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Abstract. “Windowed-Wigner” representations, denoted by Wigψ and
Wig∗ψ, were introduced in [2] in connection with uncertainty principles and
interferences problems. In this paper we present a more precise analysis of
their behavior obtaining an estimate of the L2-norm of interferences of cou-
ples of “model” signals. We further define a suitable functional framework
for the associated operators and show that they form a class of pseudo-
differential operators which define a natural “path” between the multiplica-
tion, Weyl and Fourier multipliers operators.

1. Introduction. Given a signal, i.e. a function f(x) of the time variable
x (or more generally x ∈ Rd), its energy distributions with respect to time and
to frequency are classically represented by |f(x)|2 and |f̂(ω)|2 respectively. Here
f is supposed to be in some space of Fourier transformable functions. On the
other hand a function, or a distribution, Qf(x, ω) defined on the time-frequency
plane Rd

x×Rd
ω which can be, in some sense, interpreted as the energy distribution

of f with respect to both time and frequency is called “time-frequency distribu-
tion” or “representation”. Some of the most natural requirements which connect
Qf(x, ω) with |f(x)|2 and |f̂(ω)|2, and allow Q to be considered a time-frequency
representation, are the following (see e.g. [4]):
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– Positivity: Q(f)(x, ω) ≥ 0 for all x, ω;

– No spreading effect: supp f ⊆ I for an interval I ⊆ Rd implies ΠxsuppQ(f) ⊆ I
(Πx orthogonal projection Rd

x × Rd
ω → Rd

x) and, analogously, supp f̂ ⊆ J
implies ΠωsuppQ(f) ⊆ J ;

– Marginal distributions condition:

∫

Rd

Q(f)(x, ω)dx = |f̂(ω)|2 and
∫

Rd

Q(f)(x, ω)dω = |f(x)|2.

The uncertainty principle for time-frequency analysis makes however these
requirements incompatible (see [6], [7], [14]) and this justifies the development
of a wide literature about time-frequency distributions which approximate these
requirements in some sense. For an extensive discussion on these issues as well
as a for a review of the most used representations see e.g. [5], [7], [8], [9], [10].

A wide class of quadratic time-frequency representations is the so-called Co-

hen Class.

A generic representation in the Cohen class is of the form

(1) Q(f, g) = σ ∗ Wig(f, g),

where σ ∈ S ′(R2d) is the “kernel” and Wig is the classical Wigner transform

Wig(f, g)(x, ω) =

∫
e−2πitωf

(
x+

t

2

)
g

(
x−

t

2

)
dt,

f, g ∈ S(Rd) (other functional settings for Q can be considered as well, by choos-
ing f, g, σ in such a way that (1) makes sense). Of course the Wigner itself
belongs to the Cohen class, for σ = δ, and it plays actually a central role in the
development of time-frequency analysis.

For the Wigner transform both the support properties in time and in fre-
quency are satisfied but, as a counterpart, some problems concerning the in-
terferences arise. Indeed it shows an interference, or “ghost frequency”, in the
“middle” of any couple of “true” frequencies in the time-frequency plane. Many
attempts have been made in order to find representations with better behavior
to this respect. The Cohen class itself is a way to filter the Wigner transform,
and for some choices of the kernel σ interferences can be considerably reduced
(see [1], [3], [5]). In the lines of these works, in [2], two possible modifications of
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the Wigner distribution were considered in dependence on a window function (or
distribution) ψ(t). The two windowed-Wigner representations are defined as

(2) Wigψ(f, g)(x, ω) :=

∫

Rd

e−2πitωψ(t)f

(
x+

t

2

)
g

(
x−

t

2

)
dt

and

(3) Wig∗ψ(f, g)(x, ω) :=

∫

Rd

e2πitxψ(t)f̂

(
ω +

t

2

)
ĝ

(
ω −

t

2

)
dt,

with f, g, ψ ∈ S(Rd) (see [2] for the definition in a distributional framework).
It is clear that ψ acts as a window in time for Wigψ, whereas the classical

formula

Wig(f, g)(x, ω) = Wig(f̂ , ĝ)(ω,−x)

shows that it acts as a window in frequency for Wig∗ψ.
Actually the following relation between the two windowed-Wigner represen-

tations holds

Wig∗ψ(f, g)(x, ω) = Wigψ(f̂ , ĝ)(ω,−x).

