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Abstract. For boundary value problems for degenerate-elliptic equations

of second order in Ω ⊂ R
n there are cases when a closed surface Γ exists,

dividing Ω into two subdomains in such a manner that two new correct

boundary value problems can be formulated without introducing new boundary

conditions. Such surfaces are called interior boundaries. Some theoretical

results regarding the connections between the solutions of the original problem

and the two new problems are given. Some numerical experiments using the

finite elements method are carried out trying to visualize the effects of the

presence of such interior boundary when n = 2. Also some more precise

study of the solutions in the case n = 2 is presented.

1. Introduction. After the paper by Fichera [4], boundary value problems
for linear second order partial differential equations

(1) Lu = −
n

∑

i,j=1

aij(x)uxixj
+

n
∑

i=1

bi(x)uxi
+ c(x)u− f(x) = 0 in Ω
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with non negative characteristic form

(2)
n

∑

i,j=1

aijξiξj ≥ 0 for x ∈ Ω, ξ ∈ R
n \ {0}

are well understood in the sense that boundary conditions should not be imposed
on the whole boundary but only on the non characteristic boundary Σ3 = {x ∈
∂Ω : aijνiνj > 0} where ν is the interior unit normal to ∂Ω and part of the
characteristic boundary, i.e. {x ∈ ∂Ω : aijνiνj = 0}. This last part is determined
by means of the following function

(3) β∂Ω,ν(x) =
n

∑

k=1



bk(x) +
n

∑

j=1

akj
xj

(x)



 νk on ∂Ω

the rest of the boundary being subdivided as follows Σ2 = {x ∈ ∂Ω\Σ3 : β(x) >
0}, Σ1 = {x ∈ ∂Ω\Σ3 : β(x) < 0} and Σ0 = {x ∈ ∂Ω\Σ3 : β(x) = 0}. Boundary
conditions must be imposed on Σ2 ∪ Σ3 only.

Let us note however that a function βΓ,ν(x) of the form (3) can be defined
for any smooth two-sided surface Γ with chosen unit normal ν(x). The equation
could have characteristic surfaces Γ inside the domain Ω. So the question arises
what happens if inside Ω there is a smooth characteristic surface Γ that isolates
a subdomain Ω1 and furthermore we have βΓ,ν(x) = 0, i.e.

(4) aij(x)νi(x)νj(x) = 0 and βΓ,ν(x) = 0 on Γ

The behaviour of the solutions in situations of this type were recently studied
in some detail by the authors in [1]. In order to briefly state the results some
additional hypotheses and definitions are in order.

Let Ω ⊂ R
n, n ≥ 2 be a bounded region with a piecewise smooth boundary

and Γ ⊂ Ω is smooth closed surface which divides Ω in two subdomains Ω1 and
Ω2 such that Ω = Γ∪Ω1 ∪Ω2, Γ ⊂ ∂Ω1 and Γ ⊂ ∂Ω2. Suppose for simplicity and
definiteness that ∂Ω ⊂ ∂Ω1. Moreover let

(5) aij , bi, c, f, ψ,Γ ∈ C∞

and

(6)

n
∑

i,j=1

aij(x)ξiξj = 0, ξ ∈ R
n \ {0}
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only for x ∈ Γ and ξ = ν(x).

Also the notion of generalized mean curvature introduced by J. Serrin [9],
which connects the geometric curvatures of C2 smooth surfaces with coefficients
of partial differential operators studied in their neighbourhood is needed.

If λτ (x), κτ (x) (τ = 1, . . . , n−1) are the principal directions and the principal
curvatures of Γ at some point x ∈ Γ and ν(x) is the interior unit normal to Γ
(with respect to Ω1) then

HΓ(x) =
n−1
∑

τ=1

λτAλτκτ + νAνH

is the generalized mean curvature of Γ at the point x. Here A = {aij(x)} and
H = (κ1 + · · · + κn−1)/(n − 1) is the ordinary mean curvature of Γ.

Since here Γ is characteristic we have νAν = 0 on Γ end hence HΓ(x) =
λτAλτκτ .

Under the above assumptions applying appropriate change of variables an
equation on Γ only

(7) −
n−1
∑

σ,τ=1

Aτσ(x)uλτ λσ
+

n−1
∑

τ=1

Bτ (x)uλτ
+ c(x)u = f(x)

is obtained. The hypotheses that the original equation degenerates on Γ in the
normal direction only and the sufficient regularity of the coefficients imply that
this is an elliptic equation on Γ that has unique classical solution u0(x) on the
smooth manifold Γ.

The results in [1] now can be summarized as follows

Let HΓ = 0 for every x ∈ Γ. Then there exist viscosity solutions u1 ∈ C(Ω1),
u2 ∈ C(Ω2) of the problems in Ω1 and Ω2) which satisfy the boundary data
u0(x) on Γ, i.e. u1(x) = u2(x) = u0(x) on Γ. Moreover, the viscosity solution
U(x) = u1(x) in Ω1, U(x) = u2(x) in Ω2 of the problem in Ω is Hölder continuous
on Γ with exponent λ ∈ (0, 1) depending on ‖aij‖C2(Ω), ‖b

i‖C1(Ω), c0 and Γ.

