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For a given abstract optimization problem in a Banach space subject to data
perturbations, conditions linking well-posedness to well-conditioning are obtained.
Explicit estimates of the modulus of well-posedness allow to bound the condition
number. Application to mathematical programming problems are presented.
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1 Introduction

An optimization problem is well-posed by perturbations if its unique solution attracts all
approximate solutions corresponding to small perturbations of the given problem. This
notion (firstly introduced in [1]) is relevant to the stability analysis of problems of the
calculus of variations [1], optimal control [2] and mathematical programming.

A further property of optimization problems is that of conditioning, which is relevant
to sensitivity analysis and the performance of numerical methods, see e.g [3]. In this paper
we link the two notions in an abstract setting, obtaining conditions of both qualitative
and quantitative nature which allows us to check well-conditioning from well-posedness
and conversely.

Several results are known obtaining well-conditioning in mathematical
programming problems from constraint qualification properties and some form of second-
order optimality conditions (see Section 6). However, as far as we know, no result con-
necting explicitly well-posedness with well-conditioning in a general setting is available.

IWork partially supported by MURST. A preliminary version was presented at the 17-th Symposium
on Mathematical Programming with Data Perturbations, Washington, May 1997.
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In [4], [5] and [6] conditioning is meant in a non-technical fashion (except for strongly
convex functions in [4]). The main emphasis in [4] and [5] is on stability estimates for
the minimizers and the optimal value function by using the epi-distance.

In Section 4 we link well-conditioning to well-posedness by exploiting the modu-
lus of well-posedness. In Section 5 we show how estimates of the epi-distance can be
used to obtain well-conditioning or well-posedness. In Section 6 and 7 we consider such
properties, in a global or local setting, for mathematical programming problems with
data perturbations. We obtain estimates of the modulus of well-posedness by perturba-
tions starting from the modulus of Tikhonov well-posedness, and then we estimate the
condition number.

2 Definitions and notations

Throughout the paper we consider real Banach spaces X and P, a given point p* € P and
a closed ball L in P of center p* and positive radius. We are given extended real-valued
proper functions

f:X — (=00, 400, F: X X L — (—00, +0]
such that F(z,p*) = f(z),z € X. Let
V(p) = inf{F(z,p):x € X},p€e L.

The global optimization problem (X, f), to minimize f(x) subject to & € X, is called
well-posed by perturbations with respect to the embedding F', or well-posed for short, if
the following hold:

(1) there exists a unique minimizer v* = argmin(X, f);
(2) the value function V(p) is finite for every p € L;
(3) for every sequences p,, € P, x,, € X such that p, — p*

and F(xy,pn) — V(pn) — 0 one has x,, — u™.

Sequences z,, as in (3) are called asymptotically minimizing corresponding to p,. This
definition was introduced in [1]; see also [7] for a partial survey and [8, 9, 10, 11, 12] for
characterizations, extensions to problems (X, f) without uniqueness and applications.

In the following we shall write argmin(p) instead of argmin[X, F(-, p)], and problem
(p) to denote the global optimization problem [X, F'(-,p)]

Problem (X, f) will be called well-conditioned with respect to the embedding F' if
(1) is true and the following hold:

(4) argmin(p) # @ for each p € L;

(5) there exists a constant ¢ > 0 such that for every p € L
and m(p) € argmin(p) we have

lizr)rispgp([llm(p) —m@I)l/llp =Pl < ¢
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The infimum of those ¢ such that (5) holds is called the condition number of problem (p*).
The above definition is standard, however is not the only one possible since uniqueness
of the minimizer of problem (p) is not required.
A real-valued function
a:[0,+00) x L - R
will be called forcing if

(6)

The above definition is an extension of the one used in [9], since the conditions a(t, p) > 0
and «(0,p*) = 0 are not required here (see also [9, remark 3.4,] ), nor a(¢,-) is required
to depend on ||p — p*|| only. ind(A4,z) denotes the indicator function of the set A at z,
ie =01if xr € A and = 400 elsewhere.

for every sequences p, — p*,t, > 0 such that
lim sup a(ty,, pn) < 0 we have t,, — 0.