In [2] we proved that Wigψ and Wig∗ψ define subclasses of the Cohen class “join-
ing” in suitable sense the Wigner representation with the two basic one-variable
representations |f(x)|2 and |f̂(ω)|2. We studied there marginal properties, bound-
edness properties and various forms of uncertainty principles. For what interfer-
ences are concerned, we restricted however our study essentially to the behavior
of Wigψ, proving that no interferences appear for classes of signals whose support
satisfies suitable conditions.

The purpose of this paper is to study in more detail the problem of inter-
ferences (section 2) and, secondly, the type of operators which turn out to be
naturally associated with the two windowed-Wigner transforms (section 3).

We present in section 2 a detailed study of signals with two frequencies in two
different time intervals, which represent a model of the behavior of more general
signals. We give in particular a precise L2-estimate of the interferences, showing
that they go to zero in suitable situations.

In section 3 we obtain explicit expressions for the pseudo-differential oper-
ators associated with Wigψ and Wig∗ψ. We show that they turn out to be a
sort of ”windowed” Weyl operators which approach the multipliers and Fourier
multiplier operators respectively as the window function approaches the Dirac
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distribution. As “middle point” of this “path” of operators we find again the
Weyl transform. Finally we state for these operators natural boundeness and
Hilbert-Schmidt properties in the Lp functional setting.

2. Reduction of interference for Wig∗

ψ
. We want now to give some

properties concerning reduction of interference for the representations Wigψ and
Wig∗ψ. We have already pointed out, cf. [1], [2], that for particular choices of
ψ the form Wigψ does not show ghosts at all. In particular, consider a signal f
with two frequencies ω0 and ω1 in two disjoint time intervals, say [k, k + α] and
[h, h + β], with k + α < h. We can write f in the form

(4) f = f1 + f2

with f1(t) = e2πitω0χ[k,k+α](t) and f2(t) = e2πitω1χ[h,h+β](t), where χ[a,b] is the
characteristic function of the interval [a, b]. Considering the classical Wigner
transform, since Wig(f, g) = Wig(g, f) we have

(5) Wig(f, f) = Wig(f1, f1) + 2ℜWig(f1, f2) + Wig(f2, f2).

The interference (“ghost”) showed by the Wigner transform in the middle of the
two frequencies is represented by the cross term 2ℜWig(f1, f2). We want now to
consider Wigψ(f, f), where ψ = χ[−R,R]. We have the following result.

Proposition 1. Suppose that

(6) h− k ≥ max{2α, β − α}.

Then there exists R > 0 such that:

(i)

χ[−R,R](t)fj(x+ t/2)fj(x− t/2) = fj(x+ t/2)fj(x− t/2), j = 1, 2,

for every t, x ∈ R and for j = 1, 2;

(ii)

χ[−R,R](t)f1(x+ t/2)f2(x− t/2) ≡ 0.

The previous Proposition is proved in [2], where a geometrical interpretation is
also given. By simple computations we have that for every f, g ∈ L2

Wigψ(g, f) = Wig
ψ̃
(f, g),
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where ψ̃(t) := ψ(−t). In particular, setting ψR = χ[−R,R] we have

WigψR
(g, f) = WigψR

(f, g).

Then, for f as in (4), if (6) is satisfied and we choose R as in Proposition 1 we
have

WigψR
(f, f) = WigψR

(f1, f1) + 2ℜWigψR
(f1, f2) + WigψR

(f2, f2)

= Wig(f1, f1) + Wig(f2, f2).
(7)

Comparing (7) with (5) we observe that the effect of Wigψ on this class of signals
is to delete the cross terms, and in fact the graphical representation of Wigψ(f, f)
shows no ghost frequencies.

