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EXISTENCE THEOREMS FOR NON-COOPERATIVE
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ABSTRACT. Existence of classical C2(Q2) () C(£2) solutions of non-cooperative
weakly coupled systems of elliptic second-order PDE is proved via the method
of sub- and super-solutions.

1. Introduction. Let 2 € R"™ be a bounded domain with smooth boundary
9. In this paper are considered weakly coupled linear elliptic systems of the form

(1) Lyu= f(z) in Q
and boundary data
(2) u() = g(x) on A%,

where Ly = L 4+ M, L is a matrix operator with null off-diagonal elements
L = diag (L1, Lo, ..., Ly), and matrix M = {mkl(x)},ivzzl Scalar operators

n n
Lkuk = — Z Dj (af”](:ﬁ)Dluk> + be(l‘)Dluk + Ckuk in Q)
1,7=1 =1

are supposed uniformly elliptic ones for £ = 1,2,..., N, i.e. there are constants
A, A > 0 such that

MeP <> ali(@)eig; < Al

ij=1
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for every k and any £ = (&1,...,&,) € R™.
Right-hand side f(z) is supposed a bounded vector-function, that is

(%) [fi@)] <C in Q

for every I = 1,..., N, where C' is a positive constant.
Coefficients ¢* and my, in (1) are supposed continuous in 2, and afj(x),
bE(x) € CH(Q) N C(Q). Assume in addition that for every k =1,..., N

2
n

3) > | 2 Diaila) +bF@) | L [eM p <
7=1

i=1 j=

holds for = € €, where b is a positive constant.

Hereafter by f~(x) = min(f(x),0) and f*(z) = max(f(z),0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrixes as well. For instance, we denote by M™ the

non-negative part of M, i.e. MT = {mjj(:c)}jvjzl

In this paper is employed the method of sub- and super-solutions in order
to prove the existence of a classical C?(2) () C(f2) solution of problem (1). A
key-point of the method is the validity of the comparison principle. Unlike the
cooperative systems, for non-cooperative ones there is no complete theory for
the validity of the comparison principle. In [1] are given some sufficient con-
ditions such that the comparison principle holds, which are recalled in section
“Comparison principle for non-cooperative linear elliptic systems” below.

We consider linear systems only for the sake of simplicity. The results hold
as well for quasi-linear weakly coupled elliptic systems

Q' (v) = —diva' (z,u!, Dut) + Fl(z,u', ..., u",Dul) = fi(z) in Q
ul(x) = g'(x) on O
for [ = 1,..., N, where the coefficients a!(x,u,p), F'(z,u,p), f'(z), ¢'(z) are

supposed to be at least measurable functions with respect to the x variable and
locally Lipschitz continuous on u and p.

2. Comparison principle for non-cooperative linear elliptic sys-
tems. Let us recall the following Theorem (Theorem 3 in [1]):
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Theorem 1. Let (1) be a weakly coupled elliptic system with irreducible co-

operative part of L% _. Then the comparison principle holds for the classical
solutions of system (1) if there is xg € Q such that
N
(4) )\+Zmzj(l‘0)>0 for j=1...,N
k=1
and
(5) )\—i—mjj(x)zo for every x €Q and j=1...,N

where X\ is the principal eigenvalue of the operator Ly,— in ).

The same result holds if the cooperative part of L% _ has structure with

Jordan cells on the main diagonal and zeroes otherwise (Theorem 4 in [1]).

Theorem 2. Assume m;; = 0 for i # j and (2) is satisfied. Then the
comparison principle holds for the classical C*(Q)(C(QY) solutions of system
(1) if there is zo € Q such that

N

(6) /\j—&—ngj(aco)>0 for every j=1...,N, and
k=1

(7) /\j—l—mjj(x)zo for every x €Q and j=1...,N,

where \; is the principal eigenvalue of Ej =Lj+m;; in Q.

Theorem 2 is formulated for diagonal matrix M ~, but the statement is valid
with obvious modification if M~ has Jordan cells on the main diagonal.

