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Abstract. The modified method of simplest equation is useful tool for
obtaining exact and approximate solutions of nonlinear PDEs. These so-
lutions are constructed on the basis of solutions of more simple equations
called simplest equations. In this paper we study the role of the simplest
equation for the application of the modified method of simplest equation.
As simplest equation we discuss the elliptic equation.
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1. Introduction. The nonlinear PDEs are widely used for modelling nat-
ural and social phenomena [1, 2, 3]. Many of these model systems are large and
are accompanied by complex boundary conditions. For such systems one can
obtain numerical solutions. But for more simple model NPDEs it is of great in-
terest to obtain exact analytic solutions. Such exact solutions describe important
classes of waves and processes in the investigated systems. Moreover the exact
solutions can be used to test the computer programs for obtaining numerical so-
lutions of the corresponding nonlinear PDEs. Finally the exact solutions can be
useful as initial conditions in the process of obtaining of numerical solutions.

Because of all above an important research area is connected to obtaining
exact analytic or approximate numerical solutions of nonlinear PDEs. The in-
verse scattering transform [4] and the method of Hirota [5] are famous methods
for obtaining exact soliton solutions of various NPDEs. In addition in the last
several years several approaches for obtaining exact special solutions of nonlin-
ear PDE have been developed (see for examples [6, 7, 8]). By means of such
methods numerous exact solutions of many equations have been obtained such
as for an example the Kuramoto-Shivasinsky equation, etc. [7, 9, 10, 11]. The
discussion below will be concentrated around the modified method of simplest
equation for obtaining exact and approximate solutions of nonlinear PDEs. The
method of simplest equation has been developed by Kudryashov [12]–[15] on the
basis of a procedure analogous to the first step of the test for the Painleve prop-
erty. In the modified method of the simplest equation [7, 8] this procedure is
substituted by the concept for the balance equation. Modified method of sim-
plest equation is already successfully applied for obtaining exact travelling wave
solutions of numerous nonlinear PDEs such as versions of generalised Kuramoto-
Sivashinsky equation, reaction–diffusion equation, reaction–telegraph equation
[7], [11] generalised Swift-Hohenberg equation and generalised Rayleigh equa-
tion [8], generalised Fisher equation, generalised Huxley equation, generalised
Degasperis-Processi equation and b-equation[16].

In 2004 Kudryashov [17] used the equation for the Weierstrass elliptic function
as building block to find a number of differential equations with exact solutions.
Below we follow this idea and use the elliptic equation as building block to find
classes of equations with exact solutions.

2. The modified method of simplest equation and the role of
the simplest equation. Let us have a partial differential equation and let by
means of an appropriate ansatz this equation be reduced to a nonlinear ordinary
differential equation



On modified method of simplest equation 259

(2.1) P

(

F (ξ),
dF

dξ
,
d2F

dξ2
, . . .

)

= 0

For large class of equations from the kind (2.1) exact solution can be constructed
as finite series

(2.2) F (ξ) =

ν1
∑

µ=−ν

pµ[Φ(ξ)]µ

where ν > 0, µ > 0, pµ are parameters and Φ(ξ) is a solution of some ordinary
differential equation referred to as the simplest equation. The simplest equation
is of lesser order than (2.1) and we know the general solution of the simplest
equation or we know at least exact analytic particular solution(s) of the simplest
equation [12, 13].

The modified method of simplest equation can be applied to nonlinear partial
differential equations of the kind

(2.3) E

(

∂ω1F

∂xω1
,
∂ω2F

∂tω2
,

∂ω3F

∂xω4∂tω5

)

= G(F )

where ω3 = ω4 + ω5 and we use the following short notations:
∂ω1F

∂xω1

denotes the

set of derivatives
∂ω1F

∂xω1

=

(

∂F

∂x
,
∂2F

∂x2
,
∂F 3

∂x3
, . . .

)

;
∂ω2F

∂tω2

denotes the set of deriva-

tives
∂ω2F

∂tω2
=

(

∂F

∂t
,
∂2F

∂t2
,
∂F 3

∂t3
, . . .

)

and
∂ω3F

∂xω4∂tω5
denotes the set of derivatives

∂ω3F

∂xω4∂tω5
=

(

∂2F

∂x∂t
, ∂3F

∂x2∂t
,

∂F 3

∂x∂t2
, . . .

)

. G(F ) is a polynomial of F . E can be an

arbitrary sum of products of arbitrary number of its arguments. Each argument
in each product can have arbitrary power. Each of the products can be multi-
plied by a function of F which can be polynomial of F . The application of the
modified method of simplest equation is based on the following steps. By means
of an appropriate ansatz (for an example the travelling-wave ansatz) the solved
class of NPDE of kind (2.3) is reduced to a class of nonlinear ODEs of the kind
(2.1). The finite-series solution (2.2) is substituted in (2.1) and as a result a poly-
nomial of Φ(ξ) is obtained. Eq. (2.2) is a solution of (2.1) if all coefficients of the
obtained polynomial of Φ(ξ) are equal to 0. By means of a balance equation one
ensures that there are at least two terms in the coefficient of the highest power of
Φ(ξ). The balance equation gives a relationship between the parameters of the
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solved class of equations and the parameters of the solution. The application of
the balance equation and the equalising the coefficients of the polynomial of Φ(ξ)
to 0 leads to a system of nonlinear relationships among the parameters of the
solution and the parameters of the solved class of equation. Each solution of the
obtained system of nonlinear algebraic equations leads to a solution a nonlinear
PDE from the investigated class of nonlinear PDEs.

