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ON SOME SUFFICIENT CONDITIONS FOR HIGH
BREAKDOWN POINT OF ML ESTIMATORS" *

Maya Marintcheva

High breakdown point estimators LM E (k) and LT E(k) for location and scale are
obtained for symmetrical exponentially decreasing density family.

1 Introduction

Let us consider a defined on p-dimensional Euclidean space EP multivariate density
family: f(x,p,S) = \/Eff(s)ga((x — ) S7Y(x — p)), with fixed shape function ¢, where

w1 and S denote location and scale correspondingly. Vandev [1] developed a breakdown
point technique for the robustified LM FE and LTFE estimators. Their breakdown point
is not less than ”T_k, i.e. they are ”T_k—robust, for k, chosen by the user within some
reasonable range of values. Vandev and Neykov [2] studied the connection of the finite
sample breakdown point, dimension of the Gaussian distribution and the notion of d-
fullness, introduced in [1]. Now following the technique [3], a high breakdown point for
LME and LTE is obtained for ¢(z) = O(efo‘zﬁ); a is a positive constant and [ lies
between 0 and 1. A contra example in case of p(z) = 1/zP demonstrates the need of

exponential decrease for the theory.

2 Basic Definitions

Definition 1 Estimators LM E(k) and LT E(k) of the unknown parameter 0, for k > %
are defined as:
LME(k)(x1,22,...,2,) = argmin(—In f(zyy), 0)),
0

*The author owes a dept of gratitude to Prof. D. Vandev for his remarks and directions
*This paper is partly financed by I-625/96 of Bulgarian Ministry of Education Science and Technolo-
gies
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k

LTE(k)(z1,z2,...,2,) = argmin Z[f In f(2(5),0)],
LA
where f(xy1),0) > f(212),0) > ... > f(@i(n),0) are the ordered density values.

Definition 2 The real valued function g(z) defined on a topological space Z is called
subcompact, if its Lebesque sets L(M) = {z: g(z) < M} are compact or empty for every
positive constant M.

Definition 3 A finite set I' of n functions is called d-full, if for any subset of cardinality
d >0 from F, the supremum of all functions in this subset is a subcompact function. [1]

Theorem 1 If 1(n+d) < k <n—d, then LME(k) and LTE(k) are (n— k)-robust. [1]

Lemma 1 (a standard Linear Algebra fact) Let «; are the eigenvalues of S, and there
exist real constants « and 8, such that o < a; < 8. Then o < ||S|| < 8.

P
Lemma 2 If A, Xe,..., )\, are positive real numbers and H = Z()\Z —InN),
i=1

then e H <\ <eH/(e—1). [3]

3 Results

Lemma:* Let x1,x9,...,2, be a set of independent observations in EP over a random
variable £ with density function: f(z,u,S) = \/aftp(s)ap((x —w)'S7Yx — p)), and let F
be the finite set: F' = {—1In f(z1,u,5),—In f(z2, 1, S),...,—In f(xn, p, S)}. Then:

LME(k)(x1,22,...,2,) = argmin(—In f (x4, 1, S)), and
s

k
LTE(k) (21, 2,...,2n) = arggm’n Z(— In f(zi(5), 1, 9));
i=1

n
both have a breakdown point not less than , for:

1
§(n+p+1)§k§nfpfl and go(z):O(e*aZB): a>0,0<8<1

Contra — example:
Let choose a function ¢(z) = 1/2? that does not satisfy the assumption to be O(e‘azﬁ). In
this case we show that A = {S : . max }{— In f(z, 1, S)} < K} contains matrices
ie{1,2..,p+1
S with eigenvalues that can not be separated from the zero point. Therefore A is not a
compact set [5], we have not (p + 1)-fullness and Theorem1 is not applicable.

*These robust estimators are useful tools for variety of theories including Teletrffic theory.
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A= S:lln(detS)fln T 5 <K =
2 max  (z; — p)ST (z; — 1))
i€{1,2,...,p+1}

1 -1
= i i — P — <
{S 5 In(detS) erlnie{lg}-z?}’(pﬂ}((x ST (my — ) K}

p+1

max (2 =S @i —p) < Y (@i — SN wi —p) =

i€{1,2,....,p+1} )

p+1
AcA = {S S In(detS) + pln Y ((x M)’S_l(xi—ﬂ))SK}
i=1

1
:{S : —§ln(det571) +plnTr(BS™1) < K}

1 1
:{S : —§ln(detBS_1) +plnTr(BS_1) < K, where: K1 = K — §ln(detB)}

—In\/det(BS—1) + In (Tr(BS™ 1))’ < Kl} -

Ky, = e and Aiyi o€ {1,2,...,p} are the eigenvalues of BS~!, so we have that:

det(BS~! H/\ and Tr(BS™! Z)\ For \j =...= X\, = \:
L p;D)\p ol
Z Ai G = pPA2, which ever can be made smaller than Ky for
2
i=1
A—0.
4 Proof