Finally (Theorem 5 in [1]), in case that the cooperative part M~ is triangular,
we have

Theorem 3. Assume the cooperative part M~ of system (1) is triangular,
e my; = 0 fori=1,...,N, j>1i. Then the comparison principle holds for the
classical C?(2) N C(Q) solutions of system (1), if there is e > 0 such that

N

(8) Aj — (1 — 51j)6 + Zm;&(wo) >0
k=1
forj=1...,N and some zg € Q and
9) /\j—(l—élj)s—&—mjj(x)zo for every x€Q and j=1...,N,

where \; is the principal eigenvalue of the operator L; + ms.
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3. Existence of classical solution. The first step of the method is ex-
istence of super- and sub-solution of system (1), (2). It is easy to check that
constant-vector (M, ..., M) is a super-solution for any constant M such that

where C'is the upper bound ]fl(m)] (see (x)).

Theorem 4. Suppose conditions (4), (5); (6), (7) or (8), (9) hold for system
(1), (2), according to the structure of matriz M, as well as (10). Assume v(x) is
a classical super-solution and w(z) is a a classical sub-solution of (1), (2). Then
there ezists a classical solution u(x) of the problem (1), (2) with null boundary
data.

Since the system (1) is a linear one, we assume in the following proof without
loss of generality that g(z) = 0.

Sketch of the proof. Let denote
n
Fk(:c,ul,...,uN):kai(x)ui+ckuk

1. Consider the sequence of vector - functions ug, u1,...,u, ..., where ug =
w(x) and u; € HE(Q) defines w41 by induction as a solution of the problem

( k
Z Di(afj(w)Djuyy) + Zb z)Dufyy + oufyy =
7] 1 =1

= fF) — FF@,ub, .. ul) +ouf in Q
with null boundary conditions
(12) uf,1(z) =0 on 9N

for every k=1,...,N.

Let denote the left-hand side of (11) by A*(z,u, o), and the right-hand side
~ by B¥(z,u,0), k=1,...,N.

The problem (11), (12) is reducible system and in fact decomposes to N
independent equations. Then Theorem 8.3 in [3] (page 348) is applicable, hence
these equations are solvable in C%%(£2) and

(13) Humcﬁ(ﬁ) <g¢
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8uf .
(14) <ec forevery i=1,...,n, v=1,...,m.
8951- Cﬁ(ﬁ
Furthermore uf) < ull <. < uﬂl < --- by the comparison principle.

The proof of uly < u} is trivial since ), is a sub-solution of (1), (2).

3. Obviously the inequality u;y1(x) < v(x) holds for every w1, since v(z) is
a super-solution of the same system (1), (2).

4. The sequence of vector-functions {u*} is monotonously increasing and
bounded from above in 2. Therefore there is a function u such that u*(x) — u(x)
point-wise in Q. Furthermore, (13) yields {u*} is uniformly equicontinuous in
Q) and {u*} < const, since uf(z) is Holder continuous and therefore |uf(z) —
uf(z0)] < e(|lz — x0/?) for every I = 1,...,N. By Arzela-Ascoli compactness

criterion there is a sub-sequence {uy;} that converges uniformly to u € C(2).
For convenience we denote {ug, } by {u*}.

Since u € C(Q2) and all functions {uy, } satisfy the null boundary conditions,
then u satisfies the boundary conditions as well.

The functions u* are Holder continuous with the same Holder constant, there-

fore u is Holder continuous as well with the same Holder constant, i.e. u € C?(€Q).
Since u;,1(x) is monotone and u(z) is continuous, then {(u¥)?} — w? in Q.
Then the Dominated Convergence Theorem (Theorem 5 at p.648 in [2]) yields
uF — u(z) in (L2(Q))N.
5. Analogously to the previous step, (14) yields { D;u*} is uniformly equicon-
tinuous in Q and {D;u*} < const. According to Arzela—Ascoli compactness

criterion there is sub-sequence {D;uy, } that converges uniformly to Dyu € C(€2).
For convenience we denote {uy; } by {u*}.

6. For every 0 < n(z) = (n'(2),...,n" (x)) € (Hy(Q)"

N N
/Q S b (2) Dyl Din(2) + 3 0 (@) Dul (@) + ol () | do =
ij=1 i=1

= /Q(fk(ac) — Fk(ac,u,{;, ... ,ukN) + Juf)nk(ac)dac

holds and for k — oo we obtain
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N N
/Q Z afj (2)Dju” Din* () + Z bE () DuFn®(x) | de =
ij=1 i=1

:/Q(fk(x)—Fk(x,ul,...,uN))nk(x)dx

that is u(z) is solution of (1), (2). O
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