3 Examples

In general, well-posedness and well-conditioning are quite independent properties, as the
following examples (on the real line) show.

Example 3.1 Let F(z,p) = 2*/4 — pz,p* = 0. Here u* = 0,V(p) = —3p/p/4 and
problem (0) is well-posed and ill-conditioned, since m(p) = &/p.

Example 3.2 Let F(z,p) = ze P p* = 1,z > 0. Then m(p) = 0 for every p and
problem (1) is well- conditioned. However V(p) = 0 and z,, = n is a minimizing sequence
for problem (1), whence (Tikhonov) ill-posedness.

In the final example we consider linear perturbations of the Vajnberg example [1]3[ex.
18 p. 8]13 of a Tikhonov ill-posed problem with a unique minimizer.

Example 3.3 Let X be an infinite-dimensional Hilbert space with inner product (-, -)
and a countable orthonormal basis e,,. Consider

0o 2

(2, en) .
n=1

For every p, F (-, p) is strictly convex, continuous, Fréchet differentiable on ||z|| < 1, and

there exists a unique m(p) = argmin(p), p € X. Denote by DF(-,p) the Fréchet gradient

of F(-,p) with respect to the first variable. If |[m(p)|| < 1 then DF(m(p),p) = 0 yielding

(m(p), en)

<p7 €n> =2 n2

hence

o0
Z n*{p, en)? < +o0.

n=1
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This condition is violated by each
(oo}
pr = (1/k) z:en/ng7 k=1,2,3,....
n=1

It follows that ||m(pk)|| = 1, hence pr — 0 and m(px) 4 u*, whence ill-posedness of
problem (0). Ill-conditioning follows because ||m(pi)||/||px|| — +oo.

4 An approach by the modulus of well-posedness

A characterization of well-posedness by perturbations, obtained in [9], is based on suitable
estimates from below of F(x,p) — V(p) as p — p*. By using such estimates, we show in
this section that one can link well-posedness to well-conditioning. So we need an extension
of the well-posedness criterion [9, th. 3.2] in order to allow more flexible estimates using
forcing functions as defined in Section 2.

Theorem 4.1 If problem (p*) is well-posed, then there exist u* € X and a forcing
function a such that

(7) F(z,p) > V(p) + a(||lx —u*|,p) for every x € X and p € L.

Conversely, let V be finite on L and F(-,p*) be lower semicontinuous at uv* € X. If (7)
holds with a forcing function «, then problem (p*) is well-posed.

PROOF. Let problem (p*) be well-posed with solution u*. Consider
a(t,p) = inf{F(z,p) = V(p) : [t —u"|| =t}, peL.
Let t,,, pn, be as in (6). Then there exists a sequence z,, € X such that
||$n - U*H = tn, 0< a(tnapn) < F(xnapn) - V(pn) < O‘(tnapn) + 1/”

hence x,, is an asymptotically minimizing sequence corresponding to p,,. Well-posedness
yields x,, — u*, whence t,, — 0, thus « is forcing. Conversely, assume (7). Let p, — p*
and x,, be asymptotically minimizing corresponding to p,,. Then by (7)

lim sup ||z, — u*||, pn) <0
hence z,, — u* and by semicontinuity
V(p®) = liminf F(zn,p") = F(u",p"),

as required. [
The best estimate in (7) is obtained making use of the modulus of well-posedness

B(t,s) =inf{F(z,p) = V(p):z € X, pe L, |z—a*[|=t, |lp—p*[ = s}
and
a(t,p) = B(t, [lp — p*Il)
(compare with the modulus of Tikhonov well-posedness, [13, p. 7]). Often, in a given

optimization problem, the modulus is quite difficult to obtain, and we must rely on
estimates making use of a suitable forcing function, as shown in the sequel. Given a
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forcing function «, consider

(8) w(p) =sup{t > 0:at,p) <0}, pelL.

Since « is forcing, w is finite for p sufficiently near to p* (otherwise we could find sequences
P — P, t, — 400 such that limsup a(t,,p,) < 0.)

