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ASYMPTOTIC BEHAVIOUR OF A SUPERCRITICAL
GALTON-WATSON PROCESS WITH CONTROLLED

BINOMIAL MIGRATION

Christine Jacob

This paper considers a branching process generated by an offspring distribution
F with mean m < ∞ and variance σ2 < ∞ with δ-migration controlled by the
native population Nbef

n according to a binomial law with parameter p
N

bef
n

. The

δ-migration is an emigration if δ = 1, an immigration if δ = −1, and a partial
observation of the population if δ = 0; δ does not depend on n. We assume limn pn =
p, pn = O(m−nx

∗
) with 0 ≤ x ≤ 1 and m∗ = m(1 − δp), p ∈ [0, 1]. Moreover when

p = 0, {pn}n is either a deterministic sequence or a stochastic one. Under the
assumption m∗ > 1, we study the asymptotic behaviour of the different processes.

For each 0 ≤ x ≤ 1, Nn
a.s,L2

= O(mn
∗
) and Nbef

n

a.s,L2

= O(mn
∗
). In the case x < 1,

Nobs
n

a.s,L2

= O(m
n(1−x)
∗ ) whereas in the case x = 1, Nobs

n converges in distribution to
a Poisson variable with a deterministic or random parameter depending on whether
{pn}n is stochastic or deterministic.
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1 Introduction

Consider a native population in which each individual can mutate with the same prob-
ability ([5]) or consider the general epidemiologic problem where each individual of the
population can catch a disease with the same probability. At last, consider a population
which is only partially observed at each generation: for example, the population is in a
volume Vn at generation n and the observation is done by means of an aliquot vn, this
aliquot being removed after observation. In this case each individual can be observed
with the probability pn = vnV −1

n .
In these examples, the population of individuals who change (by mutation or disease

or observation) can be considered as an emigrating population. Models of systematic
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emigration are rare in the litterature ([10], [11],[7]). The reason is clear: systematic emi-
gration can easily lead to the extinction of the population excepted when the emigration
is controlled and the native process is supercritical.

We deal more generally with a Galton-Watson process generated by an offspring
distribution F with mean m < ∞ and variance σ2 < ∞ with, at each generation n,
an observed δ-migration Nobs

n controlled by the native population N bef
n according to a

binomial law B
∗Nbef

n
p

N
bef
n

. The δ-migration is defined as an emigration if δ = 1, an immigra-

tion if δ = −1 and corresponds to a partial and non removed observation of the native
population if δ = 0. The parameter δ is assumed constant throughout the different
generations.

The population size after migration, at the nth generation, Nn, is given, for n ≥ 1,
by the model (M):

Nn = N bef
n − δNobs

n ,(1)

where

N bef
n =

Nn−1∑

i=1

Yn,i(2)

is the population size at the nth generation before migration and

Nobs
n =

Nbef
n∑

j=1

Nobs
n,j(3)

is the migrating population size at the nth generation. Assume
(A1): The {Yn,i}n,i are i.i.d. according to F (m, σ2) with mean m < ∞ and variance

σ2 < ∞;

(A2): Given N bef
n , the {Nobs

n,j }j are i.i.d. according to a Bernoulli distribution

Bp
N

bef
n

on {0, 1} with parameter P (Nobs
n,j = 1|N bef

n ) = pNbef
n

;

(A3): limn pn = p and m∗ > 1 (where m∗ = m(1 − δp)). Consider the following
particular cases :

1. p > 0 and {pNbef
n

}n is a deterministic sequence denoted {pn}n and such that

m(1− δpn) > 1, for all n, and 0 < Π∞
n=1[(1− δpn)(1− δp)−1] < ∞ (or equivalently

δ|
∑

|pn − p| < ∞);

2. p = 0. Let 0 < λ ≤ 1, 0 < x ≤ 1.