Let us consider now the representation Wig∗ψ. Since

Wig∗ψ(f, g)(x, ω) = Wigψ(f̂ , ĝ)(ω,−x)

we could apply Proposition 1 on the Fourier transform side, and conclude that
for a signal f whose Fourier transform has support contained in two disjoint
intervals [k, k + α] and [h, h + β], if condition (6) is satisfied then we can choose
ψR = χ[−R,R] with a suitable R such that Wig∗ψR

shows no interferences at the
Fourier transform level. On the other hand, the requirement that the Fourier
transform f̂ of the signal f is compactly supported means that the signal itself
cannot have compact support in time, and then it is not a “true” signal. Observe
that condition (6) means that the silence between the two components f1 and
f2 of the signal has to be sufficiently large (larger than their existence time).
We want to consider a similar situation for frequencies. We then analyze the
representation Wig∗ψ applied to a (compactly supported) signal containing two
different frequencies, that we shall fix sufficiently far away from one another. Let
us define

fσ(t) = e2πiσtχ[a,b](t),

for a fixed σ ∈ R and 0 < a < b. We have the following result.

Theorem 1. Fix ψR(t) = χ[−R,R](t), R > 0.

(i) Let f and g be two L2 functions; we then have

(8) ‖Wig∗ψR
(f, g)‖L2 → ‖Wig(f, g)‖L2

as R→ +∞. Furthermore ‖Wig∗ψR
(fσ, fσ)‖L2 and ‖Wig(fσ, fσ)‖L2 do not

depend on σ.



102 P. Boggiatto, E. Carypis, A. Oliaro

(ii) Consider two frequencies ω0, ω1 ∈ R, i.e. fω0
(t) = e2πiω0tχ[a,b](t) and

fω1
(t) = e2πiω1tχ[a,b](t). For fixed R,

‖Wig∗ψR
(fω0

, fω1
)‖L2 → 0

as |ω0 − ω1| → +∞. Moreover, for |ω0 − ω1| > R we have

(9) ‖Wig∗ψR
(fω0

, fω1
)‖L2 ≤

√
4R(b− a)

π
√

(ω0 − ω1)2 −R2

Remark. Let us consider a signal f of the form

f = fω0
+ fω1

.

As in (7) we have

Wig∗ψR
(f, f) = Wig∗ψR

(fω0
, fω0

) + 2ℜWig∗ψR
(fω0

, fω1
) + Wig∗ψR

(fω1
, fω1

);

then in view of Theorem 1, (i), we can choose R sufficiently large in such a way
that the energy (represented by the L2 norm) of the auto terms Wig∗ψR

(fωj
, fωj

),
j = 1, 2 becomes as near as we want to ‖Wig(fωj

, fωj
)‖L2 (that represents the

energy of the corresponding components fωj
since the Wigner transform satisfies

conservation of energy). Observe that this R does not depend on ωj, j = 1, 2.
Then if the frequencies ω0 and ω1 are sufficiently far away from one another, from
Theorem 1, (ii), the energy of the cross term 2ℜWig∗ψR

(fω0
, fω1

) (that represents
the interference) can be made arbitrarily small.

P r o o f o f T h e o r em 1. (i) For f, g ∈ L2(R) we have that

χ[−R,R](t)f̂(ω + t/2)ĝ(ω − t/2) ∈ L2(R2);

then, since

Wig∗ψR
(f, g) = F−1

t→x

(
χ[−R,R](t)f̂(ω + t/2)ĝ(ω − t/2)

)
,

we have that

‖Wig∗ψR
(f, g)‖2

L2 = ‖χ[−R,R](t)f̂(ω + t/2)ĝ(ω − t/2)‖2
L2

=

∫
χ[−R,R](t)

∣∣∣f̂(ω + t/2)ĝ(ω − t/2)
∣∣∣
2
dt dω.

(10)
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Since χ[−R,R](t)
∣∣∣f̂(ω + t/2)ĝ(ω − t/2)

∣∣∣
2

tends to
∣∣∣f̂(ω + t/2)ĝ(ω − t/2)

∣∣∣
2

almost

everywhere and

χ[−R,R](t)
∣∣∣f̂(ω + t/2)ĝ(ω − t/2)

∣∣∣
2
≤
∣∣∣f̂(ω + t/2)ĝ(ω − t/2)

∣∣∣
2
∈ L1(R2)

for every R > 0, from the Dominated Convergence Theorem we have that

(11) ‖Wig∗ψR
(f, g)‖2

L2 −→ ‖f̂(ω + t/2)ĝ(ω − t/2)‖2
L2 .

