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ASYMPTOTIC BEHAVIOUR OF A SUPERCRITICAL
GALTON-WATSON PROCESS WITH CONTROLLED
BINOMIAL MIGRATION

Christine Jacob

This paper considers a branching process generated by an offspring distribution
F with mean m < oo and variance 0? < co with d-migration controlled by the
native population N2¢f according to a binomial law with parameter pics. The
d-migration is an emigration if § = 1, an immigration if § = —1, and a partial
observation of the population if 6 = 0; § does not depend on n. We assume lim,, p, =
P, pn = O(m; ™) with 0 < z < 1 and m. = m(1 — dp), p € [0, 1]. Moreover when
p = 0, {pn}n is either a deterministic sequence or a stochastic one. Under the

assumption m. > 1, we study the asymptotic behaviour of the different processes.
aAs,L2

2
Foreach 0 < z < 1, N, “Z" O(m?) and N2/ @nk O(m3). In the case x < 1,

.s,L? _ . e e .
Nobs @z O(mf(1 x)) whereas in the case z = 1, N2** converges in distribution to
a Poisson variable with a deterministic or random parameter depending on whether
{pn}n is stochastic or deterministic.

Keywords: Galton-Watson, supercritical, migration, binomial, size-dependent.

AMS subject classification: 60J80, 62F12, 62P10.

1 Introduction

Consider a native population in which each individual can mutate with the same prob-
ability ([5]) or consider the general epidemiologic problem where each individual of the
population can catch a disease with the same probability. At last, consider a population
which is only partially observed at each generation: for example, the population is in a
volume V,, at generation n and the observation is done by means of an aliquot v,,, this
aliquot being removed after observation. In this case each individual can be observed
with the probability p, = v,V, 1.

In these examples, the population of individuals who change (by mutation or disease
or observation) can be considered as an emigrating population. Models of systematic
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emigration are rare in the litterature ([10], [11],[7]). The reason is clear: systematic emi-
gration can easily lead to the extinction of the population excepted when the emigration
is controlled and the native process is supercritical.

We deal more generally with a Galton-Watson process generated by an offspring
distribution F with mean m < oo and variance o2 < oo with, at each generation n,
an observed d-migration N2* controlled by the native population Ngef according to a

. . «Nef
binomial law By -, .
N’IL‘

tion if 6 = —1 and corresponds to a partial and non removed observation of the native
population if § = 0. The parameter § is assumed constant throughout the different
generations.

The population size after migration, at the nth generation, N,,,
by the model (M):

The §-migration is defined as an emigration if § = 1, an immigra-

is given, for n > 1,

(1) N, = N — 6N,
where
Nn—l
(2) Nyl:ef = Z Yo
i=1

is the population size at the nth generation before migration and

Nbef

bs __ bs
(3) Nt =) N
=1

is the migrating population size at the nth generation. Assume

(A1): The {Y,, i}n; areii.d. according to F(m,o?) with mean m < oo and variance
02 < oo;

(A2): Given N}“f, the {NS%}; are iid. according to a Bernoulli distribution
on {0,1} with parameter P(Ng% = 1|Nbely = Pppess

(A3): lim, p, = p and m, > 1 (where m, = m(1 — ép)). Consider the following
particular cases :

B

PNzef

1. p > 0 and {pyter}n is a deterministic sequence denoted {p,}, and such that
m(1—6py,) > 1, for all n, and 0 < I152 [(1 — py, ) (1 — dp) ~!] < oo (or equivalently
0| 32 [pn — p| < 00);

2.p=0.Let 0<A<1,0<z<1.

o {pyves}n is the following controlled stochastic sequence : pyoer = A(NL)=*
on {N:/ > 0} and pyeer = 0 when NP/ = 0. Assume
No[E(W'=2|Ng)]~*(m® — 1) — 6A > 0, where W =" lim,, N,,m™™.
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o {pptes tn is the following deterministic sequence denoted {py, }n:
pn = ME(NYI) % de p, = XNomII?  m(l — 0pg)) ™%, n > 2, p1 =
M(Ngm)~*. Assume NE(m® —m~(1=2)) — 5\ > 0.