Theorem 4.2 Problem (p*) is well-conditioned if argmin(p) # @ for every p € L and
the following conditions hold:

there exist a forcing function o fulfilling (7)
(9) and a constant K > 0 such that

wp) < Klp—p*l, pelL,
where w is defined by (8).
PROOF. Let m(p) € argmin(p),p € L. Then by (7), a(||m(p) — u*||,p) < 0 hence by

9) |Im(p) — uv*|| < w(p) < K||p — p*|| so that well-conditioning follows (with condition
number < K). O

Example 4.1 uniformly convex functions under linear perturbations. Let X be reflexive
and f be continuous and uniformly convex with modulus ¢ of uniform convexity, i.e.

(10) flte+ (1 =t)y] <tf(z) + (1 =) f(y) — t(1 = D)e([lz = yl])

for every x,y and ¢ € (0,1), with ¢ > 0 a given forcing function (as defined in [13, p.
5]). Without restriction we assume that ¢ is continuous and increasing ([13, p. 10]). Let
P = X* be the dual space of X and fix a ball L C X* with center 0 = p*. Let

F(z,p) = f(z) — (p,z), z€X, peX"
Since F(-,p) is again uniformly convex and continuous, there exists a global minimizer
m(p) = argmin(p),p € L, see [14].
Proposition 4.1 Problem (0) is well-posed if

(11) ltim_&nf ©(t)/t is a positive real number or+ oo.
—T 00

Problem (0) is well-conditioned if (11) holds and

there exists K > 0 such that

(12) sup{t > 0: p(t) < ts} < Ks for sufficiently small s > 0.

PROOF. From (10) with u* = m(0)

F@) 2 fu) + (1= Dg(lz —wl)v e X,0<t <1,

hence

(13) fl@) = f(u®) + o(lle — )

which means that problem (p*) is Tikhonov well-posed. By [15, th.3.8], we get
fW) z flm(p)] + (p,u” — m(p)) + o (|[u” —m(p)l)

since p € df[m(p)]. Hence by (13)

(14) F(z,p) 2 V(p) + {p,v" — ) + ¢(|lz — u™[)) = V(p) + a([|z — v, p)
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where

(15) a(t,p) =¢(t) —tlpll, t=0, pelL,
and « is forcing by (11). Indeed, let p, — 0 and ¢, > 0 be such that limsup(p(t,) —
tnllpnll) < 0. Then ¢, is bounded, otherwise for a subsequence t,, — +o0 and lim sup p(t,)/t, <
0, against (11). Well-posedness then follows from Theorem 4.1. Well-conditioning follows
from Theorem 4.2. O

The particular case of a strongly convex function f has ¢(t) > 62 for some 6 > 0.
Then Proposition 4.1 applies, yielding a condition number ¢ < 1/6. A better estimate of
the condition number, making specific use of strong convexity, yields ¢ < 1/26 (as well
known, see e.g [4, prop.5.7]).

The approach followed in this example is based on obtaining a forcing function
o (fulfilling (14)) based on an estimate of the modulus of Tikhonov well-posedness of
problem (p*). This approach will be extended in Section 6 to mathematical programming
problems.

A further link between well-posedness and well-conditioning can be obtained as fol-
lows. Suppose that uv* = argmin(p*),

(16) argmin(p) £ 0, pe L,
and consider, for any selection m(p) € argmin(p),p € L,

¢(m) = limsup [[m(p) — m(p")ll/llp — p"Il;
p—Pp

k(matap) = mf{F(x,p) - V(p) HES X, ||$7m(p)H :t}’ tz Oa pE L.

The condition ¢(m) < +o0o can be viewed as a weak form of well-conditioning of problem
(p*). Well-conditioning as defined in Section 2 by (5) means that sup{c(m) : m(p) €
argmin(p) for every p € L} < +o0.

Theorem 4.3 Let (16) hold. If k(m,-,-) is forcing and c(m) < +oo for some selection
m, then problem (p*) is well-posed. Conversely, if problem (p*) is well-posed and c(m) <
+oo for some m, then k(m,-,-) is forcing.