Below in order to investigate the role of simplest equation we shall be in-
terested in exact solutions F (ξ) of nonlinear ODEs which can be obtained on
the basis of given simplest equation. After this we shall determine what class of
nonlinear PDEs can be reduced to the corresponding nonlinear ODE by means
of the travelling-wave ansatz F (x, t) = F (ξ) = F (x− vt). In more detail we start

from a simplest equation of the kind Q

(

Φ,
dΦ

dξ
,
d2Φ

dξ2
, . . . ,

dnΦ

dξn

)

= 0 and on the

basis of a solution of this simplest equation we construct the function F = F (Φ)
which has to be a solution of the more complicated equation

(2.4) P

(

F,
dF

dξ
,
d2F

dξ2
, . . . ,

dnF

dξn

)

= 0

Now the problem can be defined as follows. We choose Q and F (Φ(ξ)). The
question is what are the nonlinear ODEs which have this function F (ξ) as a
solution? Let us assume that we have obtained a class of such nonlinear ODEs.
Then we easily can restore the class of nonlinear PDEs that are reduced by means
of the travelling-wave ansatz to this class of ODEs. In such a way we can find the
class of nonlinear PDEs that have corresponding function F (ξ) as travelling-wave
solution.

In this paper we shall investigate a sub-problem of the general problem. First
of all we shall discuss simplest equations of the kind

(2.5)

(

dΦ

dξ

)ǫ

=

σ
∑

π=0

γπ[Φ(ξ)]π

and second the function F (Φ) will be assumed polynomial of Φ

(2.6) F (Φ) =

ν
∑

µ=0

pµ[Φ(ξ)]µ

As it can be seen from Eq. (2.4) a very important role is played by the
derivatives of F with respect to ξ. The first several of these derivatives are

(2.7)
dF

dξ
=

dF

dΦ

dΦ

dξ
;

d2F

dξ2
=

d2F

dΦ2

(

dΦ

dξ

)2

+
dF

dΦ

d2Φ

dξ2
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(2.8)
d3F

dξ3
=

d3F

dΦ3

(

dΦ

dξ

)3

+ 3
d2F

dΦ2

dΦ

dξ

d2Φ

dξ2
+

dF

dΦ

d3Φ

dξ3

. . . . . . . . .

For different versions of the simplest equation (2.5) and for different forms of (2.6)
the relationships for the derivatives above will have different forms. If we choose
a simplest equation then we can construct a class of nonlinear ODEs which have
corresponding F (ξ) as solution. If we choose another simplest equation then we
obtain another class of nonlinear ODEs that have as solution the function F (ξ)
corresponding to the second simplest equation. Thus the choice of the simplest
equation determines the class of nonlinear ODEs that have F (ξ) as solution. And
the class of nonlinear ODE determines the class of nonlinear PDEs that can be
reduced to the corresponding class of nonlinear ODE by means of an appropriate
ansatz (the travelling-wave ansatz in our case).

3. Elliptic equation as simplest equation. The elliptic equation is

(3.1)

(

dΦ

dξ

)2

= aΦ4 + bΦ2 + c

where a, b and c are parameters. The elliptic functions of Jacobi [18] are among
the solutions of the elliptic equation.

For the case of the elliptic equation the derivatives of F (ξ) are as follows

(3.2)
dF

dξ
=
√

aΦ4 + bΦ2 + c
dF

dΦ

(3.3)
d2F

dξ2
= aΦ4

d2F

dΦ2
+ bΦ2

d2F

dΦ2
+ c

d2F

dΦ2
+ 2aΦ3

dF

dΦ
+ bΦ

dF

dΦ

d3F

dξ3
=

d3F

dΦ3
(aΦ4 + bΦ2 + c)

√

aΦ4 + bΦ2 + c +
d2F

dΦ2
(6aΦ3 +

3bΦ)
√

aΦ4 + bφ2 + c +
dF

dΦ
(6aΦ2 + b)

√

aΦ4 + bΦ2 + c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3.4)

For illustrative purposes we shall discuss the following simple equation

(3.5) A(F )

(

dF

dξ

)m

= B(F )
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where A(F ) and B(F ) are polynomial of F as follows

(3.6) A(F ) =

Q
∑

q=0

αqF
q; B(F ) =

R
∑

r=0

βrF
r

The substitution of (3.6), (2.6), and (3.1) in (3.5) leads to an equation containing
polynomial of Φ and (

√

aΦ4 + bΦ2 + c)m. Because of this m must be even, i.e.,
m = 2n. Following the modified method of simplest equation we have to balance
the largest powers of the polynomial from the left-hand side and from the right-
hand side of the equation 3.5. As a result we obtain the following balance equation

(3.7) n =
ν(R − Q)

2(ν + 1)

Now we have many cases (we note that n,R,Q must be integers). For example let

ν = 1. Then F = p0 + p1Φ; n =
R − Q

4
. Let ν = 2. Then F = p0 + p1Φ + p2Φ

2;

n =
R − Q

3
. Let ν = 3. Then F = p0 + p1Φ + p2Φ

2 + p3Φ
3; n =

3(R − Q)

8
etc.