• {pNbef
n

}n is the following controlled stochastic sequence : pNbef
n

= λ(N bef
n )−x

on {N bef
n > 0} and pNbef

n
= 0 when N bef

n = 0. Assume

N0[E(W 1−x|N0)]
−1(mx − 1) − δλ > 0, where W

a.s.
= limn Nnm−n.
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• {pNbef
n

}n is the following deterministic sequence denoted {pn}n:

pn = λ(E(N bef
n ))−x, i.e. pn = λ(N0mΠn−1

1 m(1 − δpk))−x, n ≥ 2, p1 =
λ(N0m)−x. Assume Nx

0 (mx − m−(1−x)) − δλ > 0.

By convention we set x = 0 when p > 0; m−nx
∗ is the convergence rate to 0 of {pn}.

In Dion and Yanev [2], the branching process with immigration independent of repro-
duction is viewed as a BGW (Bienaymé-Galton-Watson) defined according to “diagonal
stopping lines”, and starting from a random number of ancestors Z0(n) which is the num-
ber of immigrants up to generation n− 1. But here, since the migration is controlled by
the native population, we can show that the branching processes {Nn}n and {N bef

n }n are
non homogeneous BGW branching processes starting from the initial population size N0

itself. {Nn}n corresponds to the individual δ-migration whereas {N bef
n }n corresponds to

the familial δ-migration. But {Nobs
n }n is generally not a martingale. The extinction time

is the same one for the three processes to within one generation. We show that the as-
ymptotic behaviour of {Nn}n and {N bef

n }n does not depend on x, which is not the case of
{Nobs

n }n, the convergence rate of which depends on whether x < 1 or x = 1; Nnm−n
∗ and

N bef
n [mmn−1

∗ ]−1 converge a.s. and in L2 to a non degenerate variable W , 0 ≤ W < ∞,
E(W |N0) > 0 (for a sufficiently large N0, when δ = 1 and {pn}n is stochastic). These
results are a consequence of Klebaner’result concerning size-dependent processes when
{pNbef

n
}n is stochastic ([8]). For x < 1, Nobs

n [mp̃nmn−1
∗ ]−1 converges also a.s. and in L2

to W 1−x̃, where p̃n = pn and x̃ = 0 when pNbef
n

is deterministic and p̃n = λm−nx and

x̃ = x when pn = λ(N bef
n )−x. These results concerning a deterministic and homogeneous

normalization of the processes are robust results with respect to the non homogeneity
of the processes. Next using the normalization associated with the martingale deduced
from {Nn}n, and denoted Πn

1 for simplification, Nn[Πn
1 ]−1, N bef

n [mΠn−1
1 ]−1, converges

a.s. and in L2 to WN0 , E(WN0) = N0. And for x < 1, Nobs
n [mpNn−1Π

n−1
1 ]−1 converges

a.s. and in L2 to WN0 , where mpNn−1 = E(
∑Yn,1

1 Nobs
n,1,j|Nn−1). And the same with

the normalization associated with the martingale {N bef
n }n, the convergence occuring to

W
bef
N0

, E(W bef
N0

) = N0.

In all the cases, the convergence in L2 is obtained with an additional assumption
when the normalization is stochastic, that is x > δ − ln(λ−1(m − 1))(lnm)−1.

In the case x = 1, Nobs
n converges in distribution to a Poisson variable with a de-

terministic or random parameter depending on whether {pNbef
n

}n is stochastic or de-

terministic and Nobs
n [mpNn−1Π

n−1
1 ]−1 converges in distribution to the previous Poisson

distribution multiplied either by a random variable or a constant. Moreover when δ = −1
(immigration), the model corresponds asymptotically to the model already described in
the litterature as a branching process with a Poisson immigration independent of the
native population.

By convention,
∑0

1 = 0.
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2 Asymptotic behaviour of {Nn}n, {N
bef
n }n and {N obs

n }n

2.1 Asymptotic behaviour of {Nn}n and {N bef
n }n

Let Y∗n,i =
∑Yn,i

j=1 (1 − δNobs
n,i,j), i = 1, . . . , Nn−1. Denote m∗Nn−1 = E(Y∗n,1|Fn−1) and

σ2
∗Nn−1

= V ar(Y∗n,1|Fn−1), where Fn−1 is the σ-algebra generated by N0, N1, . . . , Nn−1.