By convention we set = 0 when p > 0; m, ™ is the convergence rate to 0 of {p,}.

*

In Dion and Yanev [2], the branching process with immigration independent of repro-
duction is viewed as a BGW (Bienaymé-Galton-Watson) defined according to “diagonal
stopping lines”, and starting from a random number of ancestors Zy(n) which is the num-
ber of immigrants up to generation n — 1. But here, since the migration is controlled by
the native population, we can show that the branching processes { N, },, and { N¢f},, are
non homogeneous BGW branching processes starting from the initial population size Ny
itself. {N,,}, corresponds to the individual -migration whereas { N!¢},, corresponds to
the familial §-migration. But {N<°*$},, is generally not a martingale. The extinction time
is the same one for the three processes to within one generation. We show that the as-
ymptotic behaviour of {N,,},, and { N/}, does not depend on 2, which is not the case of
{N;jbs}n7 the convergence rate of which depends on whether x < 1 or x = 1; N,,m_ ™ and
Nbef[mm2=1]~! converge a.s. and in L? to a non degenerate variable W, 0 < W < oo,
E(W|Np) > 0 (for a sufficiently large Ny, when 6 = 1 and {p,}, is stochastic). These
results are a consequence of Klebaner’result concerning size-dependent processes when
{pppes bn is stochastic ([8]). For z <1, NEv[mp,mn~1~1 converges also a.s. and in L2

—nx and

to W'=% where P, = p, and & = 0 when Pybes is deterministic and p,, = Am
T = z when p,, = A\(N%¢/)~%. These results concerning a deterministic and homogeneous
normalization of the processes are robust results with respect to the non homogeneity
of the processes. Next using the normalization associated with the martingale deduced
from {N,}n, and denoted I} for simplification, N,[[I}]~", N2/ [mIT} '], converges
a.s. and in L? to Wy,, E(Wy,) = No. And for = < 1, NS [mpy, 1T} ']~ converges

a.s. and in L? to Wy,, where mpy, , = E(Zf"’l Nﬁf’f’j\Nn,l). And the same with

the normalization associated with the martingale {N’¢},,, the convergence occuring to
b b
Wy, EWyT) = No.

In all the cases, the convergence in L? is obtained with an additional assumption
when the normalization is stochastic, that is > § — In(A~*(m — 1)) (Inm) L.

In the case z = 1, N2 converges in distribution to a Poisson variable with a de-
terministic or random parameter depending on whether {pNgef}n is stochastic or de-
terministic and N2 [mpy, 1T} ']~ converges in distribution to the previous Poisson
distribution multiplied either by a random variable or a constant. Moreover when § = —1
(immigration), the model corresponds asymptotically to the model already described in
the litterature as a branching process with a Poisson immigration independent of the

native population.

By convention, 30 = 0.
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2  Asymptotic behaviour of {N,},, {N’/}, and {N°*},

2.1 Asymptotic behaviour of {N,}, and {N"/},

Let Vi = Z;;Lf(l —ONg%,), i=1,..., Ny 1. Denote m.n,_, = E(Yin1|Fn-1) and
Uan,l = Var(Yin1|Fn—1), where F,_; is the o-algebra generated by No, N1,..., Nyp_1.

1_6Nobs .
Let Y = >j=1 " Ynij. Denote mij\j;befl = E(Y*bffl\fzejl) and ofbef =

*M, 10
Var(Y;brf’f1 |]-"Zif1), where fzejl is the o-algebra generated by Ny, Nfef, . N
Denote Y,2bs = S}t Nebs ms = BV | Fu1) and o = Var(YV0% | Fa).

n,l = n,1,5°

When {pNTZief}n is a deterministic sequence, mun,, ,, Uan,l depend only on n
and F and will be also denoted respectively m.,, 02,. And the same concerning
bef 2be f obs 20bs

— —1pn—z
MyN, 1 Oun, > M and oy’® . Denote py, , = Am™ "N, 5ymy 1, when Ny,_1 > 0,

e - Zi\fn71 Yn,i 2
where my 1, = E(Y,, "|Fa1,Np—1 > 0), Y, = = Denote also o7, ;_, =
Fn-1). We set py,_, =0,if N,,_1 =0.