Proor. Let p, — p* and x, be asymptotically minimizing coresponding to p,.
Then k(m,pn, |xn — m(py)|]) — 0 hence ||z, — m(pn)|| — 0. Since ¢(m) < 400 we
have m(p,) — u* yielding x,, — u*, whence well-posedness. Conversely , let ¢, >
0,pn — p*, k(m,tn,pn) — 0 and m(p) € arg min (p),p € L. Let 2, € X be such that
[n —m(pn)| = tn and

F(xnypn) < V(pn) + k(m7tn7pn) + 1/77/-

Then x, is asymptotically minimizing corresponding to p,, hence x, — u* by well-
posedness. Moreover |m(p,) — u*|| < (constant) ||p, — p*|| — 0 hence t, — 0 as
required. [

A sufficient condition to both well-posedness and well-conditioning, making use of
the approximate solutions to problem (p), is obtained as follows. Let V' (p) be finite, and
write

e —argmin(p) = {u € X : F(u,p) < V(p) + €},
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v(e,p) = sup{[ju” —z[|/[lp—p*|| :p € P, p# p*, & € e — argmin(p)}.

Proposition 4.2 If limsup ~7(e,p) < +oo and problem (p*) is Tikhonov well-posed,
(e,p)—(0,p*)
then problem (p*) is well-posed and well-conditioned.

PROOF. For every selection m(p) € argmin(p),p € L we have

[m(p) = u*|/lp—p"l| < v(e;p), €>0,
whence well-conditioning. Now let p, — p* and x, be asymptotically minimizing
corresponding to p,. Then there exists a positive sequence ¢, — 0 such that x, €
€n, — argmin(p, ). Let p,, # p* for every sufficiently large n. Then

||7.L* _ xn” < (COHStant) ||pn - p*Ha

hence x, — u*. If otherwise p,, = p* for infinitely many n, a subsequence fulfills z, €
€n, — argmin(p*) yielding x,, — u* by Tikhonov well-posedness. The previous argument
shows that the original sequence x,, converges toward u*, yielding well-posedness. [

Example 4.2 The assumption of Proposition 4.2 is not necessary for well-posed-
ness. Let F(x,p) = |lnz| + plz — 1l,p > 0 = p*. Then m(p) = 1 for
every p, hence well-conditioning. Moreover problem (p*) is well-posed, however

—€

e — argmin(p) = [, ¢7],

and y(e,p) > e (e — 1) /p.

5 An approach by epidistance

Here we link Tikhonov well-posedness of problem (p*) with well-conditioning under any
perturbation which is Lipschitz stable at p* with respect to the epigra-
phical distance. We make use of the stability results of Lipschitz type in [4]. Fol-
lowing concepts introduced in [16] (see also [4]) , for a given p > 0 denote by d,(g,h)
the p-epi-distance between two extended real-valued functions g, h defined on X. We
shall consider Tikhonov well-posed problems (X, f) with an associate forcing function
a = a(t) > 0 (independent of p). Consider

o*(t) = inf{a(s) + |t —s|:s >0}, t>0.
Lemma 5.1 If « is forcing, then o* is.

PROOF. Let t, > 0 be such that a*(t,) — 0. Then for some sequences s,, > 0 we have
a(sn) < 1/n+a*(t,) — 0 hence s, — 0, moreover |t, — $,| < 1/n+ a*(t,) — 0, whence
t, — 0. O

If problem (p*) is Tikhonov well-posed, then there exists a forcing function oz > 0
such that

(17) f@) 2 fw) + oz —ur), zeX
([13, th. 12 p. 6]).
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Theorem 5.1 Let problem (p*) be Tikhonov well-posed with « fulfilling (17) and argmin(p) #
@, p € L. Then problem (p*) is well-conditioned provided the following hold:

there exists A > 0 such that

(18) sup{t > 0:a*(t) < s} < As, s> 0;
(19) argmin(p) and V(p) are uniformly bounded on L;
(20) for every sufficiently large p > 0 there exists K > 0 such that

dplf, F(,p)l < K|p—p*ll, pe€L.