Let Y
bef
∗n,i =

∑1−δNobs
n−1,i

j=1 Yn,i,j . Denote m
bef

∗Nbef

n−1

= E(Y bef
∗n,1|F

bef
n−1) and σ

2bef

∗Nbef

n−1

=

V ar(Y bef
∗n,1|F

bef
n−1), where Fbef

n−1 is the σ-algebra generated by N0, N
bef
1 , . . . , N

bef
n−1.

Denote Y obs
n,1 =

∑Yn,1

1 Nobs
n,1,j , mobs

Nn−1
= E(Y obs

n,1 |Fn−1) and σ2obs
Nn−1

= V ar(Y obs
n,1 |Fn−1).

When {pNbef
n

}n is a deterministic sequence, m∗Nn−1 , σ2
∗Nn−1

depend only on n

and F and will be also denoted respectively m∗n, σ2
∗n. And the same concerning

m
bef
∗Nn−1

, σ
2bef
∗Nn−1

, mobs
Nn−1

and σ2obs
Nn−1

. Denote pNn−1 = λm−1N−x
n−1mn,1−x when Nn−1 > 0,

where mn,1−x = E(Y
1−x

n |Fn−1, Nn−1 > 0), Y n =

∑
Nn−1

1
Yn,i

Nn−1
. Denote also σ2

n,1−x =

V ar(Y
1−x

n |Fn−1). We set pNn−1 = 0, if Nn−1 = 0.

Lemma 1 1. mn,1−x ≤ m1−x;

2. On the non-extinction set, we have limn mn,1−x = m1−x and limn N
1−(1+ε)x
n−1 σ2

n,1−x

= 0, for each ε > 0.

Proof.

1. Use E(Y n|Fn−1) = m and the Lyapunov inequality [E(|X |s)]1/s ≤ [E(|X |r)]1/r,
0 < s < r, with r = 1 and s = 1 − x.

2. First according to ([4]), Nn → ∞ on the non-extinction set. Next use the standard

result (R): if Xn and X are Lr r.v.s and limn Xn
Lr

= X then limn E(|Xn|
s) =

E(|X |s) for each 0 < s ≤ r ([1]). For the first result, apply to Xn = Y n, X = m,
r = 2 and s = 1 − x, and for the second result, use V ar(Xn) = E(X2

n) − [E(Xn)]2

and apply to Xn = 1{N≤Nn−1
N

1−(1+ε)x

2(1−x) Y n, r = 2 and s = 2(1 − x) for the first
term and s = 1 − x for the second term.

�

Proposition 1 1. {Nn}n is an inhomogeneous branching process generated by
{L(Y∗n,1)}n. When {pNbef

n
}n is deterministic, m∗n and σ2

∗n are given by

m∗n = m(1 − δpn); σ2
∗n = σ2(1 − δpn)2 + δ2mpn(1 − pn).(4)

When pNbef
n

= λ(N bef
n )−x, m∗Nn−1 and σ2

∗Nn−1
satisfy

m∗Nn−1 = m(1 − δpNn−1)(5)
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σ2
∗Nn−1

≤ (σ + |δ|C1N
−x/2
n−1 )2,(6)

with equality when δ = 0, and where 0 < C1 < ∞ is function of m, σ2.

2. {N bef
n }n is an inhomogeneous branching process generated by {L(Y bef

∗n,1)}n≥2, and

by L(Y1,1), n = 1. m
bef

∗Nbef

n−1

and σ
2bef

∗Nbef

n−1

satisfy

m
bef

∗Nbef

n−1

=m(1−δpNbef

n−1
); σbef

∗Nbef

n−1

=σ2(1 − δpNbef

n−1
)+m2δ2pNbef

n−1
(1 − pNbef

n−1
).(7)

Moreover when pNbef
n

= λ(N bef
n )−x, then, {Nn}n and {N bef

n }n are size dependent

branching processes ([8]).

