local)
value function V fulfills (38) by standard results, [13, prop.2 p. 335]. �

We plan to show elsewhere that Theorems 6.1 and 6.3 may be extended to the local
setting again making use of quantitative estimates.
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