Now,

‖f̂(ω + t/2)ĝ(ω − t/2)‖L2 = ‖F−1
t→x

(
f̂(ω + t/2)ĝ(ω − t/2)

)
‖L2

= ‖Wig(ĝ, f̂)(ω,−x)‖L2 = ‖Wig(f, g)‖L2 ,

(12)

and so from (11) and (12) we have the thesis. Now we want to prove the indepen-
dence of the norms ‖Wig∗ψR

(fσ, fσ)‖L2 and ‖Wig(fσ, fσ)‖L2 of σ. We indicate
translation and modulation by τa and Mb, respectively, i.e., for real parameters
a and b and an L2 function f we set τaf(x) = f(x−a) and Mbf(x) = e2πibxf(x).
Then we can write fσ(s) = Mσχ[a,b](s). From (10) and the standard properties
of the Fourier transform we have that

‖Wig∗ψR
(fσ, fσ)‖

2
L2 =

∫
χ[−R,R](t)

∣∣∣(τσχ̂[a,b])(ω + t/2)(τσ χ̂[a,b])(ω − t/2)
∣∣∣
2
dt dω

=

∫
χ[−R,R](t)

∣∣∣χ̂[a,b](ω − σ + t/2)χ̂[a,b](ω − σ − t/2)
∣∣∣
2
dt dω

=

∫
χ[−R,R](t)

∣∣∣χ̂[a,b](ω + t/2)χ̂[a,b](ω − t/2)
∣∣∣
2
dt dω,

and so ‖Wig∗ψR
(fσ, fσ)‖L2 does not depend on σ. The same conclusion can be

proved in a similar way for ‖Wig(fσ, fσ)‖L2 .

Observe that (8) is true also for functions f, g ∈ L2(Rd), d ≥ 1, taking a cut-off
function of the form ψ = ψR = χ[−R,R]d .

(ii) From (10) we have that

‖Wig∗ψR
(fω0

, fω1
)‖2
L2 = ‖ψR(t)f̂ω0

(ω + t/2)f̂ω1
(ω − t/2)‖2

L2

=

∫ R

−R

∫ +∞

−∞

∣∣∣f̂ω0
(ω + t/2)f̂ω1

(ω − t/2)
∣∣∣
2

dω dt.
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So, by the change of variables ω + t/2 = ξ and using the standard properties of
the Fourier transform we get

‖Wig∗ψR
(fω0

, fω1
)‖2
L2 =

∫ R

−R

∫ +∞

−∞

∣∣∣f̂ω0
(ξ)
(
τtf̂ω1

)
(ξ)
∣∣∣
2

dξ dt

=

∫ R

−R

∫ +∞

−∞

∣∣∣∣f̂ω0
(ξ)M̂tfω1

(ξ)

∣∣∣∣
2

dξ dt

=

∫ R

−R

∥∥∥∥Fs→ξ

(
fω0

∗ (M̃tfω1
)

)∥∥∥∥
2

L2(Rξ)

dt

=

∫ R

−R

∫ +∞

−∞

∣∣∣∣
(
fω0

∗ M̃tfω1

)
(s)

∣∣∣∣
2

ds dt,

(13)

where we have indicated g̃(x) = g(−x). Now, we compute

(
fω0

∗ M̃tfω1

)
(s) = e2πiω0s

∫
e−2πiy(ω0−ω1−t)χ[a,b](−y)χ[a,b](s− y) dy.