—l—x
n | d

Var(Y

1—z.
Lemma 1 1. mpi—e <m—7%;

l1-z

1-(14e)z 2
N, o

2. On the non-extinction set, we have lim, my, 1—, =m and lim,, ol

=0, for each € > 0.

PROOF.

1. Use E(Y ,|Fn_1) = m and the Lyapunov inequality [E(|X|*)]'/* < [E(|X|")]'/",
0<s<r,withr=1and s=1-—u=z.

2. First according to ([4]), N,, — oo on the non-extinction set. Next use the standard
result (R): if X, and X are £" r.v.s and lim, X, £ X then lim, E(X,%) =

E(]X]®) for each 0 < s < r ([1]). For the first result, apply to X,, =Y ,, X = m,
r=2and s = 1 — x, and for the second result, use Var(X,,) = E(X2) — [E(X,)]?

1—(l4+e)x __

and apply to X, = Iyy<n, N 20" Y,, r =2 and s = 2(1 — ) for the first
term and s = 1 — z for the second term.

Proposition 1 1. {Np},, is an inhomogeneous branching process generated by
{L(Yin1)}n. When {pyves }n is deterministic, m., and o2, are given by
(4) Man = m(1 = 6pp); 02, = 02(1 — 6pp)? + 8*mp, (1 — py).

When pyoes = ANE) ™% mun,_, and oy, satisfy

—1

(5) man,_, = m(l —dpn,_,)
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(6) o2y, < (0 +[6|CIN, P,

with equality when § = 0, and where 0 < Cy < oo is function of m, o2.

2. {Nbtef1,, is an inhomogeneous branching process generated by {E(Y*b,f ) }n>2, and
by L(Y1,1), n=1. mb?;bef and UQx{ef satisfy

n—1
Tym’ 1-6 o 1-6 5 1-
(T)ym oo =m( prLifl) aNvef =0 %( Pbes, yrm® Pybes, ( pref)

Moreover when pyoer = A(NPeRY=  then, {Ny,}, and {N%f}, are size dependent
branching processes | [8] ).

PROOF.

1. The branching property of { Ny}, is deduced directly from model (M):

N,

®) M:memW%iw%

i=1

where Yin; = 3" Ye, 1(1—0Ngbs ) and Yobs = >t Yos | Nobs ., the {Ng%}i; being

nyi,j n,3,5) n,%,J

iid. according to B”N;‘ff’ given NP/, Therefore {Nn}n is an inhomogeneous
BGW branching process generated by the conditional distribution of Y, ; given
fnfl.

When {pyves }n is a deterministic sequence {pn},, M+, can be calculated directly
from the dgﬁnition of Yip, 1, and ofn from

Yin1 — M =9 Z N;be,g +(1— 5pn)(Yn,1 —m).

Assume now that pybes = A(NPeF)=® . To calculate m.y use first on one hand

the relationship deduced from (2) and (3):

n—17

E(Nn|~7:n—1) E(Ngef|~7:n—1) - 5E(E(Ngbs|Nbef Fn— 1)‘~7:n—1)
(9) = mN,_1 — OAE((N2)1 | F, 1),

and on the other hand, the branching property N, = Zjlv””l Yin.i
(10) E(Nn‘fnfl) = Nn,lm*N"fl.
Comparing (9) and (10) leads to

(11) MyN,_1 = (1 —oAm~ 1]\7 —1Mn,1— £)
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Next, from Yin1 — man, , = (Yn1 —m) — 6(Y,ff’15 - m%’jil),
(12) o2y, , = 0" +8%0%7", = 20E((Yon — m)(Y,03 — mQ>_, )| Fua]-
But
|B[(Ya1 —m) (V05 —m>_ ) Fnall < 00f2_,
implying by lemma 2.1.2 the bounding of aanﬂ.
2. Ntef can be written
NP 1-oNgbs,
NEel = Yoij

bef
Nne— 1

ef

Then as for { N, },,, we obtain mbNbEf =

>y,

1=

= E(1—-0Ng>, || F, FrIVE(Y,) and o

bef

*MN,0°
1

2bef
wNber T

n—1

(L= ONg |\ F) + mPVarONg | R,
O
Lemma 2 1. Assume {pybes }n is a deterministic sequence. then
m = mp, and 02°* =

2. Assume pyver = N(NLS)=. Then

(¢) my",

(b) There exists 0 < C < 00 functzon

obs = mpn,_, and mobs < A

PROOF.