Proof.

1. The branching property of {Nn}n is deduced directly from model (M):

Nn =

Nn−1∑

i=1

Y∗n,i and Nobs
n =

Nn−1∑

i=1

Y obs
n,i ,(8)

where Y∗n,i =
∑Yn,i

j=1 (1 − δNobs
n,i,j) and Y obs

n,i =
∑Yn,i

j=1 Nobs
n,i,j , the {Nobs

n,i,j}i,j being

i.i.d. according to Bp
N

bef
n

, given N bef
n . Therefore {Nn}n is an inhomogeneous

BGW branching process generated by the conditional distribution of Y∗n,i given
Fn−1.

When {pNbef
n

}n is a deterministic sequence {pn}n, m∗n can be calculated directly

from the definition of Y∗n,1, and σ2
∗n from

Y∗n,1 − m∗n = δ

Yn,1∑

j=1

(pn − Nobs
n,1,j) + (1 − δpn)(Yn,1 − m).

Assume now that pNbef
n

= λ(N bef
n )−x. To calculate m∗Nn−1, use first on one hand

the relationship deduced from (2) and (3):

E(Nn|Fn−1) = E(N bef
n |Fn−1) − δE(E(Nobs

n |N bef
n ,Fn−1)|Fn−1)

= mNn−1 − δλE((N bef
n )1−x|Fn−1),(9)

and on the other hand, the branching property Nn =
∑Nn−1

1 Y∗n,i

E(Nn|Fn−1) = Nn−1m∗Nn−1 .(10)

Comparing (9) and (10) leads to

m∗Nn−1 = m(1 − δλm−1N−x
n−1mn,1−x).(11)
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Next, from Y∗n,1 − m∗Nn−1 = (Yn,1 − m) − δ(Y obs
n,1 − mobs

Nn−1
),

σ2
∗Nn−1

= σ2 + δ2σ2obs
Nn−1

− 2δE[(Yn,1 − m)(Y obs
n,1 − mobs

Nn−1
)|Fn−1].(12)

But

|E[(Yn,1 − m)(Y obs
n,1 − mobs

Nn−1
)|Fn−1]| ≤ σσobs

Nn−1

implying by lemma 2.1.2 the bounding of σ2
∗Nn−1

.

2. N bef
n can be written

N bef
n =

Nbef

n−1∑

i=1

1−δNobs
n−1,i∑

j=1

Yn,i,j

not.
=

Nbef

n−1∑

i=1

Y
bef
∗n,i.

Then as for {Nn}n, we obtain m
bef

∗Nbef

n−1

= E(1−δNobs
n−1,1|F

bef
n−1)E(Yn,1) and σ

2bef

∗Nbef

n−1

=

σ2E(1 − δNobs
n−1,1|F

bef
n−1) + m2V ar(δNobs

n−1,1|F
bef
n−1).

�

Lemma 2 1. Assume {pNbef
n

}n is a deterministic sequence. then

mobs
n = mpn and σ2obs

n = σ2p2
n + mpn(1 − pn)

2. Assume pNbef
n

= λ(N bef
n )−x. Then

(a) mobs
Nn−1

= mpNn−1 and mobs
Nn−1

≤ λN−x
n−1m

1−x;

(b) There exists 0 < C < ∞ function of m and σ2 such that σ2obs
Nn−1

≤ CN−x
n−1.

Proof.