Observe that

χ[a,b](−y)χ[a,b](s− y) =






0 if s /∈ [a− b, b− a]

χ[−b,s−a](y) if s ∈ [a− b, 0]

χ[s−b,−a](y) if s ∈ [0, b − a]

We then have that for s /∈ [a − b, b − a],

(
fω0

∗ M̃tfω1

)
(s) ≡ 0. Concerning the

other cases, we recall that for every α < β we have

∫ β

α
e−2πiyz dy = e−πi(α+β)z(β − α) sinc(π(β − α)z),

where sincx is the continuous extension on R of the function sinx
x . Then, for

s ∈ [a− b, 0] we get

(
fω0

∗ M̃tfω1

)
(s) = e2πiω0s

∫ s−a

−b
e−2πiy(ω0−ω1−t) dy

= e2πiω0se−πi(s−a−b)(ω0−ω1−t)(s − a+ b) sinc(π(s − a+ b)(ω0 − ω1 − t)).
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Reasoning in an analogous way for s ∈ [0, b−a] and using that sinc(x) is an even
function we have
(
fω0

∗ M̃tfω1

)
(s) = e2πiω0se−πi(s−a−b)(ω0−ω1−t)ϕ(s) sinc(πϕ(s)(t − ω0 + ω1)),

where

ϕ(s) =






0 if s /∈ [a− b, b− a]

s− a+ b if s ∈ [a− b, 0]

−s− a+ b if s ∈ [0, b− a]

We then have from (13) that

‖Wig∗ψR
(fω0

, fω1
)‖2
L2 =

∫ R

−R

∫ +∞

−∞

|ϕ(s) sinc(πϕ(s)(t− ω0 + ω1))|
2 ds dt

=

∫ R−(ω0−ω1)

−R−(ω0−ω1)

∫ b−a

a−b
|ϕ(s) sinc(πϕ(s)y)|2 ds dy,

(14)

since the function ϕ(s) is compactly supported. Observe that |ϕ(s) sinc(πϕ(s)y)|2 ∈
L1(R2), and given an arbitrary compact set K ⊂ R2 the set [a− b, b−a]× [−R−
(ω0−ω1), R−(ω0−ω1)] does not intersect K for |ω0−ω1| sufficiently large. Then
we conclude that

‖Wig∗ψR
(fω0

, fω1
)‖2
L2 → 0

as |ω0 − ω1| → +∞.

The estimate (9) follows from (14). We have in fact that for |ω0 − ω1| > R the
L2 norm of Wig∗ψR

(fω0
, fω1

) can be estimated as follows:

‖Wig∗ψR
(fω0

, fω1
)‖L2 ≤

(∫ R−(ω0−ω1)

−R−(ω0−ω1)

∫ b−a

a−b

1

π2y2
ds dy

)1/2

=

√
4R(b− a)

π
√

(ω0 − ω1)2 −R2
.

�
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3. Operators associated with the windowed-Wigner distribu-
tions Wigψ and Wig∗

ψ
. The Weyl calculus and time-frequency representa-

tions are deeply connected, see for instance [11], [12], [13], [15] for general refer-
ences. In particular we recall here from [3] a result concerning the existence of
a bijection between pseudo-differential operators and bounded conjugate linear
forms.

Proposition 2. Let E,E1, E2 be three Banach spaces and suppose E2 to be

reflexive.

(i) Let ϕ : E2 × E1 → E be a bounded skew-linear map. Then there exists a

unique linear and bounded map a ∈ E∗ → Ta ∈ B(E1, E
∗

2) such that for

every v ∈ E2

(15) (Tau, v) = (a, ϕv,u), ∀u ∈ E1.

(ii) Suppose now that the map a ∈ E∗ → Ta ∈ B(E1, E
∗

2) is continuous and

linear; then (15) defines a skew-linear bounded map ϕ : E2 × E1 → E.

Observe that the dual spaces considered are taken as conjugate-linear functional
spaces, therefore the notation (·, ·) extends the scalar product of L2.

According to this Proposition, we want to focalize on the operators associated
to the windowed-Wigner distributions Wigψ and Wig∗ψ. More precisely, writing
T aψ and Uaψ for the operators associated to Wigψ and Wig∗ψ respectively, we have
the following result.

Proposition 3. For every f, g ∈ L2(Rd) and a ∈ S(Rd) we have:

(16) (T aψf, g) = (a,Wigψ(g, f)),

with

(17) T aψf(u) =

∫

R2d

a

(
u+ v

2
, ω

)
ψ(u− v)e2πi(u−v)ωf(v)dvdω.