For the definitions of viscosity solutions of the equation and the Dirichlet
problem the reader is refered to [3] (see also Def. 2.1 and Def. 2.2 in [1]).

2. Visualization. Motivated by the above result in the present section we
propose a model equation in dimension 2, adapted for numerical computations,
in order to visualize the effects of the presence of interior boundary. Although the
results are only qualitative (no convergence or approximation estimates are sought
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or given), they seem to give some insight into the problem. The calculations are
carried out by straight application (without justifications) of the finite elements
method to the model equation. The plots obtained however not only are in
accordance of the previously mentioned theoretical results, but also suggest that
some of the conditions imposed in the theoretical study may be redundant.

Finite elements Methods are applied to equations in divergence form so lets
consider a general second equation of the form

Lu ≡ −

n
∑

i,j=1

∂

∂xi
(aij(x)uxixj

) +

m
∑

i=1

ai(x)uxi
+ c(x)u = f(x)

After some elementary calculations we get that for a smooth surface Γ with an
unit normal vector ν the corresponding Fichera function (see (3)) in this case is

βΓ,ν(x) =
n

∑

k=1

akνk.

Now the following model operator is defined:

Lu =
∂

∂x

(

(x2 + y2 − 1)2
∂u

∂x

)

+
∂

∂y

(

(x2 + y2 − 1)2
∂u

∂y

)

+
∂

∂x

(

y2∂u

∂x

)

−
∂

∂x

(

xy
∂u

∂y

)

−
∂

∂y

(

xy
∂u

∂x

)

+
∂

∂y

(

x2∂u

∂y

)

− y
∂u

∂x
+ x

∂u

∂y

in the square Q = {(x, y)| − 2 < x < 2,−2 < y < 2} or in the disk B with radius
2. It is easily seen that the unite circle is an interior boundary. In the above
definition the first line is elliptic degenerating only on the unit circle, the second
is parabolic first order along the rays from the origin. the third line should give
the desired values of the function βΓ,ν(x) on the unit circle. If we now make polar
change of coordinates the equation becomes

(ρ2 − 1)2∆u+ 4(ρ2 − 1)ρ
∂u

∂ρ
+
∂2u

∂φ2
+
∂u

∂φ

On the unique circle ρ = 1 the equation on becomes

(8)
∂2u

∂φ2
+
∂u

∂φ
+ cu− f(φ) = 0
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(corresponding to (7)) with some 2π-periodic function f of φ and we must look for
periodic solutions in place of the function u0 mentioned above. We consider the
simplest cases f = 1 and f = x (f(φ) = cosφ in polar coordinates) and periodic
solutions can be easily found with elementary means. Let D be the unit disk. We
remind that the theory is valid for functions c(x) ≥ c0 > 0, and the bigger the
constant c0, the more regular is the solution.

The plots below are scaled in the direction of the z-axis.

Lu+ 2u = 1 in Q, Q \D and D

Lu+ 25u = 1 in Q, Q \D and D

Lu+ 2u = x in Q, Q \D and D
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Lu+ 25u = x in Q, Q \D and D

3. The two dimensional case. In the two-dimensional case it is possible
to visualize the abstract results. It is also possible to obtain more sharp ones,
for example with respect to the behaviour of the solutions in a neighbourhood of
Γ. One can study the question whether the global viscosity solution is Lipshitz
continuous or its gradient blows up on Γ. Below a rather simple case is considered
in order to demonstrate the main ideas.

Suppose now n = 2 and Ω is a simply connected region in R
2 including the unit

circle Γ = {x ∈ R
2; |x| = 1}. Let L be a two-dimensional operator corresponding

to (1) which degenerates on Γ only, i.e. the two dimensional equivalent of (4)
holds. Let Ω2 = B = {x ∈ R

2; |x| < 1} and Ω1 = Ω \B. According to the results
of our previous paper [1] the following boundary value problems

(9) Lu = f in Ω2 = B

(10) Lu = f in Ω1, u = ψ on ∂Ω

are uniquely solvable in the sense of viscosity solutions.

Proposition 1. Suppose (2), (5) and (4) hold. Then the boundary value
problem (9), resp. (10) has a unique viscosity solution u1 ∈ C(Ω1), resp u2 ∈
C(Ω2). Moreover u1(x) = u2(x) on Γ and the function U(x) = u1(x) in Ω1 and
U(x) = u2(x) in Ω2 is the unique viscosity solution of (1) Lu = f in Ω satisfying
u = ψ on ∂Ω.

Let us make a polar change of variables

z1 =
√

x2
1 + x2

2, z2 = arg(x1 + ix2)
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in the domain {x ∈ R
2; 1− δ < |x| < 1+ δ} ⊂ Ω. (Some additional hypotheses on

δ will be made later). If Pw is the operator in the new variables, then

Pw = −
2

∑

i,j=1

Aij(z)wzizj
+

2
∑

i=1

Bi(z)wzi
+ C(z)w − F (z) = 0

in G, where G = {z ∈ R
2; 1 − δ < z1 < 1 + δ, 0 ≤ z2 < 2π}.