= o%p2 + mp,(1 — pn)

—x l—x.
N, 5m %,

of m and o? such that 020b5 <CN.*,.

1. The proof follows directly from the definition of Y;’f’f.

2. (a) From the relationships m.y, , =
Y*n,la and MxN,,_1 = m(]. — o m~
19 %=

=m— 6m°b5 obtained from the definition of
IN " mp - z) (cf (11)), deduce
)\N 1mn 1—zx-

Finally use item 1 of lemma 2.1.1.
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(b) From Ngbs = Ziv"’l(Ysgs —m* )+ my* N, deduce

n—1

(14) E((N3")*|Fn-1) = Noo10R0°, + (m%2_,)* Ny

bef
Next using (3), N2 = Zjlvﬂ (Nj;f’js — Prtes) + Ppver N2 which implies
E((N7 ) INg Frea) = MNpED) 2 (1 = pyyer) + A2 (NRET)2720,
obtain

BE((N7"*)?|Fa1)
g —l—x _92, —2—2x
(15) = ANZTE(Y, (1= pyees)|Fum) + PNZZFE(Y, T [Fam).

Comparing (14) and (15) and using (13) yields
(ABpRY AN (Y (Lo | Fn X NG 3V ar (V7 Fa).

from which we deduce o3?** < AN, “1mp 1o + Angbjszar(Y::ﬂfn_l).

n—

Now according to item 2 of lemma 2.1.1,

NyFon e = NN
—(1—¢)x
< OE(l)Nn—(l )

implying, since € is arbitrary,
(17) NTIL:%IO-?L,Ifz =O(1)N, 2.

Using (16) and (17), we obtain o3¢** = O(1)N,,*; and since 03" < m?+0?

7 n

because YTff’f < Yp,1, then there exists 0 < C' < oo such that 0?\}’7{’: < CN.*,.

Proposition 2 Assume pyoes = ANL)™. Then Npym™ and NS m™" converge

a.s. and in L? to a non degenerate and non negative random variable W such that
0<W < oo, P(W>0)>0 and E(W|Ny) = [No(m®* —1) — SAE(W~%|Ng)](m® — 1)~

PROOF. Prove the result concerning N,,. The proof is similar concerning N%¢/. The
result is obtained by using Klebaner’s theorem 1.7 ([8]) (according to lemma 2.1.2 and
proposition 2.1.1 |m.,, —m| and o2, satisfy the assumptions of theorem 1.7). Calculate
E(W|Ny). Using (5) and E(Ny,|Fn—1) = mun, _, Nn—1, we have E(Ny|Fp_1) = mNp_1—
AN "%m,, 1, implying E(N,,|No) = m"™No—3\ 2371 mPay, ,  m=1=RN0-2) where
an, = E((Nnm_”)l_“”?if{\No). Since N,m~" and Y,, converge in L? to W and m
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respectively, by Holder inequality, N, m~"Y,, converges in L' to Wm and then by the
standard result (R), E(a,|No) tends to E((Wm)!=%|Ny). Consequently

n—1 k n—1
_(1_x)20 AN, .M 30 m*e

n—1
0 mkx mne

Ny,
- |No) = NO —0m

m’ﬂ

B

implying the result by Toeplitz’s lemma.
We prove in the same way the convergence of Ngefm*" to Wbef. We show now that
wbel 2 W, From (2)

b Np—1 -1
Nnef _ > n,iMm~~ Nn—1
mmn Nn—l mn—l

which, using the strong law of large numbers and the a.s. convergence of N,m™",

converges a.s. to W on {W > 0}. Comparing this result with lim,, Ngefm*” L pyef
leads to Wbef = Ww. O

Corollary 1 Assume pyoes = AN )=%. We have a.s. on {W > 0}
0 < II°(1 — dpn,_,) < o0 and 0 < II7°(1 — (5pN£ef) < 0.

