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EXISTENCE THEOREMS FOR NON-COOPERATIVE

ELLIPTIC SYSTEMS

G. Boyadzhiev

Abstract. Existence of classical C2(Ω)
⋂

C(Ω) solutions of non-cooperative
weakly coupled systems of elliptic second-order PDE is proved via the method
of sub- and super-solutions.

1. Introduction. Let Ω ∈ Rn be a bounded domain with smooth boundary
∂Ω. In this paper are considered weakly coupled linear elliptic systems of the form

(1) LMu = f(x) in Ω

and boundary data

(2) u(x) = g(x) on ∂Ω,

where LM = L + M , L is a matrix operator with null off-diagonal elements
L = diag (L1, L2, . . . , LN ), and matrix M = {mki(x)}N

k,i=1. Scalar operators

Lku
k = −

n∑

i,j=1

Dj

(
ak

ij(x)Diu
k
)

+
n∑

i=1

bk
i (x)Diu

k + ckuk in Ω

are supposed uniformly elliptic ones for k = 1, 2, . . . , N , i.e. there are constants
λ,Λ > 0 such that

λ |ξ|2 ≤

n∑

i,j=1

ak
ij(x)ξiξj ≤ Λ |ξ|2
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for every k and any ξ = (ξ1, . . . , ξn) ∈ Rn.

Right-hand side f(x) is supposed a bounded vector-function, that is

(∗) |f l(x)| ≤ C in Ω

for every l = 1, . . . , N , where C is a positive constant.

Coefficients ck and mik in (1) are supposed continuous in Ω, and ak
ij(x),

bk
i (x) ∈ C1(Ω) ∩ C(Ω). Assume in addition that for every k = 1, . . . , N

(3)





n∑

i=1




n∑

j=1

Dja
k
ij(x) + bk

i (x)




2

, |ck|



 ≤ b

holds for x ∈ Ω, where b is a positive constant.

Hereafter by f−(x) = min(f(x), 0) and f+(x) = max(f(x), 0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrixes as well. For instance, we denote by M+ the

non-negative part of M , i.e. M+ = {m+
ij(x)}

N

i,j=1
.

In this paper is employed the method of sub- and super-solutions in order
to prove the existence of a classical C2(Ω)

⋂
C(Ω) solution of problem (1). A

key-point of the method is the validity of the comparison principle. Unlike the
cooperative systems, for non-cooperative ones there is no complete theory for
the validity of the comparison principle. In [1] are given some sufficient con-
ditions such that the comparison principle holds, which are recalled in section
“Comparison principle for non-cooperative linear elliptic systems” below.

We consider linear systems only for the sake of simplicity. The results hold
as well for quasi-linear weakly coupled elliptic systems

Ql(u) = −dival(x, ul,Dul) + F l(x, u1, . . . , uN ,Dul) = f l(x) in Ω

ul(x) = gl(x) on ∂Ω

for l = 1, . . . , N, where the coefficients al(x, u, p), F l(x, u, p), f l(x), gl(x) are
supposed to be at least measurable functions with respect to the x variable and
locally Lipschitz continuous on u and p.

2. Comparison principle for non-cooperative linear elliptic sys-

tems. Let us recall the following Theorem (Theorem 3 in [1]):
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Theorem 1. Let (1) be a weakly coupled elliptic system with irreducible co-
operative part of L∗

M−
. Then the comparison principle holds for the classical

solutions of system (1) if there is x0 ∈ Ω such that

(4) λ +

N∑

k=1

m+
kj(x0) > 0 for j = 1 . . . , N

and

(5) λ + m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1 . . . , N

where λ is the principal eigenvalue of the operator LM− in Ω.

The same result holds if the cooperative part of L∗

M−
has structure with

Jordan cells on the main diagonal and zeroes otherwise (Theorem 4 in [1]).

Theorem 2. Assume m−

ij ≡ 0 for i 6= j and (2) is satisfied. Then the

comparison principle holds for the classical C2(Ω)
⋂

C(Ω) solutions of system
(1) if there is x0 ∈ Ω such that

(6) λj +
N∑

k=1

m+
kj(x0) > 0 for every j = 1 . . . , N, and

(7) λj + m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1 . . . , N,

where λj is the principal eigenvalue of L̃j = Lj + m−

jj in Ω.

Theorem 2 is formulated for diagonal matrix M−, but the statement is valid
with obvious modification if M− has Jordan cells on the main diagonal.

Finally (Theorem 5 in [1]), in case that the cooperative part M− is triangular,
we have

Theorem 3. Assume the cooperative part M− of system (1) is triangular,
i.e. m−

ij = 0 for i = 1, . . . , N , j > i. Then the comparison principle holds for the

classical C2(Ω)
⋂

C(Ω) solutions of system (1), if there is ε > 0 such that

(8) λj − (1 − δ1j)ε +
N∑

k=1

m+
kj(x0) > 0

for j = 1 . . . , N and some x0 ∈ Ω and

(9) λj − (1 − δ1j)ε + m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1 . . . , N,

where λj is the principal eigenvalue of the operator Lj + m−

jj.
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3. Existence of classical solution. The first step of the method is ex-
istence of super- and sub-solution of system (1), (2). It is easy to check that
constant-vector (M, . . . ,M) is a super-solution for any constant M such that

(10)

n∑

i=1

mki(x) ≥
C

M
,

where C is the upper bound |f l(x)| (see (∗)).