1. The proof follows directly from the definition of Y obs
n,1 .

2. (a) From the relationships m∗Nn−1 = m− δmobs
Nn−1

obtained from the definition of

Y∗n,1, and m∗Nn−1 = m(1 − δλm−1N−x
n−1mn,1−x) (cf (11)), deduce

mobs
Nn−1

= λN−x
n−1mn,1−x.(13)

Finally use item 1 of lemma 2.1.1.
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(b) From Nobs
n =

∑Nn−1

1 (Y obs
n,i − mobs

Nn−1
) + mobs

Nn−1
Nn−1 deduce

E((Nobs
n )2|Fn−1) = Nn−1σ

2obs
Nn−1

+ (mobs
Nn−1

)2N2
n−1.(14)

Next using (3), Nobs
n =

∑Nbef
n

1 (Nobs
n,j − pNbef

n
) + pNbef

n
N bef

n which implies

E((Nobs
n )2|N bef

n ,Fn−1) = λ(N bef
n )1−x(1 − pNbef

n
) + λ2(N bef

n )2−2x,

obtain

E((Nobs
n )2|Fn−1)

= λN1−x
n−1E(Y

1−x

n (1 − pNbef
n

)|Fn−1) + λ2N2−2x
n−1 E(Y

2−2x

n |Fn−1).(15)

Comparing (14) and (15) and using (13) yields

σ2obs
Nn−1

=λN−x
n−1E(Y

1−x

n (1−pNbef
n

)|Fn−1)+λ2N1−2x
n−1 V ar(Y

1−x

n |Fn−1).(16)

from which we deduce σ2obs
Nn−1

≤ λN−x
n−1mn,1−x + λ2N1−2x

n−1 V ar(Y
1−x

n |Fn−1).
Now according to item 2 of lemma 2.1.1,

N1−2x
n−1 σ2

n,1−x = N
−(1−ε)x
n−1 N

1−(1+ε)x
n−1 σ2

n,1−x

≤ Oε(1)N
−(1−ε)x
n−1

implying, since ε is arbitrary,

N1−2x
n−1 σ2

n,1−x = O(1)N−x
n−1.(17)

Using (16) and (17), we obtain σ2obs
Nn−1

= O(1)N−x
n−1 and since σ2obs

Nn−1
≤ m2+σ2

because Y obs
n,1 ≤ Yn,1, then there exists 0 < C < ∞ such that σ2obs

Nn−1
≤ CN−x

n−1.

�

Proposition 2 Assume pNbef
n

= λ(N bef
n )−x. Then Nnm−n and N bef

n m−n converge

a.s. and in L2 to a non degenerate and non negative random variable W such that
0 ≤ W < ∞, P (W > 0) > 0 and E(W |N0) = [N0(m

x −1)− δλE(W 1−x|N0)](m
x −1)−1.

Proof. Prove the result concerning Nn. The proof is similar concerning N bef
n . The

result is obtained by using Klebaner’s theorem 1.7 ([8]) (according to lemma 2.1.2 and
proposition 2.1.1 |m∗n − m| and σ2

∗n satisfy the assumptions of theorem 1.7). Calculate
E(W |N0). Using (5) and E(Nn|Fn−1) = m∗Nn−1Nn−1, we have E(Nn|Fn−1) = mNn−1−

δλN1−x
n−1mn,1−x implying E(Nn|N0) = mnN0−δλ

∑n−1
0 mkaNn−1−k

m(n−1−k)(1−x), where

aNn
= E((Nnm−n)1−xY

1−x

n+1|N0). Since Nnm−n and Y n converge in L2 to W and m
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respectively, by Hölder inequality, Nnm−nY n converges in L1 to Wm and then by the
standard result (R), E(an|N0) tends to E((Wm)1−x|N0). Consequently

E(
Nn

mn
|N0) = N0 − δλm−(1−x)

∑n−1
0 aNn−1−k

mkx

∑n−1
0 mkx

∑n−1
0 mkx

mnx

implying the result by Toeplitz’s lemma.
We prove in the same way the convergence of N bef

n m−n to W bef . We show now that

W bef a.s.
= W . From (2)

N bef
n

mn
=

∑Nn−1

1 Yn,im
−1

Nn−1

Nn−1

mn−1

which, using the strong law of large numbers and the a.s. convergence of Nnm−n,
converges a.s. to W on {W > 0}. Comparing this result with limn N bef

n m−n a.s.
= W bef

leads to W bef a.s.
= W . �

Corollary 1 Assume pNbef
n

= λ(N bef
n )−x. We have a.s. on {W > 0}

0 < Π∞
1 (1 − δpNk−1

) < ∞ and 0 < Π∞
1 (1 − δpNbef

k−1
) < ∞.