Concerning the Wig∗ψ we have that

(Uaψf, g) = (a,Wig∗ψ(g, f)),

with

Uaψf(m) =

∫

R3d

a(x, y)
̂

ψ

(
x−

s+m

2

)
e2πiy(m−s)f(s)dsdydx.
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P r o o f. We first consider the case of the Wigψ. To get the expression of
the operators associated with the Wigψ we start by writing explicitly the inner
product (a,Wigψ(g, f)) then, using suitable changes of variables, we obtain

∫

R2d

a(x, ω)

(∫
e−2πiωtψ(t)g

(
x+

t

2

)
f

(
x−

t

2

)
dt

)
dxdω =

2d
∫

R2d

a(x, ω)

(∫

Rd

e−2πiω(2u−2x)ψ(2u − 2x)g(u)f(2x − u)du

)
dxdω =

2d
∫

R3d

a(x, ω)ψ(2u − 2x)e2πi(2u−2x)ωg(u)f(2x− u)dudxdω =

∫

R3d

a

(
u+ v

2
, ω

)
ψ(u− v)e2πi(u−v)ωf(v)g(u)dudvdω.

Then

T aψf(u) =

∫

R2d

a

(
u+ v

2
, ω

)
ψ(u− v)e2πi(u−v)ωf(v)dvdω,

is the operator we were looking for.

Consider now the case of the Wig∗ψ. As before we start by writing explicitely

the scalar product (a,Wig∗ψ(ĝ, f̂)):

∫

R2d

a(x, ω)

(∫
e2πixtψ(t)ĝ

(
ω +

t

2

)
f̂

(
ω −

t

2

)
dt

)
dxdω =

2d
∫

R2d

a(x, ω)

(∫

Rd

e2πix(2u−2ω)ψ(2u− 2ω)ĝ(u)f̂ (2ω − u)du

)
dxdω =

2d
∫

R3d

a(x, ω)ψ(2u − 2ω)e−2πix(2u−2ω)ĝ(u)f̂(2ω − u)dudxdω =

∫

R3d

a

(
x,
u+ v

2

)
ψ(u− v)e−2πix(u−v)f̂(v)ĝ(u)dudvdx.
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Now, in order to highlight the inner product between the operator and the func-
tion g, it is necessary to write out the expressions of f̂ and ĝ; then

∫

R5d

a

(
x,
u+ v

2

)
ψ(u− v)e−2πix(u−v)e−2πivse2πiumf(s)g(m)dmdsdudvdx =

∫

R5d

a(x, y)ψ(z)e−2πixze−2πi(y− z
2
)se2πi(y+

z
2
)mf(s)g(m)dmdsdydzdx =

∫

R5d

a(x, y)
̂

ψ

(
x−

s+m

2

)
e2πiy(m−s)f(s)g(m)dmdsdydx,

Finally we have that

Uaψf(m) =

∫

R3d

a(x, y)
̂

ψ

(
x−

s+m

2

)
e2πiy(m−s)f(s)dsdydx,

is the operator associated with the Wig∗ψ. �

Observe that it is possible to rewrite the operator associated with the Wig∗ψ in
order to point out the correspondance with the Weyl operators. More precisely,
given a ∈ S(R2d), we consider b(x, ω) = a(−ω, x). Then

(a,Wig∗ψ(g, f)) = (b(ω,−x),Wig ψ(ĝ, f̂)(ω,−x)) =

∫

R2d

b(ω,−x)

(∫
e2πixtψ(t)ĝ

(
ω +

t

2

)
f̂

(
ω −

t

2

)
dt

)
dxdω =

2d
∫

R3d

b (ω,−x)ψ(2u − 2ω)e−2πi(2u−2ω)xĝ(u)f̂(2ω − u)dudxdω =

∫

R3d

b

(
u+ v

2
,−x

)
ψ(u− v)e2πi(u−v)(−x)f̂(v)ĝ(u)dudvdx,

and, writing explicitly ĝ(u), we have that the associated operator is given by the
expression

(18) Uaψf(u) =

∫

R3d

b

(
u+ v

2
, x

)
e2πi(u−v)xe2πisuψ(u− v)f̂(v)dvdxds,

where b(x, ω) = a(−ω, x).
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Remark. Obviously, if ψ ≡ 1 then:

f ∈ S(Rd) → T af(u) =

∫

R2d

a

(
u+ v

2
, ω

)
e2πi(u−v)ωf(v)dvdω ∈ S(Rd),

which is the Weyl pseudo-differential operator.