PROOF. First T13°(1 — épy,_,) exists because {II}(1 — épn,_,)}n IS @ monotonic
sequence. Next 0 < II§°(1 — dpy, ,) < oo if > |In(1l — 6Am ™ N, my1-0)| < oo, i.e.
if [6]Am >, N " mp1—, < oo which is satisfied a.s. on {W > 0} since using lemma
2.1.1 and proposition 2.1.2,

supk(Nk,lNkfl)“"mkH,l,mm,;%_w =m~* < 1, a.s. (D’Alembert’s criterion). The
proof is similar for the other relationship. [

Lemma 3 . Assume p, = A(NomIT} 'm(1—6p;)) ™%, 0 < 2 < 1. Then m(1—dp,) > 1,
for alln, 0 < TI5°(1 — dpp) < oo and lim, p, = 0.

PROOF. First m(1 — dp1) > 1 and p,y1p,t = [m(1 — 6p,)]~%. Therefore assuming
m(1—0p,) > 1, then p,y1 < pn and m(1—0pp11) > m(1=68py) > 1, for all n, when 6 = 1.
Consequently lim, m(1—4dp,) > m(1—dp1) > 1 when § = 1, and lim,, m(1—0p,,) > m > 1
when § = —1 or 6 = 0. {pn}n being a bounded decreasing sequence in [0, 1], lim,, p,
exists and is in [0,1]. Next we show that 0 < IIx(1 — dpr) < oo. This is satisfied
if >°,|In(1 — dpi)| < oo, that is if [§] Y, pr < oco. This last condition holds since
lim,,pry1p; ! = lim, [m(1—dp, )]~ is less than 1 (D’Alembert’s criterion). Consequently
0 < I (1 — dpx) < oo which implies lim, p, =0. O

-1 be b n—1 —1

Let Wiy = No(may, )4 Wi = NI (mIl i, )Y,
obs __ pnyobs obs n—1 -1
WNo,n - Nn (mN,L,lnl m*Nk—l) .
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Proposition 3 .

1. Assume {pn}n is deterministic. Then {Wnyn}n and {W}i,i’fn}n converge a.s. and

in L? to a non degenerate random variable Wy,, E(Wy,|No) = No. Moreover
N,ymI™ and N2f [mm?=1]~1 converge a.s. and in L? to W = I°[(1 — épg)(1 —
6p)71]WN0'

2. Assume pyver = NNP)™2. Then {Wnyntn and {Wi,?jn}n converge a.s. to a

non degenerate random variable Wy, = WII5°(1 — dApn,_,)] ™, {Wa, > 0} =
{W > 0} with equality when 6 =0 or § = —1. Moreover {Wny.n}n and {W]l:[?jn}n
converge also in L? to Wy, when x > & —In(A~1(m — 1))(Inm)~L. In that case
E(Wn,|No) = No.

PROOF.

1. The case p > 0 is explained in Jacob and Peccoud ([6]). When p, =A(NomIIT ™ m(1—
dpk)) " with 0 < z < 1, using lemma 2.1.3, we show as for p > 0, that Wy, »

and W}:ﬁ) f , are non negative martingales with finite first two moments because
lim,, T}~ 'm(1 — dpg) = oo, as n — oo. Finally, 0 < TI§°[(1 — pg.)(1 — dp) 1] < oo,

a.s.,L?
" w.