Proof. First Π∞
1 (1 − δpNk−1

) exists because {Πn
1 (1 − δpNk−1

)}n is a monotonic

sequence. Next 0 < Π∞
1 (1 − δpNk−1

) < ∞ if
∑

| ln(1 − δλm−1N−x
k−1mk,1−x)| < ∞, i.e.

if |δ|λm−1
∑

k N−x
k−1mk,1−x < ∞ which is satisfied a.s. on {W > 0} since using lemma

2.1.1 and proposition 2.1.2,
supk(Nk−1N

−1
k )xmk+1,1−xm−1

k,1−x = m−x < 1, a.s. (D’Alembert’s criterion). The
proof is similar for the other relationship. �

Lemma 3 . Assume pn = λ(N0mΠn−1
1 m(1−δpk))−x, 0 < x ≤ 1. Then m(1−δpn) > 1,

for all n, 0 < Π∞
1 (1 − δpn) < ∞ and limn pn = 0.

Proof. First m(1 − δp1) > 1 and pn+1p
−1
n = [m(1 − δpn)]−x. Therefore assuming

m(1−δpn) > 1, then pn+1 < pn and m(1−δpn+1) > m(1−δpn) > 1, for all n, when δ = 1.
Consequently limn m(1−δpn) ≥ m(1−δp1) > 1 when δ = 1, and limn m(1−δpn) ≥ m > 1
when δ = −1 or δ = 0. {pn}n being a bounded decreasing sequence in [0, 1], limn pn

exists and is in [0, 1]. Next we show that 0 < Πk(1 − δpk) < ∞. This is satisfied
if

∑
k | ln(1 − δpk)| < ∞, that is if |δ|

∑
k pk < ∞. This last condition holds since

limnpn+1p
−1
n = limn[m(1−δpn)]−x is less than 1 (D’Alembert’s criterion). Consequently

0 < Πk(1 − δpk) < ∞ which implies limn pn = 0. �

Let WN0,n = Nn(Πn
1m∗Nk−1

)−1, W
bef
N0,n = N bef

n (mΠn−1
1 m∗Nk−1

)−1,

W obs
N0,n = Nobs

n (mobs
Nn−1

Πn−1
1 m∗Nk−1

)−1.
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Proposition 3 .

1. Assume {pn}n is deterministic. Then {WN0,n}n and {W bef
N0,n}n converge a.s. and

in L2 to a non degenerate random variable WN0 , E(WN0 |N0) = N0. Moreover
Nnm−n

∗ and N bef
n [mmn−1

∗ ]−1 converge a.s. and in L2 to W = Π∞
1 [(1 − δpk)(1 −

δp)−1]WN0 .

2. Assume pNbef
n

= λ(N bef
n )−x. Then {WN0,n}n and {W bef

N0,n}n converge a.s. to a

non degenerate random variable WN0 = W [Π∞
1 (1 − δλpNk−1

)]−1, {WN0 > 0}
a.s.
⊃

{W > 0} with equality when δ = 0 or δ = −1. Moreover {WN0,n}n and {W bef
N0,n}n

converge also in L2 to WN0 when x > δ − ln(λ−1(m − 1))(lnm)−1. In that case
E(WN0 |N0) = N0.

Proof.

1. The case p > 0 is explained in Jacob and Peccoud ([6]). When pn=λ(N0mΠn−1
1 m(1−

δpk))−x with 0 < x ≤ 1, using lemma 2.1.3, we show as for p > 0, that WN0,n

and W
bef
N0,n are non negative martingales with finite first two moments because

limn Πn−1
1 m(1 − δpk) = ∞, as n → ∞. Finally, 0 < Π∞

1 [(1− δpk)(1− δp)−1] < ∞,

implying limn Nnm−n
∗

a.s.,L2

= W and limn N bef
n [mmn−1

∗ ]−1 a.s.,L2

= W .