Remark. Take ψ = δ. Concerning the Wigψ we have that the associated
operator

T aψf(u) =

∫
a(v, ω)f(v)dω = A(v)f(v)

is the multiplication operator with A(v) =
∫
a(v, ω)dω. Concerning the Wig∗ψ,

from (18) choosing ψ = δ, it follows

Uaψf(s) =

∫

R2d

b(u, x)e2πisuf̂(u)dxdu =

∫

Rd

B(u)e2πisuf̂(u)du,

which is the Fourier multiplier operator associated to the Wig∗ψ with B(u) =∫
b(u, x)dx.

Remark. From [2] we know that

Wig
(∗)
ψ : L2(Rd) × L2(Rd) → L2(R2d),

are continuous maps. Then, from Proposition 2, we have that

(19) a ∈ L2(R2d) → T aψ ∈ B(L2(Rd), L2(Rd))

and

(20) a ∈ L2(R2d) → Uaψ ∈ B(L2(Rd), L2(Rd))

are continuous maps. Moreover, since the map Wigψ : Lp(Rd) × Lp
′

(Rd) →

L∞(R2d) is well defined as bounded map (for more details see Proposition 2 in
[2]), and since L1(R2d) ⊂

(
L∞(R2d)

)
∗

, it follows also that a ∈ L1(R2d) → T aψ ∈

B(Lp(Rd), Lp(Rd)) is continuous for 1 < p <∞.

In the L2 case we can prove that the corresponding operator is Hilbert-
Schmidt. Formally we have the following result.
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Proposition 4. Let a(x, ω) be a function such that

a(x, ω) = a1(x)a2(ω).

(a) Consider the case of the Wigψ. Let a1 ∈ L2(Rd), a2 ∈ Lr(Rd) and ψ ∈

Lq(Rd), with
1

r
−

1

q
=

1

2
. Then the operator T aψ ∈ B(L2(Rd), L2(Rd)), with

T aψ defined as in (17), is Hilbert-Schmidt, in particular it is bounded and

compact.

(b) Consider now the case of the Wig∗ψ. Let a2 ∈ L2(Rd), a1 ∈ Lr(Rd) and

ψ ∈ Lq(Rd), with
1

r
−

1

q
=

1

2
. Then the operator Uaψ ∈ B(L2(Rd), L2(Rd)),

with Uaψ defined as in (18), is Hilbert-Schmidt.

P r o o f. We prove (a), the second one is similar. Consider the operator T aψ
defined in (17) and integrate with respect to ω. Then we have

T aψf(u) =

∫

Rd

a1

(
u+ v

2

)
ǎ2(u− v)ψ(u − v)f(v)dv,

where ǎ2 is the inverse Fourier transform of a2. It follows immediately that the

kernel K(u, v) = a1

(
u+ v

2

)
ǎ2(u−v)ψ(u − v) lies in the space L2 if a1 ∈ L2(Rd)

and ǎ2ψ ∈ L2. But, using the generalized Hölder inequality, we can choose

ǎ2 ∈ Lp and ψ ∈ Lq, with
1

p
+

1

q
=

1

2
and p > 2. Hence we can take a2 ∈ Lr with

the condition
1

r
−

1

q
=

1

2
. Therefore the result is a consequence of the well-known

fact that integral operators with Schwartz kernel in L2 are Hilbert-Schmidt. �

It is possible to generalize this fact to functions a(x, ω) by using the density
of the tensor products of functions in the space L2,r(R2d), for fixed windows

ψ ∈ Lq(Rd), with the condition
1

r
−

1

q
=

1

2
.

We finally observe that Proposition 4 gives a stronger result on the operators
T aψ and Uaψ in the L2 case for fixed symbols a, but it does not prove the continuity
of the quantizations (19) and (20), which has been deduced from Proposition 2.
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