PROOF. By (19), it follows from [4, th.3.8] that
a*([lu” =m(p)ll) < 4d,[Tf, TF(-p)]
for every sufficiently large p; here
(Tg)(x) = g(x +u") — f(u®).

Then by (18)
(21) [u® —m(p)|| < 4Ad,[Tf, TF(,p)].
Elementary computations show that

dp(Tf7 TF(,p)] < do’[f7 F(7p)]

where o = p + [u*]| + |f(u)]. Then by (21) [lu* — m(p)|| < 4AK|jp — p*|| yielding
well-conditioning. I

Well-posedness in the form of convergence of bounded asymptotically minimizing
sequences requires weaker conditions than those of Theorem 5.1, as follows.

Theorem 5.2 Let p, — p* and x, be an asymptotically minimizing sequence corre-
sponding to p, such that x, and F(py,x,) are bounded. Then x, — u* provided that the
following hold:

(22) problem (p*) is Tikhonov well-posed;
(23) dy[f, F(-,p)] = 0 as p — p* for every p sufficiently large .

PROOF. Denote by epih the epigraph of h : X — R U {+oc}. By (23), there exists a
sequence u, € X such that

(24) |2n — unll + |F(@n, pn) — f(un)] — 0.
Then
V(p*) S f(un) - F(wnapn) + F(wnapn) - V(pn) + V(pn)
yielding
(25) V(p*) < liminf V(p,).

For sufficiently large p > 0 one has dist[(u*, V(p*)), epiF (-, pn)] < e[(epif),, epiF (-, pn)],
where dist[(z, a), (y,b)] = max{||z — y||,|a — b|} for z,y in X,a,b in R, e denotes the
Hausdorff excess within the normed space X x R, and (epi), denotes the intersection of
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epif with the closed ball of center 0 and radius p. By (23) there exists a sequence y,, € X
such that
lyn = v +[V(Pn) = F(yn, pn)| — 0.

Then, remembering (25), we see that V(p,) — V(p*), hence f(u,) — V(p*). Tikhonov
well-posedness yields u,, — u*, and by (24) we get z, — uv*. O

6 Application to mathematical programming

Stability properties and well-conditioned behavior of mathematical programming prob-
lems are of the utmost importance for theoretical and practical reasons, as well known.
In this section we take X a real Hilbert space and consider global optimization prob-
lems with more specific structure than previously treated. In addition to p* and the
unperturbed objective function f, we are given a multifunction

G:L—X

with nonempty values, modeling the perturbations acting on the feasible set G(p*). Then
we take

F(z,p) = f(z) + ind [G(p),z].
Consider the excess
(26) elG(p), G(p*)] = sup{dist[z,G(p")] : 2 € G(p)}, p€EL.

In the next result we extend the approach of Example 4.1, Section 4. We obtain explicitly
a forcing function « as in (7) in terms of an estimate of the modulus of Tikhonov well-
posedness of problem p*, of the excess defined by (26) and the value function. From
such explicit estimates, sufficient conditions for well-conditioning can be derived. The

modulus of Tikhonov well-posedness of problem (p*) (see [13, p.7]), given by
B(t) = inf{f(z) — f(u") : x € G(p*), |z —u*|| = t},£ = 0,

is called superquadratic if there exists (2 > 0 such that
(27) B(t) > Qt?, t> 0 sufficiently small .
Condition (27) is sometimes referred to as the growth condition of order 2.

Among the several results dealing with Lipschitz stability of perturbed minimizers,
hence well-conditioning, obtained as a consequence of constraint qualification and second-
order optimality conditions , we mention [17, 18, 19, 20, 21, 22, 23, 24, 25]. The approach

presented in this section is however different, and independent of such conditions (see
also [26]).