Theorem 4. Suppose conditions (4), (5); (6), (7) or (8), (9) hold for system
(1), (2), according to the structure of matrix M , as well as (10). Assume v(x) is
a classical super-solution and w(x) is a a classical sub-solution of (1), (2). Then
there exists a classical solution u(x) of the problem (1), (2) with null boundary
data.

Since the system (1) is a linear one, we assume in the following proof without
loss of generality that g(x) = 0.

S k e t c h o f t h e p r o o f. Let denote

F k(x, u1, . . . , uN ) =

n∑

i=1

mki(x)ui + ckuk

1. Consider the sequence of vector - functions u0, u1, . . . , ul, . . . , where u0 =
w(x) and ul ∈ H1

0 (Ω) defines ul+1 by induction as a solution of the problem

(11) −

N∑

i,j=1

Di(a
k
ij(x)Dju

k
l+1) +

N∑

i=1

bk
i (x)Duk

l+1 + σuk
l+1 =

= fk(x) − F k(x, u1
k, . . . , uN

k ) + σuk
l in Ω

with null boundary conditions

(12) uk
l+1(x) = 0 on ∂Ω

for every k = 1, . . . , N .
Let denote the left-hand side of (11) by Ak(x, u, σ), and the right-hand side

– by Bk(x, u, σ), k = 1, . . . , N .
The problem (11), (12) is reducible system and in fact decomposes to N

independent equations. Then Theorem 8.3 in [3] (page 348) is applicable, hence
these equations are solvable in C2,α(Ω) and

(13) ‖uk
l ‖Cβ(Ω) < c,
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(14)

∥∥∥∥
∂uk

l

∂xi

∥∥∥∥
Cβ(Ω

< c1 for every i = 1, . . . , n, γ = 1, . . . ,m.

Furthermore ul
0 ≤ ul

1 ≤ · · · ≤ uk
l+1 ≤ · · · by the comparison principle.

The proof of ul
0 ≤ ul

1 is trivial since ul
0 is a sub-solution of (1), (2).

3. Obviously the inequality ul+1(x) ≤ v(x) holds for every ul+1, since v(x) is
a super-solution of the same system (1), (2).

4. The sequence of vector-functions {uk} is monotonously increasing and
bounded from above in Ω. Therefore there is a function u such that uk(x) → u(x)
point-wise in Ω. Furthermore, (13) yields {uk} is uniformly equicontinuous in
Ω and {uk} < const, since uk

l (x) is Holder continuous and therefore |uk
l (x) −

uk
l (x0)| ≤ c(|x − x0|

β) for every l = 1, . . . , N . By Arzela–Ascoli compactness
criterion there is a sub-sequence {ukj

} that converges uniformly to u ∈ C(Ω).

For convenience we denote {ukj
} by {uk}.

Since u ∈ C(Ω) and all functions {ukj
} satisfy the null boundary conditions,

then u satisfies the boundary conditions as well.

The functions uk are Holder continuous with the same Holder constant, there-
fore u is Holder continuous as well with the same Holder constant, i.e. u ∈ Cβ(Ω).

Since ul+1(x) is monotone and u(x) is continuous, then {(uk)2} → u2 in Ω.
Then the Dominated Convergence Theorem (Theorem 5 at p.648 in [2]) yields
uk → u(x) in (L2(Ω))N .

5. Analogously to the previous step, (14) yields {Diu
k} is uniformly equicon-

tinuous in Ω and {Diu
k} < const. According to Arzela–Ascoli compactness

criterion there is sub-sequence {Diukj
} that converges uniformly to Diu ∈ C(Ω).

For convenience we denote {ukj
} by {uk}.

6. For every 0 < η(x) = (η1(x), . . . , ηN (x)) ∈ (H1
0 (Ω))N

∫

Ω




N∑

i,j=1

ak
ij(x)Dju

k
l+1Diη

k(x) +

N∑

i=1

bk
i (x)Duk

l+1η
k(x) + σuk

l+1η
k(x)


 dx =

=

∫

Ω
(fk(x) − F k(x, u1

k, . . . , u
N
k ) + σuk

l )η
k(x)dx

holds and for k → ∞ we obtain
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∫

Ω




N∑

i,j=1

ak
ij(x)Dju

kDiη
k(x) +

N∑

i=1

bk
i (x)Dukηk(x)


 dx =

=

∫

Ω
(fk(x) − F k(x, u1, . . . , uN ))ηk(x)dx

that is u(x) is solution of (1), (2). �
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