. 2
implying lim,, Nymz™ “=" W and lim,, N2/ [mmn—1]-1 “=F

2. When {pyses }n is the random sequence INNEEF) =% LWy n b is still a non neg-
ative martingale (since m.n,_, > 0), with expectation Ny, and therefore con-
verges a.s. to a non degenerate random variable Wy,. Show now that Wy, “
I [m *Nk m]W and that {Wx, > 0} = {W > 0}. By proposition 2.1.2,
Whom = N I (1 — 6pn,_, )]~ * converges a.s. both to W[II5®(1 — dpn, )]t
and to Wy, implying Wy, = WIII$°(1 — dpn,_, )]~ !. Using corollary 2.1.1, {W >
0} C {Why, > 0}, with equality when § = 0 or 6 = —1, because 0 < W < oo and
H(fo(l - (Ska71) Z 1.

Next using
1 Np—1
W == Yini — My Whng.n—
Nom = Moman, zl:( ni Nuo1) + Whom—1
we obtain iteratively
*N
E(W5y nlNo) = Z oV |N0)+No

-1 Hkm*Nl 1]

And by lemma 2.1.1, muy,_, > (m + inf{—6,0}Axm*~* and by lemma 2.1.2, there
exists a constant C' such that o2 N, < C. Consequently

n

Ny_ 1
BV, | No) < C " B[Ny . - + N2,

1 H’f—lm*NLl‘ )(m+lnf{*5,0})\m1 z) )kt
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SinceﬂNk,l(H’f_lm*lel)*l\NO) = Np and assuming m+inf{—4,0}Axm!~%) > 1,
then lim, E(WZ, ,|No) < co. Therefore, Wy, , being a martingale with a finite
second moment, it converges in L? to W, .

Concerning Wﬁ,eo{n, as previously since Wﬁ,eafn = NbeFm— 11 — opn,_,)] 7Y,
W]l:,ifn converges a.s. to W[II°(1 — dpn,_,)] "' = Wh,. Next using

Np—1

1
Wbef — Y, —m)+ W nei,
No,n mH?_l(l _ (5ka71) Z ( 1,0 ) No,n—1

i=1

yields, as for W]%mn,
lim E((Wye!,, = Wngn-1)*|No) = 0.

Therefore the convergence in L? of Wi,zf ,, follows from the convergence in L? of
WN(),TL*I'

2.2 Asymptotic behaviour of {N°*},

Let pp, = pp when pyres is deterministic, and p, = Am™", when pyber = A(NEefy==,

Then, when p,, is deterministic, m‘;\zf’jil[mﬁn]_l = 1 and when Pyber = A(Nbefy==,

. 3 ~ — a.s. — 1
lim, m@*_ [mp,] ™' = W

Proposition 4 Assume x < 1. Let & = 0 when p, is deterministic and & = x when
pyver = A(NES) =% Then

obs 2
lim ——n @l ppl-a
n mﬁnmnfl

PROOF. Assume pyver = A(NPef)==. The proof in the deterministic case is similar.
According to (3)
No_ -
Ngbs XTIV mR )T N MR

19 = .
( ) mﬁnmnil anl mn—1 mﬁn

On the non extinction set, by the standard law of large numbers (the Kolmogorov condi-
tion is satisfied: >y ojz\gf’fl(m?\?jil)*zNgfl <Y, 0(1)n==2) converges for z < 1)
and according to proposition 2.1.2, N;jbs [mp,m"]~! converges a.s. to W=, Next, we
study the convergence in L?. According to (19)

Nobs ]\/’71
E n 7 n 1—x ani
(o2 = (o) ) ]
(20) - o (R Mty
- [mpjnmnfl]2 mﬁnmnfl mn—1 :
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Next

me No1  E(0) Yaam ™)' Fan)

mﬁnmnfl m(n—1)(1-x)
which implies
NObs Nn—l 1—4 Nn—10'12\/(')bs N, 1 mp 1—;
E n . —x\2 Foil = n—1 n 2(1—x) ml-z  y2
[(mﬁnmnfl (mnfl) ) ‘ 1] [mpnm"*1]2 + (mnfl) ( ml—-z )
By the same argument as item 2 of lemma 2.1.1, we have le(l;m (mn’l,zm*(lﬂ”) -1

converges a.s. to 0 on the non extinction set, and since by item 1 of lemma 2.1.1,
—(-2)

(Mn1—em™ =) — 1) < 2, then (my1_,m~ 1% —1) = O(1)N—= ~ with O(1) < C’,
0 < ¢’ < 0o and therefore by lemma 2.1.1

1
m(nfl)(lfzr)

obs
Nn

JoE——
mMpPn Ty

_ (Nn—l
1 —1
my

Bl NG < O B((2h) 1 N)

1

which tends to 0. O

Proposition 5 1. Assume p > 0. Then {Wl%isn}n converges a.s. and in L* to Wi, .