Theorem 6.1 Problem (p*) is wellposed if G(p*) is closed and the following conditions
hold:

(28) f s Lipschitz on G(L);

(29) V' is upper semicontinuous at p*;
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(30) ¢(p) = €[G(p), G(p")] — 0 as p — p;
(31) problem (p*) is Tikhonov well-posed with a superquadratic modulus.
In such a case,
(32) a(t,p) = Q> = 2Qt + H)(p(p) + [lp — p*[)) + V(") = V(p)
is a forcing function verifying (7), where Q is given by (27) and H is a Lipschitz constant
of f.
PROOF. For every p # p* and x € G(p) there exists y € G(p*) such that
[z =yl < @(p) +llp — p*ll = B(p) say .

Then by (28) and (31) we get

f@) = fly) —Hllz =yl = V") +Qlly —u'|| — Hllz — yl| =

> V(") +Qllz —u*|I” = 3(p)(2Q)|x — u*|| + H).

Hence V (p) is finite, p € L, and « given by (32) fulfills (7). The proof will be ended, by
Theorem 4.1, showing that « is forcing. Let p,, — p*,t, > 0 be such that

(33) lim sup a(pp, tn) < 0.
If for some subsequence t, — +00, then for every € > 0 we obtain
Qtn <2Q9(pn) + [V(pn) =V (P)]/tn + €
for every sufficiently large n. However by (30) this contradicts (29). It follows that ¢,, is

bounded. For a subsequence we have t,, — T, T > 0. Then by (33) we get T' = 0 because
of (29), (30) and this shows that « is forcing. O

Remark 6.1 If more realistic estimates are available such that
(34) o(p) <V (p*) = V(p), e1(p) > ¢p) if p # p"
and liminf §(p) > 0, v1(p) — 0 as p — p*,
then
(35) ai(t,p) = Q* — (2Qt + H)p1(p) + d(p)
is still a forcing function verifying (7).
A sufficient condition for upper semicontinuity (29) (equivalent to continuity under
the assumptions of Theorem 6.1) can be obtained making use of the gap
O(p,e) = inf{||ly — z|| : y € € — argmin(p*), z € G(p)}, e >0, p € L.

Theorem 6.2 Let f be Lipschitz on G(L). Then V is upper semicontinuous at p* pro-
vided

(36) O(p,e) — 0 as p — p* for every sufficiently small € > 0.

PROOF. For every z € F(p) and y € € — argmin(p*) we get, for some constant H
V") +ez fly) =2 f(z) —Hlly— = =2 V(p) — Hlly — 2|.
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By taking the infimum with respect to y and z we obtain
Vip) < HO(p,€) + e+ V(p").

The conclusion comes from (36). O

Example 6.1 Condition (36) with ¢ = 0 only does not imply upper semicontinuity of
V. Consider N =2,0<p<1,p*=1/2,

G(p) = {(p,x2) € R? : p* + (z2 — 1)* < 1 or 4p? + 4(w2 + 1)? < 1}, f(21,22) = 22.

Remark 6.2 If (36) holds and € — argmin(p) is bounded, € > 0, then the conclusion of
Theorem 6.1 obtains assuming f Lipschitz continuous on bounded sets. Indeed, in the
proof we can assume 6(p, €) bounded for sufficiently small || p—p*||, and ||z—y|| < g+6(p, €)
for any prescribed ¢ > 0. Then ||z —u*|| < V(p*)+e+h[g+6(p, €)], hence the conclusion.

Theorem 6.3 Problem (p*) is well-posed and well-conditioned if the assumptions of
Theorem 6.1 hold, 6 and p1 are as in (34), and there exist constants Q1, Q2 such that

e1(p) < Qullpll,  d(p) < Hor(p) < 6(p) + Q2|lpll*.

The elementary proof is based on applying Theorem 4.2 with «; given by (35).

*

Remark 6.3 Let g1, ..., gas be given real-valued functions on X = RV let P = RM p* =
0 and let z € G(p) iff

g1(z) <p1,-,gm(T) < pur-

This model encompasses the standard mathematical programming problem with data
perturbations, see [27, p.33-34], (and well-posedness is invariant under the corresponding
transformation allowing us to consider only constraint perturba-
tions). Then (27) holds provided f,gi1,- -, gy are smooth and the weak version [27,
p-29] of the second order sufficient conditions are fulfilled at u* (compare [28, th.5.2],
[29] and the previously listed references for more general results). However, Theorems
6.1 and 6.3 can be applied without requiring second-order conditions or smooth data.