Let us now discuss the case ν = 2. F (ξ) and the balance equation have been
mentioned just above. We must have R = 4Q and then n = Q. The simplest
possibility is Q = 1. Then R = 4, n = 1 and m = 2. This corresponds to the
equation

(3.8) (α0 + α1F )

(

dF

dξ

)2

= β0 + β1F + β2F
2 + β3F

3 + β4F
4

where α0,1, β0,1,2,3,4 are parameters. The substitution of Eq.(3.2) in Eq. (3.8))
leads to the a system of 9 nonlinear relationships among the parameters of the
solution and the parameters of Eq. (3.8). The solution of this system can be
obtained for all values of the parameters α0,1, β0,1,2,3,4 but it is too large. In
order to illustrate the solution let us set α0 = α1 = 1; β3 = β4 = 1. One solution
of the system of nonlinear relationships for this case is

p0 =

[

18β2 − 18β1 + 2

(

− 162β1β2 + 12β3

2 + 81β2

1 + 81β2

2

)1/2]1/3

−

2β2

[

18β2 − 18β1 + 2

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3



On modified method of simplest equation 263

p1 = 0, p2 = 4a

b =
1

8

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3

2 + 81β2

1 + 81β2

2

)1/2]1/3

−

3

2

β2

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3

c =
1

48a

{

3β2+16

{

1

8

[

108β2−108β1+12

(

− 162β1β2+12β3

2+81β2

1+81β2

2

)1/2]1/3

−

3

2

β2

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3

}}

β0 = β1 − β2

(3.9)

and then the solution of the equation

(3.10) (1 + F )

(

dF

dξ

)2

= β1 − β2 + β1F + β2F
2 + F 3 + F 4

is

F (ξ) =

[

18β2 − 18β1 + 2

(

− 162β1β2 + 12β3

2 + 81β2

1 + 81β2

2

)1/2]1/3

−

2β2

[

18β2 − 18β1 + 2

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3
+

4aΦ(ξ)2(3.11)

where Φ(ξ) is solution of the elliptic equation

(

dΦ

dξ

)2

=
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aΦ4 +

{

1

8

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3

2 + 81β2

1 + 81β2

2

)1/2]1/3

−

3

2

β2

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3

}

Φ2 +

1

48a

{

3β2+16

{

1

8

[

108β2−108β1+12

(

−162β1β2+12β3

2+81β2

1+81β2

2

)1/2]1/3

−

3

2

β2

[

108β2 − 108β1 + 12

(

− 162β1β2 + 12β3
2

+ 81β2
1

+ 81β2
2

)1/2]1/3

}}

(3.12)

The following notes are in order here. First of all comparing (3.12) to the differen-
tial equation for the elliptic functions of Jacobi [18] we can easily write a solution
of Eq. (3.10) by means of one of these functions (for an example cn(x; k)). Tak-
ing into account that F (ξ) describes a travelling wave we have obtained exact
solutions of several nonlinear ODEs that can be reduced to (3.10). One example
for such equation is

(3.13) (1 + F )

(

∂F

∂x

)2

= β1 − β2 + β1F + β2F
2 + F 3 + F 4

4. Concluding remarks. In this paper we have discussed the role of the
simplest equation for the application of the modified method of simplest equation
for obtaining exact and approximate travelling-wave solutions of nonlinear PDEs.
The main idea of the study was that when we fix the simplest equation then for
each of the functions p0 + p1Φ(ξ); p0 + p1Φ(ξ) + p2[Φ(ξ)]2; . . . , constructed by
solution Φ(ξ) of the simplest equation there exists a class of NPDEs for which
the so constructed function is a travelling-wave solution. In this paper we have
studied parts of the corresponding classes of NPDEs by means of the following
algorithm: (1) Choose the simplest equation; (2) Construct a polynomial function
on the basis of a solution of the simplest equation; (3) Find the class of nonlinear
ODEs for which the mentioned above polynomial function is a solution; (4) Find
the class of nonlinear PDEs that can be reduced to the above class of nonlinear
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ODEs. In this paper we have discussed just one simplest equation: the elliptic
equation. The formulated research topic is promising as one can use numerous
ODEs as simplest equations and one can use different forms of the polynomial in
order to construct functions: p0 + p1Φ; p0 + p1Φ + p2Φ

2; p0 + p1Φ + p2Φ
2 + p3Φ

3,
. . . . And for each of these function one can obtain classes of nonlinear ODEs and
PDEs which have the corresponding function as a solution.
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