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EVALUATING THE RISK IN SELECTION PROBLEMS 

Eugenia Stoimenova 

Let Xu,Xki be the scores of the 1 s t , . . . , kth student on test i, and Xin,..., Xkn 
be the sample mean scores of the 1 s t , . . . , kth student corresponding to the first n tests 
given. It is assumed that the variableX^ is normally distributed with mean fij and 
common known variance 1 for 1 < j < fc and t = 1)2, . . . independently of all other 
observations. Let p^] < /X[

2
] < • • • < H[k) denote the ordered fa, i = l,...,k. We assume 

that it is not known which parameter is associated with We denote X^)n the sample 
mean score corresponding to and also ^ [ i ] n < • • • < ^[k]n the ordered sample means. 

On the basis of Xin,...,Xkn, we wish to partition the students into two disjoint 
subsets such that the first subset contains k — t students with smallest m, and the second 
subset contains the remaining t students with largest / i j , where 1 < t < k. The students 
in the second subset are called "best". 

A n action space can be taken to be the set A = {A} containing all partitions A = 
(Ai, A 2 ) of { 1 , . . . , fc} where Ai has k — t elements and A 2 has t elements. 

A decision function <p is a measurable function on X such that ip = {fx : A 6 A} 
where 0 < fx < 1 and Ylxe\ fx = 1- Let V be the class of decision functions. For f G V 
and r € Sk, define <pr by (fr)x = fxr-1-

We require the usual type of invariant assumptions regarding X, Q and A. A decision 
function is right invariant if ipr(x) = f(xr). Denote D / the set of right invariant decision 
functions. For more explicit treatment of symmetry and invariance see Lehmann (1997). 

The Natural Decision Procedure (Eaton, 1967) divides the students into two disjoint 
subsets according to the ranking of the observed mean vector Xn. If n tests are given to 
each if the k studentsq then we use the procedure of classifying student j (for 1 < j < k) 
into first group iff Xjn < X[k-t]n 

The decision function <p* divides the students (ti,... into two ordered subsets. 
The first subset contains fc - t students corresponding to the fc - t smallest components 
of x, the observed value of Xn, and the second subset contains the remaining t students. 
The procedure does not state any preferences among members of the same subset. 

The optimum properties of the natural decision procedure for selecting the best 
single population are derived by Bahadur (1950), and Bahadur and Goodman (1952). 



Preference Zone and Least Favourable Configuration. The indifference Zone 
approach, proposed by Bechhofer (1954), consists of d iv id ing the parameter space into 
two regions, the so called Preference Zone (PZ) and its complement the Indifference Zone. 

For 0 < 5 < oo, the subset PZ € 0 defined by 

is called the Preference Zone of location parameters. 

The loss function counts the number of misclassified students and equals two times the 
number of students which are among thet t-best and are placed in the first subset by 
action A. 

The proposed loss function is an invariant metric on the action space A . The anal­
ogous loss functions for the general part i t ioning problem are discussed in Stoimenova 
(1995) and they are sensitive to the magnitude of misclassification as well . 

Expected loss (risk). 
Assuming no ties in X and using loss function (2) the risk for <p* is 

The opt imal properties of Natura l Decision Procedure are derived for invariant loss 
functions satisfying monotonicity property (1). 
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Lehmann (1966), Ea ton (1967), and A l a m (1973) have extended the results for more 
general problems and families of distributions. The problem is further discussed by G u p t a 
and Miescke (1984). They give a general proof that the natural terminal decisions, i.e. 
decisions which are made in terms of largest sufficient statistics, are opt imal in terms of 
the risk, uniformly in parameters under fairly general loss structure. 

Loss function. Let Z(/i, A) denote the loss incurred if we terminate experimentation 
with action A e A when p is the true value of the parameter vector. Loss function A) 
is assumed to be right invariant, that is l(fir, A r ) = A). Moreover, l(u-, A) is assumed 
to favour actions wi th large values: 
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The procedure used should guarantee that the risk of decision ip asserted from the 
observations is at most some specified value P" whenever p. lies in PZ. The Preference 
Zone represents a subset of parameter values where we have a strong preference for a 
correct selection. The Indifference Zone approach is directed towards the performance of 
Natura l Decision Procedure for configurations in the P Z . 

The Least Favourable Configuration ( L F C ) of the parameters is that one from PZ 
for which the risk reaches its maximum. For two-category problem with parameter of 
location 

The risk function p(<p',n) is decreasing in 6, respectively increasing in n. Thus we can 
choose n to be the smallest integer n* such that p(<p',LFC) < P*. Than for al l n > ft", 
p(<p*,fi) w i l l be less than P * for a l l parameter configurations (4) specified by 5. 
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We could drop the assumption that the X's are normally distributed and substitute 
any location family of densitites associated with a location parameter /x. (Stoimenova, 
1998). Then a new distribution function shoud be substitute instead of For some 
distributions the integrals in risk function for L F C can be solved analytically. The case 
t = 2 is considered for uniform and logistic distributions by Stoimenova (1995). 
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