2. Assume pn, = M(NomII? " 'm(1 — 6pg))~*, 0 < & < 1. Then {W]%lz)fn}n converges
a.s. and in L? to Wi, .

3. Assume pyrer = A(NEeFY= . Then W;{f)sn converges a.s. to Wn,. Moreover if
§ —In(A~H(m —1))(Inm)~t <z <1, W, converges also in L*.

4. Assume p, = MNomII} 'm(1 — dpp))~t. On {Wy, > 0}, N2 converges in

n

distribution to the Poisson distribution P(ANy *W,) with parameter ANy "Wy, ,
and WRb*, converges in distribution to A= NoP(ANy 'Way,).

5. Assume pyves = A(NLH)™E On {Wy, > 0}, N2* converges in distribution to the
Poisson distribution P(\) with parameter A and Wj{,%én converges in distribution to
AWy P(N).

PRrOOF.
1. The proof is given in ([6]). See also proposition 2.2.1.
2. The proof is the same as for the case p > 0.
3. The proof is similar to proposition 2.2.1 proof.

4. The first result follows directly from panjef = ANy IWK,?’C ,, and from the conver-
gence of Wk/% f »- The second result follows directly from W;{,%én = N2 A\~ Np.
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5. The first result follows directly from p, N2/ = X and from lim,, N%*/ “2 o0 on the
non extinction set. Moreover Wj{,{’fn = Nobs Wﬁ,zf A1 converges in distribution to
PA)Wa, AL

d

Bibliography
[1] Y. S. CHOWw, H. TEICHER. Probability Theory: Independence, Interchangeability, Martin-
gales, Springer-Verlag, New-York, 1978.

[2] J. P. DioN, N. M. YANEV. Limit theorems and estimation theory for branching processes
with an increasing random number of ancestors. J. Appl. Prob. 34,2, (1997), 309-327.

[3] J. C. O’Souza, J. D. Bicains. The supercritical Galton-Watson process in varying envi-
ronments. Stoch. Proc. Appl. 42 (1992), 39-47.

[4] T. FuJIMAGAR. Controlled Galton-Watson process and its asymptotic behaviour. Kodai
Math. Sem. Rep. 27 (1976), 11-18.

[5] S. C. GupTa, O. P. SRIVASTAVA, SINGH MAHENDRA. Branching Process with Emigration
— A Genetic Model. Math. Biosci. 111 (1992), 159-168.

[6] C. Jacos, J. PEccouD. Estimation of the parameters of a branching process from migrat-
ing binomial observations. Adv. Appl. Prob. (to appear in december 1998).

[7] S. V. KAVERIN. A refinement of limit theorems for critical branching processes with emi-
gration. Theory Probab. Appl. bf 35,3 (1990), 574-580.

[8] F. C. KLEBANER. On population-size-dependent branching processes. Adv. Appl. Prob. 16
(1984), 30-55.

[9] D. PIERRE LOTI VIAUD. A strong law and a central limit theorem for controlled Galton-
Watson processes. J. Appl. Prob. 31 (1994), 22-37.

[10] V. A. VATUTIN. A critical Galton-Watson branching process with emigration. Theory
Probab. Appl. 22 (1977), 465-481.

[11] G. V. VINOKUROV. On a critical Galton-Watson branching process with emigration. Theory
Probab. Appl. 32, 2 (1987), 350-353.

INRA, Laboratoire de Biométrie

78352 Jouy-en-Josas, Cedex, France

Tel: 01 34 65 22 25

Fax: 01 34 65 22 28

e-mail: christine.Jacob@jouy.inra.fr