Example 6.2 Let X = R?, f(x1,22) = 21, and o € G(p) iff

—af < ay < af +pPe P,
p > 0 = p*. Here problem (p*) does not fulfill the Mangasarian-Fromovitz const-
raint qualification condition, and the second order sufficient conditions fail. Theo-

rems 6.1 and 6.3 apply with Q = 1,6(p) = 0,1(p) = 2p?. Problem (p*) is both well-
posed and well-conditioned.

Example 6.3 Let X = R27f(9€179€2) =z, and x € G(P) iff
—vr1—p <z < /o1 +p,

0< =z <1,p>0 = p*. Problem’s data are not smooth. Theorem 6.1 applies with
Q =1/2,6(p) = 0,p1(p) = p. Problem (p*) is well-conditioned since for every m(p) €
argmin(p) we have |m(p) — u*| < p (however Theorem 6.3 is not applicable).
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7 Local well-posedness

The notion of local solution of mathematical programming problems is often more sig-
nificant than the global one. Accordingly, a definition of local well-posedness, similar
to the one of [10], is appropriate in such a context. We limit ourselves to the finite-
dimensional framework of Section 6 with X = RY. Problem (p*) will be called locally
Tikhonov well-posed with local solution u* if u* € G(p*), there exists a closed ball B in
X centered at u* of positive radius such that f(u*) = inf f[B N G(p*)], and =, — u*
for every sequence x,, € BN G(p*) verifying f(x,) — inf f[B N G(p*)]. The point u* is
a strict local minimizer of problem (p*) if u* € G(p*) and there exists a closed ball B
centered at u* such that

f(y) > f(u*) for every y # u* and y € G(p*) N B.

Proposition 7.1 Let G(p*) be closed and [ be lower semicontinuous. Then problem
(p*) is locally Tikhonov well-posed with solution u* iff u* is a strict local minimizer.

The proof is trivial (owing to compactness of G(p*) N B and semicontinuity).
Problem (p*) is locally well-posed by perturbations with solution u* if u* € G(p*)
and there exists a ball B centered at u*, with positive radius, such that

u* is the unique global minimizer of f on G(p*) N B;
V(p) = inf{f(z) : « € G(p) N B} is finite, p € L;

pn — p*in P and z,, € G(p,) N B fulfilling f(z,) — V(pn) — 0 imply z,, — u*.

This definition is slightly more general than that of [10] (uniqueness of local minimizers
is not required here).

Proposition 7.2 Let f be continuous and G be continuous at p* with closed values. If
f has a strict local minimizer on G(p*), then problem (p*) is locally well-posed.

PRrROOF. By assumption, G is simultaneously upper and lower semicontinuous at p*, and
(G(p*) N B, f) is Tikhonov well-posed for some compact ball B centered at u*, [13, th.
23 p.13]. Then the conclusion will follow by checking the assumptions required by [7,
prop. 5.1 p. 234]. Let

F(z,p) = f(z)+ ind (G(p) N B,x),V(p) = inf{F(x,p) : x € RN}.
We need to show that

(37) F is lower semicontinuous at R™ x {p*};

(38) V is finite on L and upper semicontinuous at {p*}.

To prove (37) let ,, — x in RN, p,, — p*. If 2, & G(p,)N B for every n sufficiently large,
then liminf F(xy,, p,) = +00 > F(z,p*). If 2, € G(p,) N B for infinitely many n, then
for some subsequence y,, of x, we have liminf F(z,,p,) = lim F(y,,p,) = lim f(y,).
By compactness, for some further subsequence y, — = € G(p*) N B because of upper
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semicontinuity. Then liminf F(x,,p,) > f(x) = F(z,p*), proving (37). The (local)
value function V fulfills (38) by standard results, [13, prop.2 p. 335]. O

We plan to show elsewhere that Theorems 6.1 and 6.3 may be extended to the local

setting again making use of quantitative estimates.
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