2. When {pNbef
n

}n is the random sequence {λ(N bef
n )−x, {WN0,n}n is still a non neg-

ative martingale (since m∗Nk−1
> 0), with expectation N0, and therefore con-

verges a.s. to a non degenerate random variable WN0 . Show now that WN0

a.s.
=

Π∞
1 [m−1

∗Nk−1
m]W and that {WN0 > 0}

a.s.
⊃ {W > 0}. By proposition 2.1.2,

WN0,n = Nnm−n[Πn
1 (1 − δpNk−1

)]−1 converges a.s. both to W [Π∞
1 (1 − δpNk−1

)]−1

and to WN0 implying WN0 = W [Π∞
1 (1 − δpNk−1

)]−1. Using corollary 2.1.1, {W >

0} ⊂ {WN0 > 0}, with equality when δ = 0 or δ = −1, because 0 ≤ W < ∞ and
Π∞

1 (1 − δpNk−1
) ≥ 1.

Next using

WN0,n =
1

Πn
1m∗Nk−1

Nn−1∑

1

(Y∗n,i − m∗Nn−1) + WN0,n−1

we obtain iteratively

E(W 2
N0,n|N0) =

n∑

k=1

E(
σ2
∗Nk−1

Nk−1

[Πk
1m∗Nl−1

]2
|N0) + N2

0 .

And by lemma 2.1.1, m∗Nk−1
≥ (m + inf{−δ, 0}λm1−x and by lemma 2.1.2, there

exists a constant C such that σ2
∗Nk−1

≤ C. Consequently

E(W 2
N0,n|N0) ≤ C

n∑

1

E(
Nk−1

Πk−1
1 m∗Nl−1

|N0)
1

(m + inf{−δ, 0}λm1−x))k+1
+ N2

0 .(18)
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Since E(Nk−1(Π
k−1
1 m∗Nl−1

)−1|N0) = N0 and assuming m+inf{−δ, 0}λm1−x) > 1,

then limnE(W 2
N0,n|N0) < ∞. Therefore, WN0,n being a martingale with a finite

second moment, it converges in L2 to WN0 .

Concerning W
bef
N0,n, as previously since W

bef
N0,n = N bef

n m−n[Πn−1
1 (1 − δpNk−1

)]−1,

W
bef
N0,n converges a.s. to W [Π∞

1 (1 − δpNk−1
)]−1 = WN0 . Next using

W
bef
N0,n =

1

mΠn−1
1 (1 − δpNk−1

)

Nn−1∑

i=1

(Yn,i − m) + WN0,n−1,

yields, as for W 2
N0,n,

lim
n

E((W bef
N0,n − WN0,n−1)

2|N0) = 0.

Therefore the convergence in L2 of W
bef
N0,n follows from the convergence in L2 of

WN0,n−1.

�

2.2 Asymptotic behaviour of {Nobs
n }n

Let p̃n = pn when pNbef
n

is deterministic, and p̃n = λm−nx, when pNbef
n

= λ(N bef
n )−x.

Then, when pn is deterministic, mobs
Nn−1

[mp̃n]−1 = 1 and when pNbef
n

= λ(N bef
n )−x,

limn mobs
Nn−1

[mp̃n]−1 a.s.
= W−x.

Proposition 4 Assume x < 1. Let x̃ = 0 when pn is deterministic and x̃ = x when
pNbef

n
= λ(N bef

n )−x.Then

lim
n

Nobs
n

mp̃nmn−1

a.s.,L2

= W 1−x̃.

Proof. Assume pNbef
n

= λ(N bef
n )−x. The proof in the deterministic case is similar.