Note that Γ is transformed in the line l = {z ∈ R
2; z1 = 1, 0 ≤ z2 < 2π} with

zero generalized curvature Hl. Hence from Th. 5.1 in [1], it follows that

w1(1, z2) = w2(1, z2) = w0(z),

where w1, w2 are the images of u1, u2 in G1 = G ∩ {z1 > 1}, G2 = G ∩ {z1 < 1}
and w0 is the unique 2π-periodic solution of the equation (analogue of (8))

−A22(1, z2)(w0)z2z2
+B1(1, z2)(w0)z2

+ C(1, z2)w0 − F (1, z2) = 0

(see Ch 2, § 2.9 in [11]). Moreover the viscosity solution w(x) is Hölder continuous
with exponent α close to 0 (see Th. 5.1 in [1]).

Theorem 1. Suppose (1), (2), (5) and (6). If

(11) B1
z1

(1, z2) + C(1, z2) > 0

for every 0 ≤ z2 < 2π. Then w1(x) is Lipshitz continuous in a neighbourhood of l
in G1 and therefore u1(x) is Lipshitz continuous in a neighbourhood of Γ in Ω1.

Remark 1. From (6) and (5) the viscosity solution u ∈ C∞(Ω\Γ) (see [5], [6],
[7], [8]), while the regularity in a neighbourhood of Γ remains an open question.

P r o o f. Consider in G1 the barrier function h(z) = N(z1 − 1) + w0(z2)
Suppose δ is sufficiently small so that

(12)
B1(z)

z − 1
+ C(z) ≥ k > 0

in G1. The existence of such δ follows from (11). Indeed, the Fichera function on
l is

βl(z2) = B1(1, z2) +A11
z1

(1, z2) +A12
z2

(1, z2) = 0

for 0 ≤ z2 < 2π. The equality A11(1, z2) = 0 holds since l is a characteristic. Now
A11(z1, z2) ≥ 0 implies that the coefficient A11 has a minimum for z1 = 1, whence
A11

z1
(1, z2) = 0. The inequality (2) implies

(A12(1, z2))
2 ≤ A11(1, z2)A

22(1, z2) = 0



254 G. Chobanov, N. Kutev

hence A12
z2

(1, z2) = 0. Now it follows that B1(1, z2) = 0 and (11) implies (12) for
δ sufficiently small. Let N be so large that

Nδ + w0(z2) > w1(1 + δ, z2)

for 0 ≤ z2 < 2π. Simple computations give

Ph = N [B1(z) + C(z)(z1 − 1)] + F (1, z2) − F (z)

≥ N(z1 − 1)k − (z1 − 1) sup |∇F | ≥ 0

for every z ∈ G1 when Nk ≥ sup |∇F |.

Since h(1, z2) = 0, h(1+δ, z2) > w1(1+δ, z2) and h(z) is a 2π-periodic function
of z2, it follows from the comparison principle, Th 3.2 and Lemma 4.2 in [1] , that
w1(z) ≤ h(z) in G1. Hence w1(z) − w0(z) ≤ Nk|z1 − 1| in G1.

Similar argument involving the barrier function h1(z) = −N(z1 − 1) +w0(z2)
gives an estimate from below, so now |w1(z) − w0(z)| ≤ Nk|z1 − 1| in G1. This
proves Theorem 1.

Remark 2. Similar argument holds also in G2 using obvious modifications of
the barrier functions.

Remark 3. The condition (11) is probably close also to the necessary one for
it can be proved using barrier functions of the form w0(z1)+ (z2 − 1)α, 0 < α < 1
and α close to 1, that if

B1
z1

(1, z2) + C(1, z2) < 0

then for special choice of the right-hand side f we have gradient blow up in
transversal to Γ direction.

4. Comments. Another numerical example is produced by

∂2u

∂x2
+

∂

∂y
y2 ∂u

∂y
− cu

on Q = {(x, y)| − 1 < x < 1,−1 < y < 1} with the line y = 0 as interior
boundary. Hence the solution must satisfy on y = 0 the boundary value problem
u′′ − cu − f(x, 0) = 0 for − 1 < x < 1 with the appropriate values for u(−1)
and u(1). The next two plots illustrate this situation.
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In the visualization above was used the integrated environment FreeFem++-cs
(http://www.ann.jussieu.fr/∼lehyaric/ffcs/index.htm) providing an intui-
tive graphical interface to FreeFem++ (http://www.freefem.org/ff++/) on a
machine running Fedora 14.

The condition c(x) ≥ c0 > 0 is essential in all the theoretical considerations
above. On the other hand direct application of the finite element method gives
some results when this is not the case. Some of the plots are given here. These
probably should be further studied.

Lu− u = 1 and Lu− 10u = x in B
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