Conclusions follow from [1] and [3] if only (p 4 1)-fullness of F' is obtained. Considering
definitions 1-3 and Theorem 1, it only remains to show that for any constant K:

A{S: max {lnf(xi,,u,s)}SK}

i€{1,2...,p+1}

is compact or empty. As closeness is easy to obtain [3] we concentrate on proving that
A is bounded. It is shown by means of expanding A until a bounded set A4 is achieved.
As A C A4, A is bounded too.
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A= {S: %ln(detS)—Im;a( max ((mi—u)/S_l(xi—u))> SK-HDCPZKl};

i€{1,2,....,p+1}

We need the following inequalities (1),(2) and denotations (3),(4).

W ie{lg?-}fpﬂ}((xi ST i — ) 2 1% jii((% — 1SNz — )
p+1 il
(2) Z;((mi — 1S @i — ) > ;((x,» —ENS (i — 7))
1 p+1
¥ Tl (z; — F)(z; — T
1 p+1
(4) Tr(BZ) = = z:l((xi iz 7). Z—5

p+1
ACA = {S i —3In(detBZ) —Ingp (# Z(IZ — 1S (x4 f)) < K2} )
i=1

where: Ko = K1 — %lndetB.

We choose a constant k = [(1 — ) lnp—Ina—1In3]/8. Let v; for i € {1,2,...
the eigenvalues of BZ and let consider: \; = (e*k%)% which is equivalent to v; =

In terms of \; we have that:
P P

det(BZ) = ﬁ v = ePF ﬁ A Tr(BZ) =) = eF Y N,
=1 =1 =1

=1

and A, = {S . \/det(BZ).p(Tr(BZ)) > L}, L= K,

i=1 =1

p p
H )\Zﬂ.ga (ek Z )\Zﬂ> > Ly, where: L1 = Le%m

,p} be
)\Zﬂek.

ﬁ) < Lo, where: Ly = —InL,
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1 P P
— {)\1,)\2,...,/\,, : —ElnHAlﬂZ < Blng (&ZM) + Lg, where: L 5.L2}

i=1 i=1

1 P 1 P 1 P P
= {)\17)\27...,)\1) : 52)\1‘[32— §1HH>\lﬁ2 < 52)\1[32—1—ﬁ1n<p (ekZ)\iﬁ +L3 .
i=1 i=1 i=1

L p
Because 3 Z )\Zﬂz < Z )\152, we enlarge A; to As:

1 p 2 1 p R p R p
_ .= B = B B k B .
y = {Al,AQ,...,/\p.Q;AZ QIHEAZ S;A’ +ﬂlng0<6 ;)\ +Ls
P 5 P
{Al,Ag,...,Ap:H§2(ZAiﬁ +Alny (ekZAZﬂ>> +2L3};
i=1

i=1

A lnH)\ g Z (Aﬁz - mA,ﬂQ)

1 i=1

A
[
NE

.
Il

P P 4
1
Once again As enlarges to Az according to: 0 < r < 1: Zyi’" < (Z yi>
i=1 i
[4], substituted for y; = A\;°,i € {1,2,...,p} and r = 3 :

P P B
®) Yo < (Z Mﬁ)

i=1

P

p
A3: AlaAZa"'aAp:H§2 (Z)\zﬁ> 5 1+51n@<6kz>\15> +L3
=1

Now we remember that: ¢(z) = O(e“)‘zﬁ)7 o(z) < Ae=o" = In 0(z) <In A —azf,

B
P P p
for any constant A > 0. For z = €F Z)"ﬂ s Ing(e” Z)\,ﬂ) <InA-—a.e® <Z )\Zﬂ>

i=1 i=1 i=1
and Ajz goes into Ay, where:

p

B B
A4 = )\17)\27...,)\le S 2 (Z)\lﬁ> [-3 T _|_ﬁlnA Oéﬁ@kﬁ <Z>\ ﬁ) +2L3

i=1

B
P
= (AL A2, At HLS2 (Z )\Zﬂ> (pl_ﬁ—aﬁekﬁ)—l—Lél7 where: Ly = 2831n A+2L3

i=1

== {)\17)\2,...,)\p:H§L4}.
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Because of the special choice of k: k=[(1—-0)Inp—Ina—1Inp]/B, we have that:
p' P —afet? = pl=Ff — apefla-Ainp=lna=nbl/5 _ 51=6 _ g(p1=F)/(af) = 0.

Finally A ¢ Ay C Ay C A3 C Ay is obtained. As from Lemma 2 and H <
L4 we have that: e~ %+ < \; < i—‘i, when apply Lemma 1, we obtain that A is bounded.
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