According to (3)

Nobs
n

mp̃nmn−1
=

∑Nn−1

1 Y obs
n,i (mobs

Nn−1
)−1

Nn−1

Nn−1

mn−1

mobs
Nn−1

mp̃n
.(19)

On the non extinction set, by the standard law of large numbers (the Kolmogorov condi-
tion is satisfied:

∑
Nn−1

σ2obs
Nn−1

(mobs
Nn−1

)−2N−2
n−1 ≤

∑
n O(1)n−(2−x) converges for x < 1)

and according to proposition 2.1.2, Nobs
n [mp̃nmn]−1 converges a.s. to W 1−x. Next, we

study the convergence in L2. According to (19)

E[(
Nobs

n

mp̃nmn−1
− (

Nn−1

mn−1
)1−x)2|Fn−1]

=
Nn−1σ

2obs
Nn−1

[mp̃nmn−1]2
+ [

mobs
Nn−1

Nn−1

mp̃nmn−1
− (

Nn−1

mn−1
)1−x]2.(20)
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Next

mobs
Nn−1

Nn−1

mp̃nmn−1
=

E([
∑Nn−1

1 Yn,im
−1]1−x|Fn−1)

m(n−1)(1−x)

which implies

E[(
Nobs

n

mp̃nmn−1
− (

Nn−1

mn−1
)1−x)2|Fn−1] =

Nn−1σ
2obs
Nn−1

[mp̃nmn−1]2
+ (

Nn−1

mn−1
)2(1−x)(

mn,1−x

m1−x
− 1)2.

By the same argument as item 2 of lemma 2.1.1, we have N
1−(1+ε)x

2 (mn,1−xm−(1−x) − 1)
converges a.s. to 0 on the non extinction set, and since by item 1 of lemma 2.1.1,

(mn,1−xm−(1−x) − 1) < 2, then (mn,1−xm−(1−x) − 1) = O(1)N
−(1−x)

2 with O(1) < C′,
0 < C′ < ∞ and therefore by lemma 2.1.1

E[(
Nobs

n

mp̃nmn−1
∗

− (
Nn−1

mn−1
∗

)1−x)2|N0] ≤ C′′E((
Nn−1

mn−1
)1−x|N0)

1

m(n−1)(1−x)

which tends to 0. �

Proposition 5 1. Assume p > 0. Then {W obs
N0,n}n converges a.s. and in L2 to WN0 .

2. Assume pn = λ(N0mΠn−1
1 m(1 − δpk))−x, 0 < x < 1. Then {W obs

N0,n}n converges

a.s. and in L2 to WN0 .

3. Assume pNbef
n

= λ(N bef
n )−x. Then W obs

N0,n converges a.s. to WN0 . Moreover if

δ − ln(λ−1(m − 1))(lnm)−1 < x < 1, W obs
N0,n converges also in L2.

4. Assume pn = λ(N0mΠn−1
1 m(1 − δpk))−1. On {WN0 > 0}, Nobs

n converges in
distribution to the Poisson distribution P(λN−1

0 WN0) with parameter λN−1
0 WN0 ,

and W obs
N0,n converges in distribution to λ−1N0P (λN−1

0 WN0).

5. Assume pNbef
n

= λ(N bef
n )−1. On {WN0 > 0}, Nobs

n converges in distribution to the

Poisson distribution P(λ) with parameter λ and W obs
N0,n converges in distribution to

λ−1WN0P (λ).

Proof.

1. The proof is given in ([6]). See also proposition 2.2.1.

2. The proof is the same as for the case p > 0.

3. The proof is similar to proposition 2.2.1 proof.

4. The first result follows directly from pnN bef
n = λN−1

0 W
bef
N0,n and from the conver-

gence of W
bef
N0,n. The second result follows directly from W obs

N0,n = Nobs
n λ−1N0.
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5. The first result follows directly from pnN bef
n = λ and from limn N bef

n
a.s.
= ∞ on the

non extinction set. Moreover W obs
N0,n = Nobs

n W
bef
N0,nλ−1 converges in distribution to

P(λ)WN0λ
−1.

�
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